Login

Proceedings

Find matching any: Reset
Scaramuzza, F
Stelford, M
Segarra, E
Add filter to result:
Authors
Mishra, A.K
Pandit, M
Paudel, K.P
Segarra, E
Stelford, M
Velandia, M
Mooney, D.F
Roberts, R.K
English, B.C
Larson, J.A
Lambert, D.M
Larkin, S.L
Marra, M.C
Rejesus, R
Martin, S.W
Paxton, K.W
Mishra, A
Wang, C
Segarra, E
Reeves, J.M
Stelford, M
Krmenec, A
Balboa, G
Puntel, L
Melchiori, R
Ortega, R
Tiscornia, G
Bolfe, E
Roel, A
Scaramuzza, F
Best, S
Berger, A
Hansel, D
Palacios, D
Balboa, G
Degioanni, A
Bongiovanni, R
Melchiori, R
Cerliani, C
Scaramuzza, F
Bongiovanni, M
Gonzalez, J
Balzarini, M
Videla, H
Amin, S
Esposito, G
Topics
Profitability, Sustainability and Adoption
Precision A to Z for Practitioners
Profitability, Sustainability, and Adoption
On Farm Experimentation with Site-Specific Technologies
ISPA Community: Latin America
Education and Outreach in Precision Agriculture
Type
Poster
Oral
Year
2012
2010
2022
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 Survey

The objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves

2. Adoption and Non-Adoption of Precision Farming Technologies by Cotton Farmers

  We used the 2009 Southern Cotton Precision Farming Survey data collected from farmers in twelve U.S. states (Alabama, Arkansas, Florida, Georgia, Louisiana, Missouri, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia) to identify reasons on why some adopt and others do not adopt precision farming techniques. Those farmers who provided the cost as the reason for non-adoption are farmers characterized by lower education... A.K. Mishra, M. Pandit, K.P. Paudel, E. Segarra

3. John Deere FarmSight™

Agriculture has had several revolutions in the past century, and it currently faces what may be its greatest challenge to date – population growth and the increased need for food, fiber, and fuel in the future.  To meet this challenge the agricultural industry will have to drive efficiencies to a level never seen before, within a context of several macro trends (e.g., farm sizes increasing, environmental sustainability requirements evolving).  John Deere FarmSightTM... M. Stelford

4. Use of Precision Technologies to Conduct Successful Within-field, On-farm Trials

Performing randomized replicated trials in row crop field environments has the potential to increase crop production in environmentally sustainable ways.  Successful implementation requires an understanding of implement capabilities and sources of potential systematic error, including operator error.  Equipment capabilities can be thought of as a series of several critical “links in a chain,” each with implications that propagate downstream.   We will... M. Stelford, A. Krmenec

5. How Digital is Agriculture in South America? Adoption and Limitations

A rapidly growing population in a context of land and water scarcity, and climate change has driven an increase in healthy, nutritious, and affordable food demand while maintaining the current cropping area. Digital agriculture (DA) can contribute solutions to meet the demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. This article presents the results from a systematic review... G. Balboa, L. Puntel, R. Melchiori, R. Ortega, G. Tiscornia, E. Bolfe, A. Roel, F. Scaramuzza, S. Best, A. Berger, D. Hansel, D. Palacios

6. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in Argentina

The lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito