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ABSTRACT 
  
     One of the fundamental deficiencies in high value crops is the lack of detailed, 
up-to-date and pertinent geo-referenced soil information for site-specific crop 
management to improve productivity. This experiment was designed to estimate 
and map soil properties rapidly and reliably using an electromagnetic induction 
(EMI) method. Two wild blueberry (Vaccinium angustifolium Ait) fields were 
selected in central Nova Scotia. A grid pattern of sampling points (20 x 20 m) was 
established (n=50) at each experimental site. Soil samples were collected from 
established grid points at 0 to 15, 15 to 45, 45 to 75 cm depth intervals below the 
soil surface and analyzed for soil texture, gravel (coarse aggregate), organic 
matter content (SOM), volumetric moisture content (Өv), pH and electrical 
conductivity (EC). The ECa was measured and recorded with DualEM-2 at the 
same selected grid points to calibrate the Dual EM-2 for developing relationships 
and predicting soil properties. Comprehensive surveys were conducted in those 
fields to measure the ground conductivity for estimation of soil properties in real-
time using DualEM and a differential global positioning system (DGPS). 
Regression analysis  
 
 



 
showed that ECa was significantly correlated (p < 0.01) with clay, SOM, EC and 
Өv. The maps were developed for predicted soil parameters from ground 
conductivity survey data using kriging interpolation in ArcGIS 10 (ESRI, 
Redlands, CA) software. The maps showed substantial variation in selected soil 
properties within both fields. This information could be helpful to develop 
variable rate technologies to increase crop productivity and mitigate 
environmental risks. 
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INTRODUCTION 
 

     Traditionally, farm managers consider fields as uniform and thus, fertilizers, 
pesticides, irrigation, seed rate etc., are applied without taking into account spatial 
variations in field characteristics. When fields are managed uniformly, it results in 
over-application or under-application in some areas within a field. Under treated 
zones do not reach optimum levels of exploitation whereas the over-treated ones 
there may pose risk of environmental pollution and an increase in costs (Bouma, 
1997). 
     Features and inconsistency of soil parameters have been extensively examined 
in precision agriculture research and application (Hache, 2003). Different sensing 
technologies are under development and others are already being put on in order 
to gather data from the soils precisely. Soil properties differ from one study to 
another depending on the accessibility of sources for investigation, purposes, and 
awareness of field variability (Hache, 2003). 
     Soil moisture content states to the quantity of water held by the soil (Hache, 
2003). Soil is a spongy medium, which contains different sizes of pores and the 
water that enters the soil either remains in the pores, percolates through them 
(Baver, 1961) or evaporates (Havlin et al., 2005). Organic matter presence in the 
soil aids to retain moisture content (Baver, 1961). Deficiency of moisture may 
cause a reduction in subsequent growth or may even be deadly during periods of 
active growth (Black, 1957). Plant growth is basically an increase in volume 
resulting from the creation and expansion of cells and if there is deficiency of 
water the growth of shoot parts of plants is limited (Black, 1957). Waterlogging 
can also disturb plant growth and yield, given that water moves air from the pore 
spaces, inducing a stop in growth of roots resulting in a severe drop in the uptake 
and transport of mineral nutrients (Marschner, 1995). 
     Soil organic matter is the most critical soil property because of its effect on 
many biological, chemical and physical properties intrinsic in a productive soil 
(Havlin et al., 2005), and therefore its contribution to plant growth and 
improvement (Tatabatai, 1996). Organic matter in soils has two major functions: 
(a) a nutritional one causing from mineralization of organic nitrogen, sulphur and 
phosphorus (Tatabatai, 1996; Mengel and Kirkby, 2001) and (b) a physical one 



linking to the upgrading of physical properties (Mengel and Kirkby, 2001). It also 
gives a pH buffering action retaining a uniform soil pH (Havlin et al., 2005). 
     Texture defines the soil’s internal geometry and porosity, its connections with 
fluids and solutes (Hillel, 1998). This time-invariant static parameter has a direct 
effect on the nature of the dynamic soil parameters. The most important dynamic 
soil property influenced by the time-invariant static soil physical properties is soil 
moisture content. Soil moisture status is serious to plant growth, crop quality, 
chemical fate and transport, and microbial processes (Abdu, 2009). Soil structure 
and texture are important properties monitoring the hydraulic conductivity and 
infiltration capacity of a soil system. 
     pH is a degree of soil acidity and a main chemical property because it disturbs 
the accessibility of nutrients to plants and the activity of microorganisms in the 
soil (Hache, 2003). Reduction in soil pH is affected by numerous factors 
including the use of commercial fertilizers, especially NH4

