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ABSTRACT 
 
Knowledge of within-field spatial variability in soil quality indicators is important 
to assess the impact of site-specific management on the soil. Standard methods for 
measuring these properties require considerable time and expense, so sensor-
based approaches would be useful. The purpose of this research was to evaluate 
the ability of visible and near infrared (VNIR) diffuse reflectance spectroscopy 
(DRS) to estimate soil properties that are candidate soil quality indicators. Soil 
samples were obtained from two depths (0-5 and 5-15 cm) at a long-term (since 
1991) experimental site in central Missouri where cropping systems were 
replicated across a typical claypan soil landscape. Laboratory analyses were 
conducted for potential indicators of soil quality, including soil organic carbon, 
soil glucosidase enzyme activity, and plant available nutrients. VNIR-DRS data 
were obtained in the laboratory using a spectrometer with a wavelength range of 
350 to 2500 nm and calibrations to soil properties were developed with partial 
least squares regression. Results showed that VNIR DRS has potential to estimate 
several key soil quality indicators (SQI), including soil organic carbon, total soil 
nitrogen, glucosidase activity, and pH. However, other key SQI, such as aggregate 
stability, plant available nutrients, and nitrate and ammonia forms of nitrogen 
were not successfully estimated by this technology. Thus, a sensor fusion 
approach, combining VNIR DRS with other technologies, would likely be needed 
for implementing a sensor-based soil quality index. 
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INTRODUCTION 
 

The soil quality concept involves the capacity of a soil to function; included 
among the soil functions are water flow and retention, physical stability and 
support, retention and cycling of nutrients, and maintenance of biodiversity, 
habitat, and crop productivity (Karlen et al., 1997). Best management practices 
(BMPs) to improve soil quality encompass an array of strategies, including 
reduced or no tillage, crop rotation, reduced chemical inputs, and more efficient 



use of chemical inputs, such as may be found with variable rate application 
(Larson et al., 1997). 

Evaluation of management impacts on soil quality is based on measurement of 
soil quality indicators (SQI) (Doran and Parkin, 1996). Soil organic matter 
(SOM), because of its integral role in soil biological, physical, and chemical 
processes, is usually considered to be the quintessential SQI (Carter, 2002). 
Measurements of SQI generally involve field collection of soil samples and 
laboratory analysis. The labor and expense involved make this approach more 
suited to research investigations than to monitoring production fields because 
many SQI can exhibit strong spatial dependence at the field scale (Cambardella et 
al., 1994; Jung et al., 2006), requiring dozens or hundreds of measurements per 
field for good representation. To transfer the soil quality approach to practice, 
methods that can efficiently map SQI across fields and landscapes are needed. 

Diffuse reflectance spectroscopy (DRS) is a method that has been successfully 
used to estimate soil organic carbon (SOC), SOM, and numerous other properties 
related to soil quality (see reviews by Malley et al., 2004; Viscarra Rossel et al., 
2006; Stenberg et al., 2010). Most commonly, soil sensing by DRS uses the 
visible (400–700 nm), near-infrared (NIR; 700–2500 nm), or combined VNIR 
(400–2500 nm) wavelength ranges.  This method is based on the interaction of 
light with the surface at which it is directed. Characteristics of the reflected light 
are influenced by the chemical and physical properties of the target, such that 
these properties can be estimated through statistical analysis of the reflectance 
spectrum (Malley et al., 2004). 

Several researchers, with the specific goal of soil quality assessment in mind, 
have used VNIR spectroscopy to estimate various SOM components. Vasques et 
al. (2009) estimated four organic C fractions (in order of decreasing residence 
time in soil) – recalcitrant C, hydrolyzable C, hot-water-soluble C, and 
mineralizable C. Using samples obtained across a north-central Florida watershed, 
VNIR models accounted for from 65 to 82% of the variation present in a 
validation dataset. Pietikäinen and Fritze (1995) used NIR data to estimate 
microbial biomass C, accounting for 74 to 82% of the variance in that variable for 
samples from an experimental forest in Finland. Ludwig et al. (2002) used VNIR 
analysis to estimate chemical and biological properties related to soil 
sustainability. They found good results for C, N, microbial C, and a number of 
other variables. Chang et al. (2001) related VNIR data to a range of chemical and 
biological soil properties. Among the properties with the strongest relationships to 
the VNIR data were C, N, and biomass C. Good VNIR or NIR estimates have also 
been obtained for humic acid fractions (Butkuté and Šlepetiené, 2006), and for 
particulate organic matter (POM) and POM-C (Reeves et al., 2006; Sheridan et 
al., 2011).  

