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ABSTRACT 

     Over the past two decades, hyperspectral (HS) imaging has provided 
remarkable performance in ground objects classification and disease identification, 
due to its high spectral resolution. In this paper, a novel method named ‘extended 
spectral angle mapping (ESAM)’ is proposed to detect citrus greening disease 
(Huanglongbing or HLB), which is a destructive disease of citrus. Firstly, 
Savitzky-Golay smoothing filter was applied to the raw image to remove spectral 
noise within the data, yet keep the shape, reflectance and absorption features of 
the spectrum. Then support vector machine (SVM) was used to build a mask to 
segment tree canopy from the other background. Vertex component analysis 
(VCA) was chosen to extract the pure endmembers of the masked dataset, due to 
its better performance compared to other spectral linear unmixing methods. 



Spectral angle mapping (SAM) was applied to classify healthy and citrus greening 
disease infected areas in the image using the pure endmembers as an input. 
Finally, red edge position (REP) was used to filter out most of false positive 
detections. The experiment was carried out with the image acquired by an 
airborne hyperspectral imaging system from the Citrus Research and Education 
Center (CREC) in Florida, USA. Ground truth including ground reflectance 
measurement and diseased tree confirmation was conducted. The experimental 
results were compared with another supervised method, Mahalanobis distance, 
and an unsupervised method, K-means. The ESAM performed better than those 
two methods.  
 
 
Keywords: Citrus greening, ESAM, K-means, Mahalanobis distance, REP, SAM, 
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INTRODUCTION 
 
      Over the past two decades, hyperspectral (HS) imaging has provided 
remarkable solutions to the needs of a lot of applications in obtaining land cover 
information, due to its high spatial and spectral resolution (Ustin et al., 2004). 
Hyperspectral remote sensors, such as airborne visible infrared imaging 
spectrometer (AVIRIS), and multispectral infrared and visible  imaging 
spectrometer (MIVIS), are now available for precision agriculture applications, 
such as  yield estimation, target detection, environmental impact assessment, etc. 
(Plaza et al., 2009; Zhang et al., 2003; Yea et al., 2008).  
      Disease detection of vegetable or tree crops using hyperspectral data has 
become a subject of intensive research. Many researchers have evaluated the 
usefulness of HS data for disease detection of various crops or citrus fruit.  Zhang 
et al. (2003) investigated the detection of stress in tomatoes induced by late blight 
disease in California using HS image. They combined minimum noise fraction 
(MNF) and spectral angle mapping (SAM) methods. Results showed that the late 
blight diseased tomatoes at stage three or above could be separated from the 
healthy plants. Smith et al. (2005) found that in the spectral data, the red edge 
position was strongly correlated with chlorophyll content across all treatments. 
Stress due to extreme shade could be distinguished from the stress caused by 
natural gas and herbicide from the change in spectrum. Huang et al. (2007) used 
in-situ spectral reflectance measurements of crop plants infected with yellow rust 
to develop a regression equation to characterize the disease index. This was 
validated in the subsequent growing season, and then was applied to hyperspectral 
airborne imagery to discriminate and map the disease index in target fields. Lee et 
al. (2008) used HS images to detect the citrus greening disease by applying SAM 
and spectral feature fitting (SFF) methods. They reported that it was difficult to 
obtain good results because of the positioning errors of GPS ground truth and 
aerial imaging, and the spectral similarity between healthy and the citrus greening 
disease infected trees. Qin et al. (2009) developed  a spectral information 
divergence (SID) based algorithms for hyperspectral image processing and 
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classification to differentiate citrus canker lesions from normal and other diseased 
peel conditions. The SID based classifier could differentiate canker from normal 
fruit peels and other citrus diseases, and it also could avoid the negative effects of 
stem-ends and calyxes. The overall classification accuracy of 96.2% was achieved. 
Li et al. (2012) used both ground and airborne remote sensing to find the spectral 
differences between HLB and healthy citrus canopies. Several classification and 
spectral mapping methods were implemented in airborne multispectral (MS) and 
HS images and their performances and adaptability to detect HLB infected 
canopy in citrus groves were then compared and evaluated.  
     Citrus greening, also known as Huanglongbing (HLB), caused by Asian citrus 
psyllids, is a disease which has no cure reported yet. The infection can cause 
substantial economic losses to the citrus industry by shortening the life span of 
infected trees and threaten the sustainability of citrus planting in Florida (Smith et 
al., 2005; Huang et al., 2007; Lee et al., 2008; Qin et al., 2009). Timely and 
location-specific detection and monitoring of the infected citrus trees are required 
for efficient disease control while reducing pollution risks. The disease detection 
methods currently used, such as conventional ground scouting, electron 
microscopy and bioassay, and polymerase chain reaction (PCR), are expensive 
and time consuming. Remote sensing, on the other hand, can quickly collect citrus 
grove canopy data that can be used to analyze geo-temporal and geo-special 
properties of the biological features of the tree canopies, including the symptoms 
of the citrus greening.  
     The overall objectives of this study were to develop a method to  classify citrus 
greening infected trees from healthy trees using HS image, based on the analysis 
of spectral features of HLB infected and healthy canopies from both ground truth 
and HS image. The performance and adaptability of the proposed method was 
evaluated and compared with two other methods: K-means and Mahalanobis 
distance. The promising application of HS image was demonstrated to detect HLB 
disease. 
 