+ sources that make H+ 
during nitrification and decomposition of organic residues (Havlin et al., 2005). 
     Electrical conductivity is a major soil parameter as it correlates to soil 
parameters influencing crop productivity (PPI, 1996). Some grain crops (e.g., rice, 
wheat, corn and barley) are relatively salt tolerant at germination and maturity but 
are very sensitive during early seedling and, in some cases, vegetative growth 
stages. In contrast, sweet potato, safflower, soybean, and many bean crops are 
sensitive during germination. This result depends on variety, especially with 
soybean (Marshner, 1995; Havlin et al., 2005). In precision agriculture some 
devices are being developed to record this soil parameter on real-time. 
     Soils are varied, and wide heterogeneity can occur even in fields that seem 
uniform (Havlin et al., 2005; Farooque et al., 2011, 2012). The first step in 
precision agriculture is to measure important factors that specify or influence the 
efficiency of the growing crop (Blackmore et al., 2002). Intensive soil sampling is 
the most valuable way to quantify variability (Havlin et al., 2005), but it demands 
human effort and time. Therefore, there exists the need for new methods that 
enable rapid measurement of soil parameters. The objective of this study was to 
develop relationship between selected soil properties and ECa for predicting those 
soil properties in a rapid and non-destructive manner. 

 
MATERIALS AND METHODS 

 
     Two wild blueberry fields in central Nova Scotia were selected to develop 
relationships between soil properties and ECa. A grid pattern of sampling points 
was established at both experimental sites based on the range of influence of 
semivariograms to collect soil samples (Fig. 1). The soil samples were analyzed 
for SOM, texture, θv, pH, and EC using standard methods. Soil texture and pH 
were measured once at the onset of the experiment since these parameters do not 
tend to change significantly in two monitoring years. Other soil properties were 
determined twice during the study. The ground conductivity values (HCP and 
PRP) using DualEM were recorded at each sampling point along with soil 
samples. The coordinates of each sampling point were recorded with a Real-time 
kinematics (RTK) GPS. The boundary of the fields was also marked using a 
RTK-GPS. Samples were collected at 0 to 15, 15 to 45, and 45 to 75 cm soil 
depths. These sampling depths were selected because we were most appealed in 



 
  
Fig. 1.  Field layout for selected fields (a) North River (b) Carmel Site 

 
soil properties associated with the concept of soil quality, and these depths 
coincide with many previous similar investigations (Wander and Bollero, 1999; 
Brejda et al., 2000; Kettler et al., 2000; Johnson et al., 2001). The samples were 
air dried and ground to pass a sieve with 2 mm openings. Elevation was also 
measured and mapped once using RTK-GPS.  
 

STATISTICAL ANALYSIS 
 

     Means, minimums, maximums, medians, skewness, and coefficient of 
variations (CVs) of selected soil properties were calculated using Minitab 16 
statistical software. Data normality was tested using Anderson-Darling (A-D) test 
using Minitab 16 statistical software at a significance level of 5%. Pearson 
correlation coefficients were calculated for all pairs of soil property and ECa data.  
     Regression models were derived to calibrate the DualEM-2, and to predict soil 
properties using ECa in each field separately (n = 50). Transformed, linear, 
logarithmic, quadratic, and cubic models of ECa were evaluated to find the best-
fitting models. Soil samples (n=20) were obtained from the same field during the 
summer of 2011, analyzed in the laboratory using the same procedures. The 
calibration equations of first year for each selected field were used to predict soil 
properties in second year data for validation. Calibration and validation of 
regression equations/models, coefficient of determination (R2) and root mean 
square (RMSE) were calculated using Minitab 16 statistical software. 
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RESULTS AND DISCUSSION 
 

Sampling Strategy 
 

     The apparent ground conductivity survey conducted by DualEM-2 was utilized 
to develop a sampling strategy to collect soil samples from both fields. The 
semivariogram for ECa data were developed and spherical models of 
semivariogram were found to best fit the data set in the fields. The grid size to 
collect soil samples was then established based on the range of the influence from 
semivariogram which was found to be around 60 m for both blueberry fields (Fig. 
2 and 3). The grid pattern for sampling is one third or half of the range of 
variability (Kerry and Oliver, 2003; Farooque et al., 2012). Based on the range of 
the variability, a grid size of 20 x 20 m was selected for sampling.  
 