Others have related VNIR or NIR reflectance to more general soil quality 
indices. Cécillon et al. (2009) modeled soil quality using three indicators related 
to organic matter, nutrient supply, and biological activity. They found that NIR 
reflectance was strongly related to those indicators (r2 ≥ 0.9) over a wildfire 
chronosequence in a Mediterranean forest ecosystem. Palmborg and Nordgren 
(1996) used NIR measurements together with heavy metal concentration data to 
help explain differences in microbial parameters, assuming that the NIR data were 
related to “organic matter quality.”  



Although prior research has documented the ability of VNIR DRS to estimate 
variations in SQI, these studies have often drawn samples from a wide geographic 
area (i.e., 100s of km2 or more) or from non-agricultural areas such as forests. 
Few have investigated the ability of VNIR reflectance to estimate differences in 
soil quality variables across landscapes within an agricultural field. 
 

Objectives 
 
     The objective of this research was to evaluate VNIR DRS for within-landscape 
estimation of soil properties that are candidate soil quality indicators. These 
included soil properties (e.g., SOC) successfully estimated by VNIR DRS in 
previous studies along with others (e.g., soil glucosidase activity, water stable 
aggregates) to which VNIR DRS had not been previously applied. 
 

MATERIALS AND METHODS 
 

Study Site and Sample Collection 
 
The study was conducted on a 12-ha site 2 km from Centralia, Missouri 

(39˚13 N, 92˚07 W). The site is in Major Land Resource Area 113, the Central 
Claypan Region (USDA-NRCS, 2006), which covers 33,000 km2 in the states of 
Missouri and Illinois. The site encompasses three landscape positions: summit, 
backslope and footslope (Fig. 1). Soils were delineated on the basis of an order-
one soil survey conducted in 1991 (Fig. 1). The difference in elevation between 
summit and footslope positions was about 2-3 m. The distinguishing factor of the 
soils at the site is the namesake “claypan.” The claypan is an abrupt textural 
discontinuity, serving as the upper boundary of an argillic horizon having at least 
100% more clay than in the horizon above. This claypan commonly contains as 
much as 50 to 60% smectitic clay, and is followed by a series of argillic horizons 
with decreasing clay content. These strongly affect water infiltration and soil 
water holding capacity.  

Variations in soil quality were expected across the site due to the four 
rotational grain cropping systems and one perennial grass system established in 
1991 to investigate the effects of tillage (i.e., minimum tillage vs. no-tillage), crop 
rotation, and other management practices (e.g., cover crops) on crop production 
and soil and water quality. The experimental design was a randomized complete 
block with three blocks (i.e., replications) where all rotation phases of each 
cropping system were present each year. Each of the 30 plots measured 18 m × 
189 m (0.35 ha) running east-west parallel to the slope direction (Fig. 1) and thus 
each landscape position was included within each plot. In 2001 the three grass 
cropping system plots were split into thirds lengthwise and two additional grass 
systems were established. Background soil profile data obtained from the 
experimental area in 1991 are described by Jung et al. (2010). Descriptions of 
management systems are given in Chaudhary et al. (2012). 

 



 
Fig. 1.  Site layout with soil series, cropping systems, elevation, and sampling 
points. Soils: 1-Adco silt loam, 0-1% slope; 2-Mexico silty clay loam, 1-3%, 
eroded; 3-Mexico silt loam, 1-2%. Cropping systems: MTCS = mulch tillage 
corn-soybean rotation; NTCS = no-till corn-soybean; NTCSW = no-till corn-
soybean-wheat rotation; NTCS-CC = no-till corn-soybean with cover crops; 
CRP = conservation reserve program. CRP plots were further split in thirds 
lengthwise for the three grass cropping systems of this study.  
 

Soil samples were obtained in the fall of 2010 at predefined locations within 
each plot, centered on each of the three landscape positions (Fig. 1). At each 
location, three sub-sample points were established in a triangular arrangement 
within a 3-m radius to obtain an average representative of the location. Three   
3.2-cm diameter cores were obtained at each of the sub-sample points. The cores 
were divided into two depth increments, 0-5 cm and 5-15 cm, and the nine total 
samples were bulked to represent each landscape position. Cores were distributed 
evenly across row positions to equally sample between and within row effects. 
Samples were sealed in plastic bags and stored at 4º C prior to processing. 
 

