Login

Proceedings

Find matching any: Reset
D.C, H
Nielsen, M.R
Reusch, S
Donald, G.E
HIguti, V.A
Dos Reis, A.A
Ruma, F.Y
Bernardi, A.C
Green, S
Gaviraghi, R
Duhachek, G
Reiche, B
Givens, W
N.L. , R
Add filter to result:
Authors
Bettiol, G.M
Inamasu, R.Y
Rabello, L.M
Bernardi, A.C
Campana, M
Oliveira, P.P
Shanwad, U.K
Patil, M.B
H, V
B.G , M
R, P
N.L. , R
S, S
Khosla, R
Patil, V.C
de Oliveira, R.P
Bernardi, A.C
Benites, V.D
Rabello, L.M
Inamassu, R.Y
Naime, J.D
Queiros, L.R
Resende, A.V
Vilela, M.D
Bassoi, L.H
Perez, N.B
Bernardi, A.C
Inamasu, R.Y
Bernardi, A.C
Gimenez, L.M
Silva, C.A
Machado, P.L
McConnell, M.D
Burger, L.W
Givens, W
Bernardi, A.C
Grego, C.R
Andrade, R.G
Vaz, C.M
Rabello, L.M
Inamasu, R.Y
Gonzalez-Mora, J
Vallespi Gonzalez, C
Ehsani, R
Dima, C.S
Duhachek, G
Donald, G.E
Trotter, M.G
Lamb, D.W
Levow, G
van Es, H.M
Reusch, S
Jasper, J
Link, A
Vollmar, J
Bertelsen, M.G
Nielsen, K
Nielsen, M.R
Nielsen, K
Nielsen, M.R
Gnyp, M.L
Panitzki, M
Reusch, S
Jasper, J
Bolten, A
Bareth, G
D.C, H
Dr., S
Dr., N
giriyappa, M
T, S
Becker, M
Velasquez, A.E
Guerrero, H.B
HIguti, V.A
Milori, D.M
Magalhães, D.V
Amado, T.J
Santi, A.L
Corassa, G.M
Bisognin, M.B
Gaviraghi, R
Pires, J.L
Larbi, P.A
Green, S
Nederend, J
Drover, D
Reiche, B
Deen, B
Lee, L
Taylor, G.W
Pereira, F.R
Dos Reis, A.A
Freitas, R.G
Oliveira, S.R
Amaral, L.R
Figueiredo, G.K
Antunes, J.F
Lamparelli, R.A
Moro, E
Pereira, N.D
Magalhães, P.S
Portz, G
Reusch, S
Jasper, J
Pereira, F.R
Lima, J.P
Freitas, R.G
Dos Reis, A.A
Amaral, L.R
Figueiredo, G.K
Lamparelli, R.A
Pereira, J.C
Magalhães, P.S
Ruma, F.Y
Munnaf, M.A
De Neve, S
Mouazen, A.M
Topics
Precision Dairy and Livestock Management
Food Security and Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Global Proliferation of Precision Agriculture and its Applications
Precision A-Z for Practitioners
Precision Conservation
Precision Nutrient Management
Precision Horticulture
Precision Livestock Management
Proximal Sensing in Precision Agriculture
Engineering Technologies and Advances
Remote Sensing Applications in Precision Agriculture
Precision Nutrient Management
Engineering Technologies and Advances
Spatial Variability in Crop, Soil and Natural Resources
Proximal Sensing in Precision Agriculture
Applications of Unmanned Aerial Systems
Big Data, Data Mining and Deep Learning
Small Holders and Precision Agriculture
In-Season Nitrogen Management
Site-Specific Nutrient, Lime and Seed Management
Type
Poster
Oral
Year
2012
2010
2014
2016
2018
2022
Home » Authors » Results

Authors

Filter results22 paper(s) found.