MATERIALS 
 
Image acquisition in 2011  
 
     In December 2011, a set of aerial hyperspectral images was acquired for three 
blocks of the Citrus Research and Education Center (CREC) grove along with 
ground truth data, which was located in Lake Alfred, Central Florida, USA.  
     A reference tarp was used for calibration of the reflectance value of HS data. 
Fig.1 is the reflectance curve of the reference tarp measured using a handheld 
spectrometer (HR-1024, Spectra Vista Corporation, Poughkeepsie, NY, USA), 
which had a spectral range of 348-2505 nm with an interval of 3 nm. 
     The HS image was georeferenced to the UTM coordinate system in zone 17 N 
with the datum of WGS-84, and the ground sampling distance (GSD) of the final 
image was 0.5 m. A total of 128 spectral bands in 400-1,000 nm were collected, 
which had the digital number (DN) ranging from 0 to 4095. The spectral 
resolution was 5 nm.  
 
 



 
Fig.  1. Reflectance of the reference tarp, made of type 822 fabrics, which is 
moderate weight woven polyester substrate with long-term durability. The 
size of the tarp was 3.6 m by 3.6 m, and the average reflectance of the tarp 
was 56% in 420-1050 nm.  
 
Ground truth measurement 
 
     In the 2011 experiment, two types of ground truth were measured: ground 
spectral reflectance and location data for the measured trees. Ground spectral 
reflectance of each tree canopy was measured using the handheld spectrometer. A 
white reference panel was used for calibration. For each measured leaf, three 
scans were conducted consecutively. Locations of all the measured trees were 
recorded with an RTK GPS receiver (HiPer XT, Topcon, Livermore, CA, USA).  
    In total, the positions of 96 trees were collected in a block in the CREC grove. 
The measured trees were classified into two classes, which are 45 HLB infected 
trees and 51 healthy trees, as shown in Table 1. The tree status was determined by 
experienced ground inspection crews at the CREC grove. 
 
Table 1. Brief description of tree canopy classes used in this study. 
 

Class Description Number of trees  

hlb HLB infected canopy 45 
healthy Healthy canopy 51 

 
METHODS 

 
     Taking into account both the spectral and spatial characteristics of 
hyperspectral datasets, many data processing techniques have been developed and 
used in HS images. In this paper, a novel method, named ‘extended spectral angle 
mapping (ESAM)’, is proposed to detect citrus greening disease using HS image. 
In the proposed ‘ESAM’ method, different hyperspectral image processing 



techniques, such as Savitzky-Golay smoothing filter, support vector machine 
(SVM), vertex component analysis (VCA), spectral angle mapping (SAM) and 
red edge position (REP), were combined together to obtain the best results in this 
study. Firstly, Savitzky-Golay smoothing filter was applied to the raw image to 
remove spectral noise within the data, yet keep the shape and absorption features 
of the spectrum (Savitzky and Golay, 1964). Then SVM was used to build a mask 
to segment tree canopy from the other background (Li et al., 2012). VCA was 
chosen to extract the pure endmember of the masked dataset, due to its better 
performance compared to other spectral linear unmixing methods (Nascimento 
and Dias, 2005). SAM was applied to classify healthy and the citrus greening 
disease infected areas in the image using the pure endmember chosen by VCA. 
Finally, REP was used to filter out most of the false positive detections (Collins et 
al., 1977; Collins, 1978; Cho et al., 2006; Dawson et al., 1998).  
     Two other methods were also performed on the 2011 HS image. A supervised 
method, Mahalanobis distance (MahaDist), was chosen because it showed more 
balanced results according to the work by Li et al. (2012). An unsupervised 
method K-means was also tested in this study.    
     ENVI (Exelis Visual Information Solutions, Inc., Boulder, Colorado, USA) 
was used for HS image analysis. Using the RTK data obtained from the ground 
truth, HS image data were exported from the corresponding position. Block 8ab in 
the HS image was chosen to be an example grove to implement the proposed 
ESAM, MahaDist, and K-means methods mentioned above. Among the sample 
set including 51 healthy samples and 45 HLB samples, a subset of 26 healthy 
pixel spectra and 23 HLB infected spectra was chosen to form a calibration set. 
The rest of the samples, including 25 healthy pixel spectra and 22 HLB infected 
spectra were chosen to form a validation set.     
 