Laboratory Soil Analysis 
 

Soil samples were analyzed in the laboratory for plant available nutrients and 
several established SQI. Macro and micronutrient content was quantified by 
Mehlich III extraction (Mehlich, 1984) followed by analysis using inductively 
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coupled plasma–atomic emission spectrophotometry (Soltanpour et al., 1996). 
Total nitrogen (TN) and SOC were determined by dry combustion at 900°C 
(Nelson and Sommers, 1996) on a LECO Tru-Spec C/N analyzer (LECO Corp., 
St. Joseph, MI) using an infrared detector for CO2 gas and a thermal conductivity 
detector for N2 gas generated by the process.  

Water-stable aggregates (WSA) were determined on 10-g air-dried soil 
samples using a wet-sieving method (Angers and Mehuys, 1993; Kemper and 
Rosenau, 1986). Soil samples were spread on a 250- µm sieve, placed on the wet-
sieving apparatus and subjected to periodic immersion in water (30 vertical 
strokes/min for 10 min). Soil particles that passed through the sieve were 
considered the fraction that was unstable in water. Soil remaining on the sieve 
was dried at 105°C, weighed and dispersed with 50 ml of 0.5% sodium hexa-
metaphosphate to separate water-stable soil fractions from coarse particles. 
Coarse particles were collected, dried and weighed. The proportion of WSA was 
calculated as a percentage of the weight of the stable fraction of the total soil 
weight. 

Soil microbial activity is often represented as the activity determined for 
selected soil enzymes. For this study, ß-glucosidase activity (GluAct), indicative 
of carbon mineralization, was determined by incubating 1-g soil samples with p-
nitrophenyl- ß-D-glucoside substrate for 1 h at 37°C (Dick et al. 1996). After 
incubation, reaction mixtures were filtered and the concentration of the product, 
p-nitrophenol (PNP), was determined spectrophotometrically at 410 nm and the 
enzyme activity expressed as µg PNP released g-1 dry soil h-1. 
 

Spectral Data Collection and Processing 
 

Soil spectral reflectance data were obtained in the laboratory using an ASD 
FieldSpec Pro FR spectrometer (Analytical Spectral Devices, Boulder, CO). For 
reflectance data collection, subsamples of the soils collected in the field were 
oven dried and sieved with a 2-mm screen. Approximately 15 cm3 of soil was 
packed in a glass-bottomed sample cup. The sample was illuminated through the 
glass by a halogen lamp and the reflected light from an approximately 12 mm 
diameter area was transmitted to the spectrometer through a fiber optic bundle. 
Spectra recorded between 350 and 2500 nm were output on a 1-nm interval. Each 
soil spectrum was obtained as the mean of 30 scans. The spectrometer data 
collection software automatically adjusted the data for dark current variations 
using dark current scans obtained at the beginning of each data collection session, 
and at least once every 30 minutes thereafter. A Spectralon (Labsphere Inc., North 
Sutton, N.H.) reflectance standard was scanned after every five soils and used to 
convert the raw spectral data to decimal reflectance. Spectra were obtained in 
triplicate by rotating the sample cup approximately 60 degrees between scans, and 
averaged to a single spectrum per each sample for analysis. 

Data analysis was carried out in Unscrambler version 10.1 (CAMO Inc., Oslo, 
Norway). First, readings below 400 nm were deleted due to their low signal-to-
noise ratio. Next, the effects of several spectral transformations and combinations 
were investigated in a preliminary analysis. Best results were obtained using the 
“de-trending” transformation in Unscrambler that used a second-order polynomial 



to remove baseline shift effects from the spectra (CAMO, 2006). Therefore, all 
spectral data were subjected to this transformation before regression analyses.  

Partial least squares (PLS) regression was used to develop calibrations 
between soil properties and spectra. A 20-fold cross validation procedure was 
used to select the number of PLS factors to use in the regression, increasing 
predictive capability and decreasing the potential for overfitting. Model 
evaluation was based on coefficient of determination (R2), root mean square error 
of prediction (RMSEP), and the ratio of standard deviation to RMSEP (RPD). 
RPD is useful when comparing results from datasets containing different degrees 
of variability. Chang et al. (2001) suggested that, as a general guideline, RPD > 
2.0 or R2 > 0.8 indicates success in estimating soil properties, RPD < 1.4 or R2 < 
0.5 shows unacceptable results, and calibrations with intermediate values may be 
improved to acceptable levels using different strategies. 
 

RESULTS AND DISCUSSION 
 

Table 1 shows descriptive statistics for the laboratory soil analysis. The 
management systems at the study area imposed a wide variation in values of most 
soil properties. Of the 21 measured, only two (Na and pH) had a coefficient of 
variation (CV) less than 20%. Three additional properties (C:N ratio, WSA, and 
Fe) had CV less than 30%. Although a high CV does not necessarily imply 
success, soil properties with a low CV generally are not well-estimated by VNIR 
DRS.  