 
Fig. 2.  Semivariogram of ECa at North River Site 

 

 
Fig. 3.  Semivariogram of ECa at Carmel Site 

  
Descriptive Statistics of Soil Properties 

     Soil properties at the deepest sampling depth (45-75 cm) were generally more 
normally distributed than at the shallower sampling depths (Table 1) (Due to 
space constraint, the results of North River will be presented).Similarly, most soil 
property values at the deepest depth were noticeably different from the shallower 
sampling depths. Mean values of clay content and θv at the 45 to 75  
 

R
2 

= 0.73 
Range = 66.90 m 

R
2
 = 0.85 

Range = 60.40 m 

 

 



Table 1.  Descriptive statistics of soil properties at North River Site. 
 

Properties n Depth† Min. Max. Mean CV 
(%) 

Skewness 

Clay, % 
 
 
Silt, % 
 
 
Sand, % 
 
 
Gravel, % 
 
 
SOM, % 
 
 
θv, m3 m-3 

 
 
EC, μS 
cm-1 
 
 
pH 
 
 
PRP, mS 
m-1 

HCP, mS 
m-1 

50 
35 
7 
50 
35 
7 
50 
35 
7 
50 
35 
7 
50 
35 
7 
50 
35 
7 
50 
35 
7 
50 
35 
7 
50 
50 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
 

0.0  
0.0  

12.0  
15.0  
12.0  
20.0  
44.0  
38.0  
32.0  
33.0  
32.0  
26.0  
4.4  
4.4  
4.0  
5.9  
6.2  
8.4  

36.0  
37.0  
37.0  
5.0  
5.2  
5.5  
0.1  
0.1  

20.0 
20.0 
30.0 
43.0 
44.0 
38.0 
84.0 
80.0 
65.0 
73.0 
79.0 
52.0 
13.0 
11.0 
8.0 

35.0 
32.0 
37.0 

103.0 
180.0 
55.0 
6.2 
6.5 
6.6 

21.0 
20.0 

7.8 
13.0 
17.0 
28.0 
27.0 
30.0 
64.0 
60.0 
52.0 
53.0 
56.0 
39.0 
8.4 
6.6 
5.2 

22.0 
24.0 
29.0 
54.0 
55.0 
45.0 
5.6 
5.6 
5.8 
6.3 
6.2 

78.0 
49.0 
33.0 
25.0 
24.0 
25.0 
16.0 
17.0 
23.0 
17.0 
17.0 
29.0 
22.0 
23.0 
25.0 
31.0 
29.0 
26.0 
24.0 
47.0 
16.0 
10.0 
4.5 
6.9 

60.0 
76.0 

0.40 
-0.50 
2.10 
0.20 
0.10 

-0.30 
-0.01 
-0.07 
-0.70 
-0.20 
-0.20 
0.06 
0.50 
0.90 
1.80 

-0.20 
0.40 
1.50 
2.10 
3.80 
0.30 
3.10 
1.60 
2.30 
1.70 
1.00 

† 1, 0 to 15 cm sampling depth; 2, 15 to 45 cm sampling depth; 3, 45 to 75 cm 
sampling depth. 
Note: Clay, silt, sand, SOM, EC, pH, and θv at 2nd and 3rd sampling depth were 
measured once in June, 2010. θv at 1st sampling depth was measured bi-weekly 
from June to October, 2010. 
 
cm sampling depth were higher than at shallower depths (Table 1). Clay content 
at the deepest depth was more than twice that of the shallower sampling depths. 
The proportion of the sand and SOM were clearly higher at the 0-15 cm depth 
than the deeper sampling depths (Table 1). 