RESULTS AND DISCUSSION 
 
 Spectral feature analysis 
 
     Ground truth and HS image based hyperspectral data from block 8ab in the 
CREC grove obtained in 2011 were used for spectral feature analysis. Although 
the ground hyperspectral measurements had a spectral range of 348 - 2505 nm, 
only data ranging from 400 nm to 1000 nm were used in this study for a better 
comparison with the HS image data having the wavelength range of 400-1000 nm. 
Although brightness conditions of each leaf were different due to illumination 
change when the experiments were conducted, the mean spectra of different 
classes can imply some different characteristics. Standard deviation (Std) is a 
widely used measure of variability or diversity used in statistics and probability 
theory. It shows how much variation exists from the mean value. Both mean and 
Std were used in the analysis of the feature of the dataset. 
     From the ground measurements, two sample class spectra (healthy and HLB), 
ranging from 348 nm to 1000 nm are shown in Fig. 2, and their spectral data from 
the HS image are shown in Fig. 3. In Figs. 2 and 3, the solid green lines are the 
average spectra of healthy samples, and the red solid lines are the average spectra 
of HLB infected samples, respectively. The Std and mean values for these two 
classes are marked in the figures.  
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Fig.  2. Average reflectance spectra of healthy (green line) and HLB infected 
(red line) canopies from the ground measurements.  The vertical lines are Std 
at selected wavelengths. The number in a parenthesis indicates the number of 
samples for calculating an average.       
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Fig.  3. Spectral feature analysis of HS image data. The solid lines are mean 
HS image spectra for healthy and HLB infected samples, marked with mean 
value and Std.  
 
 
     From Figs. 2 and 3, the obvious reflectance difference can be seen in both 
ground truth data and HS image. In Fig. 2, below 700 nm, the mean reflectance 
difference of the two classes is very little. Nevertheless, after 700 nm, the mean 
reflectance difference is very obvious. The mean reflectance of the healthy 
samples is much higher than that of the HLB infected samples. In Fig. 3, in the 
visible range (400-730 nm), the mean reflectance of the healthy samples is lower 
than that of the HLB infected samples, while the mean reflectance of the healthy 



samples in 730-1000 nm is much higher than that of the HLB infected samples. 
This result is consistent with the result described by Lee et al. (2008).    
 
Results of ESAM 
 
      After the Savitzky-Golay smoothing filter was applied, the training set 
containing the two classes was used to find pure pixels for the two classes using 
VCA without assigning the category of each sample. Two pure endmembers were 
selected successfully, and are shown in Fig. 4. Their spectral features were 
consistent with those analyzed above. The solid green line is the 5th sample 
selected among the 26 samples of healthy training set. The solid red line is the 
13th sample selected in the 23 samples of HLB infected training set. The pure 
pixel spectra were used as the spectral library to carry out SAM.   
     SVM was performed on the block and a mask was obtained based on the tree 
class. A mask for the tree canopy was built and applied on the image. The result is 
shown in Fig. 5. 
   

 
Fig.  4. Pure endmember spectra chosen by VCA. The solid green line is the 
5th sample selected among the 26 samples of healthy training set. The solid 
red line is the 13th sample selected in the 23 samples of HLB infected 
training set.  
 
 

  
(a) (b) 

Fig.  5. SVM classification and masked results: (a) Original HS RGB image 
of the block. (b) Mask for tree class applied on the HS RGB image. 
 
 
     A threshold was needed as an input parameter when SAM was applied on the 
masked image. It was very important for the classification result. If the value was 
too high, false positives would be introduced. If it was too low, the image will be 
over-classified. To choose a proper threshold, the spectral angle between each 



data and the target endmember chosen by VCA, were calculated, as shown in Fig. 
6.   
 

 

Fig.  6. Spectral angle value between each data and the target endmember. 
 
 

  
(a) (b) 

  
(c) (d) 

Fig.  7. SAM results applied on the block, red pixels are infected area, and 
green pixels are healthy area: (a) SAM results with spectral angle 0.1 for the 
HLB infected pixels and 0.15 for healthy pixels. (b) Results of HLB infected 
pixels. (c) and (d) are the zoomed-in image of the area marked using a red 
square in (a) and (b), with white crosshairs showing HLB infected positions.  
 
 
      Multiple maximum spectral angles were chosen based on the processed results. 
The detection accuracy for each category is shown in Table 2. The higher the 
threshold is, the higher the accuracy for classification is. A trade off should be 
made to get better detection result, yet not induce too many false positives. The 
spectral angle of 0.1 was chosen for the healthy category and spectral angle of 
0.15 was chosen for the HLB infected category for the HS image analysis.   
 