1. Variable Rate Application Of Potassium Fertilizer For Soybean Crop Growth In A No-till System

Variable rate application of fertilizer has the potential to improve nutrient use efficiency, improve economic returns, and reduce negative environmental impacts. The objective of this study was to evaluate the variable rate application of potassium fertilizer to soybean crop in a no-till system. The study was conducted on a 13-ha soybean grain field in Carambeí, State of Paraná, Brazil in a Typic Hapludox. The area has been under no-tillage for more than 10 years growing grains... A.C. Bernardi, L.M. Gimenez, C.A. Silva, P.L. Machado

2. Precision Conservation: Using Precision Agriculture Technology To Optimize Conservation And Profitability In Agricultural Landscapes

USDA Farm Bill conservation programs provide landowner incentives to remove marginal lands from agricultural production and reestablish them to natural vegetation (e.g., native grasses, trees, etc.). However, removal of arable land from production imposes an opportunity cost associated with loss in revenue from commodities that otherwise would have been produced. Northern bobwhite (bobwhite) populations have shown a positive response to numerous conservation programs implemented in agricultural... M.D. Mcconnell, L.W. Burger, W. Givens

3. Spatial Variability Of Crop And Soil Properties In A Crop-livestock Integrated System

The knowledge of spatial variability soil properties is useful in the rational use of inputs, as in the site specific application of lime and fertilizer. The objective of this work was to map and evaluate the spatial variability of the crop, soil chemical and physical properties. The study was conducted in 2 areas of 6.9 and 11.7 ha of a Typic Haplustox in Sao Carlos, SP, Brazil. The summer crops corn and sorghum were sowed together to the forage crop Brachiaria brizantha in the system of crop-pasture... A.C. Bernardi, C.R. Grego, R.G. Andrade, C.M. Vaz, L.M. Rabello, R.Y. Inamasu

4. HLB Detection Using Hyperspectral Radiometry

The need for sustainable agriculture requires the adoption of low input, long-term and cost-effective strategies to overcome the adverse impact of disease and nutritional deficiencies on citrus groves. In this context, early detection of diseased trees has become an important topic in the citrus industry. Multiple factors make field assessment of disease conditions a challenging task: the non-specific nature of many symptoms, the possibility of having localized affections in only certain areas... J. Gonzalez-mora, C. Vallespi gonzalez, R. Ehsani, C.S. Dima, G. Duhachek

5. Precision Livestock Management: An Example Of Pasture Monitoring In Eastern Australian Pastures Using Proximal And Remote Sensing Tools

  Pasture monitoring Australian rangelands by Remote Sensing   G.E.Donald.  CSIRO Livestock Industries, Locked Bag 1, Armidale NSW, 2350 Australia     A series of spatial models and datasets were jointly developed to estimate pasture biomass as feed on offer (FOO®) and pasture growth rate (PGR®) in the south-west... G.E. Donald, M.G. Trotter, D.W. Lamb, G. Levow, H.M. Van es

6. Estimating Crop Biomass And Nitrogen Uptake Using Cropspectm, A Newly Developed Active Crop-canopy Reflectance Sensor

  In-season variable rate nitrogen fertilizer application needs efficient determination of the nitrogen nutrition status of crops with high spatial and temporal resolution. A suitable approach to get this information fast and at low cost is proximal sensing of the light that is reflected from the crop canopy. CropSpecTM is an active vehicle mounted crop canopy sensor. Using pulsed laser diodes as light source, the sensor is designed to look at the crop at an oblique... S. Reusch, J. Jasper, A. Link, J. Vollmar

7. Spatial Variability of Soil Properties in Intensively Managed Tropical Grassland in Brazil

For the intensification of tropical grass pastures systems the soil fertility building up by liming and balanced fertilization is necessary. The knowledge of spatial variability soil properties is useful in the rational use of inputs, as in the variable rate application of lime and fertilizers. PA requires methods to indicate the spatial variability of soil and plant parameters. The objective of this work was to map and evaluate the soil properties and maps the site specific liming and fertilizer... G.M. Bettiol, R.Y. Inamasu, L.M. Rabello, A.C. Bernardi, M. Campana, P.P. Oliveira

8. Precision Agriculture Initiative for Karnataka – A New Direction for Strengthening Farming Community

Strengthening agriculture is crucial to meet the myriad challenges of rural poverty, food security, unemployment, and sustainability of natural resources and it also needs strengthening at technical, financial and management levels. In this context... U.K. Shanwad, M.B. Patil, V. H, M. B.g , P. R, R. N.l. , S. S, R. Khosla, V.C. Patil