     Differences between the shallow sampling depth and the deeper sampling 
depths can be recognized to the following factors. First, mowing operations are 
necessary management practices in wild blueberry fields to improve crop 
production. Consequently, organic matter from plant residue assimilation as well 
as fertilizer amendments was mostly stratified within the surface 15 cm of soil. 
Second, the 2nd and 3rd sampling depths were twice the thickness of the first 
sampling depth. Therefore, these deeper sampling depths had a greater possibility 
of including multiple horizons compared with the shallowest sampling depth. This 
second point is reinforced by the generally higher CV of most soil properties at 
the 15 to 45 and 45 to 75 cm depth samples compared with the shallowest depth 
(Table 1) (Jung et al., 2005). The HCP and PRP were normally distributed for all 
four fields (Table 1). HCP produced higher values compared with PRP at Carmel 
Site.  
 

Soil Properties Correlated and Regressed to ECa 

Table 2.  Correlation coefficients among soil properties and ECa at North River 
Site. 
 

Properties n Depth† PRP HCP 
Clay, % 
 
 
Silt, % 
 
 
Sand, % 
 
 
SOM, % 
 
 
θv, m3 m-3 

 
 
EC, μS cm-

1 
 
 
pH 
 

50 
35 
7 

50 
35 
7 

50 
35 
7 

50 
35 
7 

50 
35 
7 

50 
35 
7 

50 
35 
7 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

    0.24* 
        
0.64** 
     0.68** 
     0.62** 
   0.26* 
   0.76* 

    -0.56** 
  -0.58* 

   -0.82** 
   0.26* 
   0.32* 
   0.58* 

      
0.63*** 
    0.67** 

      
0.72*** 
  0.37* 

      
0.66*** 

     0.82** 
 0.00 
 0.60 

 0.36* 
  0.64** 
0.26* 

   0.44* 
   0.30* 
   0.14 
  -
0.52** 
  -0.58* 
  -0.02 
0.36* 

   0.23* 
 0.80** 
0.56*** 
0.59** 
  
0.65*** 
  0.39* 
0.57** 
  0.62** 
 -0.06 
  0.42 
 -0.48 



      -0.06 
† 1, 0 to 15 cm sampling depth; 2, 15 to 45 cm sampling depth; 3, 45 to 75 cm 
sampling depth 
* Significant at the 0.05 probability level 
** Significant at the 0.01 probability level 
*** Significant at the 0.001 probability level 

     The ECa was significantly positively correlated with clay content with 
correlation values greater at the two deep sampling depths but low correlation 
value was observed. The low value of correlation is because of soil volume 
measured with DualEM-2 is larger than that used for soil sampling. These results 
were supported by the findings of Mueller et al. (2003).      
     Soil texture in the soil profile can be an important factor contributing to ECa 
(Sudduth et al., 2003, 2005). Physical contact between soil particles allows for 
higher electrical conductivity and is known to be greater with clay than with sand- 
or silt-sized particles (Rhoades et al., 1976; Corwin and Lesch, 2003). Therefore, 
it is not surprising that correlations for clay are generally significant as compared 
to silt and sand contents.     
     The PRP component was generally more correlated at North River site as 
compared to HCP component (Table 2). It might be due to more rocky nature of 
soils at North River Site (Farooque, 2010). As the HCP has more sensing depth so 
the sand, underlying gravels and crystalline rocks at the deeper depths contribute 
to HCP resulting weak and non-significant correlation with soil properties. The 
positive significant correlation indicated higher values of ECa in the area where 
soil parameters were higher and vice versa. It also showed that DualEM can be 
used to predict the soil properties in a rapid and non-destructive manner. Soil pH 
was generally not well correlated to ECa in all sampling depths. θv was 
significantly positively correlated with ECa at all three sampling depths. As would 
be expected, ECa is directly related to θv and clay suggesting greater water 
holding capacity of fine clay particles. EC was also significantly correlated with 
ECa and 
 
Table 3.  Calibration models using ECa to predict soil properties at North River 
Site. 