 



Table 2. Detection accuracy for the total data set using different thresholds for 
SAM method.  
Data set Threshold (0.05) Threshold (0.1) Threshold (0.15) 

Samples 
(pixel) 

Percent 
(%) 

Samples 
(pixel) 

Percent 
(%) 

Samples 
(pixel) 

Percent 
(%) 

hlb (45 
samples) 

5 11.1 22 48.9 39 86.7 

healthy (51 
samples) 

30 58.8 45 88.2 49 96.1 

     
 

 
(a) 

 
(b) 

Fig.  8. REP value from (a) the training set, and (b) the validation set in the 
block. 
      
     Using the spectral library chosen by VCA, and the chosen angle based on the 
dataset, SAM was applied on the block, and the results are shown in Fig. 7. Since 
there were still too many false positives, which means a lot of healthy points in 
the image, especially the edge points of the trees, were classified as HLB infected, 
and a further analysis was needed. Based on the above feature analysis, the REP 
value was calculated for both the training and validation sets of the block, which 
can be seen in Fig. 8. 720 nm was chosen as the REP to filter out the false positive 
pixels. Table 3 shows the classification accuracy for the block data using REP.     



 
Table 3. Classification accuracy by using REP technique. 
Tree 
Category 

Numbers 
of 
Training 
set (pixel) 

Numbers 
of 
Validation 
set  (pixel) 

Training set (T) Validation set(V) 
Detected 
trees 
(pixel) 

Percent 
(%) 

Detected 
trees 
(pixel) 

Percent  
(%) 

hlb 23 22 15 65.2 19 86.3 
healthy 26 25 24 92.3 23 92.0 
 
     The processed results can be seen in Fig. 9, after filtering the false positives 
using an REP of 720 nm. The accuracy was calculated from the ground truth and 
the detected results for HLB infected pixels and healthy pixels. The RMSE for 
geo-accuracy of the image acquisition system after geometrical calibration is 2 
pixels, therefore a 5×5 pixel buffer window was chosen for the validation set, 
using positions of the validation set as the center of the window. The results are 
shown in Table 4. 
 

  
 

(a) (b) (c) 
Fig.  9. Results after using REP to filter out false positive pixels on the block 
HS image subset: (a) REP technique was applied to Fig. 8b. The white 
crosshairs are the HLB infected pixels left after using REP. (b) The 
validation and the training sets are marked using red points, which are 
separated by a red line. (c) The zoomed-in image of the area marked using a 
red square in (b). The yellow points are the intersection of the validation set 
and the classification results. 
 
 
Results comparison of different methods 
 
The classification results after applying different methods on the filtered 2011 HS 
image are shown in Table 4. The proposed ESAM method showed the highest 
detection accuracy of more than 80% in the training set, and 86.3% in the 
validation set. For another supervised method, MahaDist had lower accuracy both 
in the training and validation sets. And the unsupervised method K-means had the 
worst accuracy in the training set, and the same detection accuracy with MahaDist. 
Compared with the results by Li et al. (2012), the results using the proposed 
method had a great improvement in detection accuracy.           
 
 
 
 
 



Table 4. Classification accuracy comparison after applying different methods on 
the block. 
Classification 
method 

Number of 
Trees  

Training set (T) Validation set (V) 
Detected 
trees 
(pixel) 

Percent 
(%) 

Detected 
trees 
(pixel) 

Percent 
(%) 

Proposed 
ESAM 
method 

 Infected trees 
(T:23,V:22) 
 

19 82.6 19 86.3 

MahaDist 15 65.2 14 63.6 
K-means 12 52.1 14 63.6 
 
      

CONCLUSION 

     Using the HS image obtained in 2011, a SAM based method was developed to 
detect HLB disease, named ‘extended spectral angle mapping (ESAM)’. The 
spectral feature of the healthy and the HLB infected citrus trees were analyzed 
based on the ground truth data and the HS image of the corresponding area. The 
reflectance difference and the REP characteristic demonstrated the promising 
application of HS image to detect HLB infected trees from the healthy ones.  
     The choice of spectral library was vital to the result of SAM classification. To 
build the spectral library needed in SAM algorithm, instead of using the average 
of all the training set, pure pixels were found using VCA. As the higher spatial 
quality of HS image data obtained in 2011, the REP characteristic, which was 
better than the one in the 2010 image (Li et al., 2012),  was utilized in HS image 
data analysis. 
     A fairly high detection accuracy of 82.6% was achieved in the training set, and 
86.3% in the validation set was achieved using the proposed ESAM method. The 
results were compared with two other methods, including one supervised method 
MahaDist, which was recommended by Li et al. (2012), and one unsupervised 
method K-means. Both of these methods yielded poorer results.  
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