9. Spatial Variability Index Based On Soil Properties for Notill and Pasture Site-Specific Management in Brazil.

 Quantitative characterization of soil properties spatial variation has first been applied... R.P. De oliveira, A.C. Bernardi, V.D. Benites, L.M. Rabello, R.Y. Inamassu

10. Brazilian Precision Agriculture Research Network

The adoption of adequate technologies for food, biomass and fiber production can increase yield and quality and also reduce environmental impact through an efficient input application. Precision agriculture is the way to decisively contribute with efficient production with environment protection in Brazil. Based on this, recently Embrapa established the Brazilian Precision... J.D. Naime, L.R. Queiros, A.V. Resende, M.D. Vilela, L.H. Bassoi, N.B. Perez, A.C. Bernardi, R.Y. Inamasu

11. A Method For Sampling Scab Spots On Apple Leaves In The Orchard Using Machine Vision

Introduction One of the largest threats in apple orchards is scab. Current procedures involve models based on weather data that predict the likelihood of scab attacks. In case of alarm the orchard is sprayed with preventive pesticides and this typically happens 25-30 times per season. The scab attacks the leaves and stays on fallen leaves that reinfect the trees with rainwater, making it an advantage to include a-priori knowledge on previous... M.G. Bertelsen, K. Nielsen, M.R. Nielsen

12. Fusion Of Multi Exposure Stereo Images And Thermography For Obstacle Detection On Agricultural Vehicles

Introduction Over the years agricultural vehicles become increasingly automated with trajectory row tracking and master-slave vehicle configurations, and autoguided vehicles. Safety is an important aspect. Auto guided vehicles exist in industry, where the surroundings are semistructured and flat. Sopme cars have collision sensors. But in agriculture the ground is not flat.  The vehicles are meant to be driven into crops, and there are certain paths... K. Nielsen, M.R. Nielsen

13. Comparison Between Tractor-based and UAV-based Spectrometer Measurements in Winter Wheat

In-season variable rate nitrogen fertilizer application needs a fast and efficient determination of nitrogen status in crops. Common sensor-based monitoring of nitrogen status mainly relies on tractor mounted active or passive sensors. Over the last few years, researchers tested different sensors and indicated the potential of in-season monitoring of nitrogen status by unmanned aerial vehicles (UAVs) in various crops. However, the UAV-platforms and the available sensors are not yet accepted to... M. Gnyp, M. Panitzki, S. Reusch, J. Jasper, A. Bolten, G. Bareth

14. Spatial Variability of Soil Nutrients and Precision Nutrient Management for Targeted Yield Levels of Groundnut (Arachis Hypogaea L.)

A field study was conducted during rabi / summer 2014-15 to know the spatial variability and precision nutrient management practices on targeted yield levels of groundnut. The experimental field has been delineated into 36 grids of 9 m x 9 m using geospatial technology. Soil samples from 0-15 cm were collected and analysed. Spatial variability exists for available nitrogen, phosphorous and potassium and they varied from 99 to 197 kg N, 12.1 to 64.0 kg P2O5 and 166... H. D.c, S. Dr., N. Dr., M. Giriyappa, S. T

15. Helvis - a Small-scale Agricultural Mobile Robot Prototype for Precision Agriculture

The use of agricultural robots is emerging in a complex scenario where it is necessary to produce more food to feed a crescent population, decrease production costs, fight plagues and diseases, and preserve nature. Around the world, there are many research institutes and companies trying to apply mobile robotics techniques in agricultural fields. Mostly, large prototypes are being used and their shapes and dimensions are very similar to tractors and trucks. In the present study, a small-scale... M. Becker, A.E. Velasquez, H.B. Guerrero, V.A. Higuti, D.M. Milori, D.V. Magalhães