 
Depth† Property n Model R2 

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
3 

Clay, % 
Silt, % 
Sand, % 
SOM, % 
θv, m3 m-3 

EC, μS m-

1 
Clay, % 
SOM, % 
θv, m3 m-3 

EC, μS m-

50 
50 
50 
50 
50 
50 
35 
35 
35 
35 
7 

3.4+3.80HCP-0.24HCP2+0.005 
HCP3 

25.3+1.80PRP+ 0.007PRP2 -
0.003PRP3 

81.3-4.2PRP+0.24PRP2 -
0.006PRP3 

9.2+0.58HCP-
0.12HCP2+0.004HCP3 

11.4+2.9PRP-0.05PRP2-
0.008PRP3 

47.7-0.4HCP+0.62HCP2-

0.46 
0.70 
0.61 
0.44 
0.75 
0.45 
0.69 
0.43 
0.73 
0.72 
0.74 



3 
3 
3 

1 
Clay, % 
SOM, % 
θv, m3 m-3 

EC, μS m-

1 

7 
7 
7 

0.03HCP3 

7.26+3.07HCP-0.8HCP2 +0.04 
HCP3 

2.98 – 23.6 PRP 
13.8+2.2PRP-0.07PRP2-
0.008PRP3 

51.7-8.6PRP+1.9PRP2 -
0.12PRP3 

9.4+5.55HCP-0.63HCP2 -0.01 
HCP3 

2.7+3.56HCP-0.47HCP2 +0.09 
HCP3 

23.2+4.5HCP-1.6HCP2-
0.07HCP3 

58.5-6.4HCP-0.71HCP2 
+0.4HCP3 

0.88 
0.82 
0.87 

† 1, 0 to 15 cm sampling depth; 2, 15 to 45 cm sampling depth; 3, 45 to 75 cm 
sampling depth 
 
 
 
 
Table 4.  Validation models using second year data at North River Site. 

 
Depth
† 

Propert
y 

n Model R2 RMS
E 

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 

Clay, % 
Silt, % 
Sand, % 
SOM, 
% 
θv, m3 
m-3 

EC, μS 
m-1 
Clay, % 
SOM, 
% 
θv, m3 
m-3 

EC, μS 
m-1 
Clay, % 
SOM, 
% 
θv, m3 
m-3 

2
0 
2
0 
2
0 
2
0 
2
0 
2
0 
2
0 
2
0 
2
0 
2
0 
7 

3.9-0.89HCP+0.39HCP2-
0.02 HCP3 

32.9-2.98PRP+0.46PRP2 
-0.02PRP3 

65.7+1.2PRP-0.33PRP2 
+0.01PRP3 

8.9+0.40HCP-
0.12HCP2+0.01HCP3 

10.9+2.9PRP-0.12PRP2-
0.001PRP3 

49.6+0.6HCP+0.52HCP2

-0.04HCP3 

8.8+1.8HCP-0.2HCP2 
+0.006 HCP3 

3.3+ 0.06 PRP-
0.002PRP2 -PRP3 

15.9+3.6PRP-0.04PRP2-
0.01PRP3 

56.5-5.6PRP+1.5PRP2 -
0.06PRP3 

7.0+6.4HCP-0.47HCP2 -

0.4
0 
0.5
5 
0.4
8 
0.3
9 
0.7
7 
0.4
1 
0.5
5 
0.3
4 
0.6
8 
0.5
9 
0.6

2.6 
3.7 
5.3 
0.7 
3.0 
8.8 
2.1 
0.5 
3.4 
6.8 
2.0 
0.4 
3.1 
5.2 



EC, μS 
m-1 

7 
7 
7 

0.03 HCP3 

1.4+1.05HCP-0.3HCP2 
+0.03 HCP3 

21.2+3.9HCP-1.9HCP2-
0.04HCP3 

56.8-4.6HCP-0.37HCP2 
+0.10HCP3 

7 
0.8
2 
0.7
8 
0.8
0 

† 1, 0 to 15 cm sampling depth; 2, 15 to 45 cm sampling depth; 3, 45 to 75 cm 
sampling depth 

 
higher values were observed in deeper depths as compared to the first sampling 
depth. Improved correlation was attributed in the deeper depths due to the fact 
that the clay contents were more in these two depths. Mowing affects the first 
layer, but does not seem to contribute other two layers. ECa was significantly 
positively correlated with SOM and the correlation values for SOM were higher 
in deeper sampling depths (Table 2). The low correlation coefficient and R2 
values somewhere can be explained as follows: 

• It is possible that ECa is highly governed by soil property (Allred et al., 2005) not 
listed in Tables 1 and 2, and it is clear on the basis of results that ECa is not 
affected by a single soil property but more than one soil properties contributing 
and influencing the ECa measurements. 

