Login

Proceedings

Find matching any: Reset
Chen, Y
Pelta, R
Add filter to result:
Authors
Zhao, T
Chen, Y
Franzen, J
Gonzalez, J
Yang, Q
Zhao, T
Cisneros, M
Chen, Y
Yang, Q
Zhang, Y
Beeri, O
Pelta, R
Mey-tal, S
Raz, J
Beeri, O
May-tal, S
Rud, R
Raz, Y
Pelta, R
Pelta, R
Beeri, O
Shilo, T
Tarshish, R
Beeri, O
Pelta, R
Sade, Z
Shilo, T
Topics
Remote Sensing Applications in Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Type
Oral
Poster
Year
2016
2018
2022
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Melon Classification and Segementation Using Low Cost Remote Sensing Data Drones

Object recognition represents currently one of the most developing and challenging areas of the Computer Vision. This work presents a systematic study of various relevant parameters and approaches allowing semi-automatic or automatic object detection, applied onto a study case of melons on the field to be counted. In addition it is of a cardinal interest to obtain the quantitative information about performance of the algorithm in terms of metrics the suitability whereof is determined by the final... T. Zhao, Y. Chen, J. Franzen, J. Gonzalez, Q. Yang

2. Almond Canopy Detection and Segmentation Using Remote Sensing Data Drones

The development of Unmanned Aerial System (UAV) makes it possible to take high resolution images of trees easily. These images could help better manage the orchard. However, more research is necessary to extract useful information from these images. For example, irrigation schedule and yield prediction both rely on accurate measurement of canopy size. In this paper, a workflow is proposed to count trees and measure the canopy size of each individual tree. The performances of three different methods... T. Zhao, M. Cisneros, Y. Chen, Q. Yang, Y. Zhang

3. Data Fusion of Imagery from Different Satellites for Global and Daily Crop Monitoring

Satellite-based Crop Monitoring is an important tool for decision making of irrigation, fertilization, crop protection, damage assessment and more. To allow crop monitoring worldwide, on a daily basis, data fusion of images taken by different satellites is required. So far, most researches on data fusion focus on retrospective analysis, while advanced crop monitoring capabilities mandate the use of data in real time mode. Therefore, our project goals were: (1) to build a data-fusion online system... O. Beeri, R. Pelta, S. Mey-tal, J. Raz

4. Detecting Variability in Plant Water Potential with Multi-Spectral Satellite Imagery

Irrigation Intelligence is a practice of precise irrigation, with the goal of providing crops with the right amount of water, at the right time, for optimized yield. One of the ways to achieve that, on a global scale, is to utilize Landsat-8 and Sentinel-2 images, providing together frequent revisit cycles of less than a week, and an adequate resolution for detection of 1 ha plots. Yet, in order to benefit from these advantages, it is necessary to examine the information that can be extracted... O. Beeri, S. May-tal, R. Rud, Y. Raz, R. Pelta

5. A Hyperlocal Machine Learning Approach to Estimate NDVI from SAR Images for Agricultural Fields

The normalized difference vegetation index (NDVI) is a key parameter in precision agriculture used globally since the 1970s. The NDVI is sensitive to the biochemical and physiological properties of the crop and is based on the Red (~650 nm) and NIR (~850 nm) spectral bands. It is used as a proxy to monitor crop growth, correlates to the crop coefficient (Kc), leaf area index (LAI), crop cover, and more. Yet, it is susceptible to clouds and other atmospheric conditions which might alter... R. Pelta, O. Beeri, T. Shilo, R. Tarshish

6. Multi-sensor Imagery Fusion for Pixel-by-pixel Water Stress Mapping

Evaluating water stress in agricultural fields is fundamental in irrigation decision-making, especially mapping the in-field water stress variability as it allows real-time detection of system failures or avoiding yield loss in cases of unplanned water stress. Water stress mapping by remote sensing imagery is commonly associated with the thermal or the short-wave-infra-red (SWIR) bands. However, integration of multi-sensors imagery such as radar imagery or sensors with only visible and near-infra-red... O. Beeri, R. Pelta, Z. Sade, T. Shilo