16. Response of Soybean Cultivars According to Management Zones in Southern Brazil

The positioning of soybean cultivars on fields according your environmental response is new strategy to obtain high soybean yields. The aim of this study was to investigate the agronomic response of six soybean cultivars according management zones in Southern Brazil. The study was conducted in 2013/2014 and in two fields located in Boa Vista das Missões, Rio Grande do Sul, Brazil. The experimental design was a randomized complete block in a factorial arrangement (3x6), with three management... T.J. Amado, A.L. Santi, G.M. Corassa, M.B. Bisognin, R. Gaviraghi, J.L. Pires

17. Time Series Study of Soybean Response Based on Adjusted Green Red Index

Four time-lapse cameras, Bushnell Nature View HD Camera (Bushnell, Overland Park, KS) were installed in a soybean field to track the response of soybean plants to solar radiation, air temperature, relative humidity, soil surface temperature, and soil temperature at 5-cm depth. The purpose was to confirm if visible spectroscopy can provide useful data for tracking the condition of crops and, if so, whether game and trail time-lapse cameras can serve as reliable crop sensing and monitoring devices.... P.A. Larbi, S. Green

18. The Guelph Plot Analyzer: Semi-Automatic Extraction of Small-Plot Research Data from Aerial Imagery

Small-plot trials are the foundation of open-field agricultural research because they strike a balance between the control of an artificial environment and the realism of field-scale production. However, the size and scope of this research field is often limited by the ability to collect data, which is limited by access to labour. Remote sensing has long been investigated to allocate labour more efficiently, therefore enabling the rapid collection of data. Imagery collected by unmanned aerial... J. Nederend, D. Drover, B. Reiche, B. Deen, L. Lee, G.W. Taylor

19. A Framework for Imputation of Missing Parts in UAV Orthomosaics Using Planetscope and Sentinel-2 Data

In recent years, the emergence of Unmanned Aerial Vehicles (UAV), also known as drones, with high spatial resolution, has broadened the application of remote sensing in agriculture. However, UAV images commonly have specific problems with missing areas due to drone flight restrictions. Data mining techniques for imputing missing data is an activity often demanded in several fields of science. In this context, this research used the same approach to predict missing parts on orthomosaics obtained... F.R. Pereira, A.A. Dos reis, R.G. Freitas, S.R. Oliveira, L.R. Amaral, G.K. Figueiredo, J.F. Antunes, R.A. Lamparelli, E. Moro, N.D. Pereira, P.S. Magalhães

20. Low Cost Smartphone Camera Accessory to Digitally Measure Leaf Color for Crop Nitrogen Status Assessment

Crop nitrogen (N) status is a desirable information for crop nutrition management. In addition to the traditional leaf sampling with subsequent laboratory analysis, the use of chlorophyll meters is a well-studied and accepted practice to indirectly measure crop N status. Nevertheless, chlorophyll meters are dedicated devices that still cost at least a few hundred dollars, thus being unsuitable to large scale use among low budget smallholders. Aiming to address this issue, a new low cost smartphone... G. Portz, S. Reusch, J. Jasper

21. Nitrogen Status Prediction on Pasture Fields Can Be Reached Using Visible Light UAV Data Combined with Sentinel-2 Imagery

Pasture fields under integrated crop-livestock system usually receive low or no nitrogen fertilization rates, since the expectation is that nitrogen demand will be provided by the soybean remaining straw cropped previously. However, keeping nitrogen at suitable levels in the entire field is the key to achieving sustainability in agricultural production systems. In this sense, remote sensing technologies play an essential role in nitrogen monitoring in pastures and crops. With the launch of the... F.R. Pereira, J.P. Lima, R.G. Freitas, A.A. Dos reis, L.R. Amaral, G.K. Figueiredo, R.A. Lamparelli, J.C. Pereira, P.S. Magalhães

22. Management Zone-specific N Mineralization Rate Estimation in Unamended Soil

Since nitrogen (N) mineralization from soil organic matter is governed by basic soil properties (soil organic matter content, pH, soil texture, …) that are known to exhibit strong in-field spatial variability, N mineralization is also expected to exhibit significant spatial variability at field scale. An ideal and efficient N recommendation for precision fertilization should therefore account for potential soil mineralizable N considering this spatial variability. Therefore, this study... F.Y. Ruma, M.A. Munnaf, S. De neve, A.M. Mouazen