• The ECa measured with EMI methods is an effective value for a large soil 
volume, and the overall properties of this large volume might not be well 
represented by a relatively small soil sample (Allred et al., 2005; Ristolainen et 
al., 2009). 
     Soil properties at each sampling depth were regressed against ECa. 
Coefficients of determination (R2) for linear and cubic regression model between 
ECa and soil properties were calculated. Cubic regression models were found to 
be best fit to predict soil properties using ECa. At the deepest sampling depth, 
predictions of many soil properties were improved using a cubic model of ECa 
instead of the simple linear regression. For example, prediction of clay content in 
the surface sample at Carmel Site was greatly improved by using the cubic model 
(coefficient of determination improved from 43 to 78 %). In general, soil 
properties were better estimated from the ECa cubic model. Using a similar 
approach, other transformations of ECa were considered such as log, quadratic 
and exponential models. Regressions using these transformed terms almost 
always gave a coefficient of determination less than models using a cubic term.       
     The selected soil properties correlated significantly with ECa in blueberry 
fields (R2 varied from 0.43 to 0.90; P < 0.05) (Table 3). The correlation between 
actual and predicted soil properties (R2 varied from 0.34 to 0.82; P < 0.05; RMSE 
ranged from 0.4 to 8.8) were also significant (Table 4). The root mean square 
error (RMSE) between observed and predicted soil properties, are shown for these 
selected models (Table 4). We conclude that the models derived from soil ECa 
could provide reasonable estimates of these soil properties. 
 

Interpolation and Mapping of Soil Properties 
 



     The soil properties, fields boundary and ECa data were imported into ArcGIS 
10 software and shape files were created for visual display of North River Site 
(Fig. 4 and 5). 
     GIS combined with geo-statistics was applied to analyze the spatial variability 
in soil properties for both fields. Soil parameters were interpolated using kriging 
combined with semivariogram parameters to generate detailed maps. The kriging 
interpolation is considered to be more accurate and reliable than other methods 
such as inverse distance weighting (IDW) or trend surface models (Mulla et al., 
1992). The maps of soil properties were generated using ArcGIS 10 software at 
the same scale and equal number of classes in order to allow easier comparison. 
     The interpolated maps of HCP, PRP, θv, EC, SOM, sand, silt and clay at North 
River Site (Fig. 4 and 5) showed gradual spatial variability with significantly 
different values across the field. Spatial patterns of variation for PRP, HCP, θv, 
EC, silt and clay (Fig. 4 and 5) were almost similar, showing higher value in the 
northwest, north central region, and medium values were generally observed in 
the south eastern region of the field. The lower values were observed in the center 
of the field. The variation in soil properties might be due to the variation in 
elevation with the high values of these soil parameters in low lying areas and vice 
versa. These results were in agreement with the findings of Farooque et al. (2011). 
     The map of SOM (Fig. 5) at North River Site indicated the substantial 
variation across the field. The map of sand content showed lower values in the 
northwest and southeast region of the field. Higher values were observed in 
southwest, southeast and south central region indicating textural variation within 
field. It was observed that most of the crop areas were contained with more sand 
than clay for North River Site. The ground inspections revealed that the areas with 
higher clay content within field were weeds, bare spots and grasses. Overall the 
maps of soil properties indicated the large spatial variation within field. 
  



 
 



 
 

Fig. 4.  Kriged maps of HCP, PRP, clay and θv for North River Site 
 
 

  



 



 
 

Fig. 5.  Kriged maps of SOM, EC, sand and silt for North River Site 
 

CONCLUSION 
 

     The procedure of measuring ECa using DualEM provided the good relationship 
between ECa and soil properties with the top 75 cm in the fields. The ECa can 
provide important information for characterizing soil properties. In this study, we 
compared soil physical and chemical properties to ECa during two years for two 
wild blueberry fields. We found that ECa was significantly correlated to some soil 



properties (clay content, θv, SOM, and EC). Most regressions were significantly 
improved using a cubic term in ECa, when using ECa to predict soil properties. 
Approximately 60-90% of the variation in clay for the 45 to 75 cm depth could be 
predicted using ECa. Regression models were validated with soil sample data set 
(n = 20). Soil properties were almost similar between measured and predicted soil 
properties. 
     This study showed that while soil properties varied greatly by depth, ECa were 
significantly correlated with soil properties, especially some physical properties 
that impact crop yield. It was concluded that ECa has the ability to serve as a soil 
quality indicator for soil productivity. 
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