Correlations among the laboratory-measured soil properties were examined. 
Of the 210 variable pairs, only 28 (13%) exhibited a Pearson correlation 
coefficient (r) above 0.4. Of these, there were only 4 pairs with r > 0.7 – Mg and 
Ca; SOC and TN; SOC and GluAct; and TN and GluAct.  

PLS regressions estimating soil quality properties as a function of VNIR 
spectral data gave mixed results (Table 2). Consistent with many reports in the 
literature (e.g., Lee et al., 2009; Sheridan et al., 2011), best results were obtained 
for SOC. Regressions for TN and GluAct also gave good results, with R2 > 0.65. 
Accuracy of SOC and TN estimations were very similar to those reported for a 
subset of these same plots based on a 2008 sampling campaign (Chaudhary et al., 
2012). In that study, management and landscape differences in SOC and TN were 
detected by VNIR DRS data, although with somewhat less power than data from 
standard laboratory analysis. Thus, we would also expect the SQI data of this 
study to detect soil quality differences among the treatments at the study site. 

The strong correlations between SOC, TN, and GluAct might suggest that 
results for TN and GluAct were not from a direct estimation of those properties by 
VNIR DRS, but rather an indirect effect of their correlation with SOC. However, 
Chang and Laird (2002) spiked soil samples to change C:N ratio from what would 
be expected in nature and found that TN was still well estimated, leading them to 
conclude that VNIR estimation of TN was through a direct calibration in their 
study. Stott et al. (2010) noted little relationship between SOC and GluAct for a 
wide range of soils and cropping systems, but noted that such relationships might 
be stronger within a given location. Thus, it is possible that the GluAct calibration 
is an indirect one, which would make it less likely to be transferrable to other 



datasets. Further research with a diverse set of soil samples from multiple 
locations could potentially help resolve this issue. 

The only soil fertility properties estimated with good accuracy were pH (R2 = 
0.69) and Mg (R2 = 0.64), with all others having R2 ≤ 0.41. Similarly, Sudduth et 
al. (2010) found that VNIR DRS estimates of pH and Mg were better than those 
of other soil fertility properties on a nearby field with soils similar to those of the 
study site. Generally, trends in estimation accuracy among the macronutrients 
followed those reported in other studies, including Lee et al. (2009). Estimates of 
micronutrients were poor, with R2 < 0.4 in all cases. Few previous studies are 
available for comparison, but our results were generally poorer than those 
reported for several micronutrients by Chang et al. (2001). In contrast to our 
study, where samples were all from a 12 ha area, their data came from over 800 
soil samples obtained from across the US.  

 
 

Table 1.  Descriptive statistics for laboratory-measured soil properties. 
 
Property Mean SD Min Max 
Soil Quality     
   Glucosidase activity, mg kg-1 h-1 96.9 51.5 17.2 247.2 
   SOC, g kg-1 16.87 6.36 8.99 41.90 
   TN, g kg-1 1.69 0.53 0.81 3.62 
   C:N Ratio 9.9 2.1 3.0 29.3 
   Water stable aggregates, % 67.1 16.4 11.5 88.8 
Soil Fertility     
   pH 6.3 0.4 4.7 7.0 
   B, mg kg-1 0.27 0.28 0.00 1.11 
   Ca, mg kg-1 2129 842 313 5931 
   Co, mg kg-1 0.22 0.19 0.00 1.61 
   Cu, mg kg-1 0.52 0.30 0.00 1.98 
   Fe, mg kg-1 71.4 20.9 13.0 149.7 
   K, mg kg-1 83.4 48.4 15.1 353.2 
   Mg, mg kg-1 244 151 39 1035 
   Mn, mg kg-1 21.5 8.4 1.5 49.7 
   Mo, mg kg-1 0.014 0.039 0 0.277 
   Na, mg kg-1 388 61 41 527 
   NH4, mg kg-1 0.17 0.38 0.00 3.91 
   Ni, mg kg-1 0.23 0.34 0.00 2.86 
   NO3, mg kg-1 2.65 3.26 0.10 21.10 
   P, mg kg-1 11.11 8.44 0.00 41.69 
   Zn, mg kg-1 8.05 6.48 0.50 39.83 

 
 
 



Table 2.  Partial least squares (PLS) regression cross-validation statistics. 
Units for RMSEP and bias are found in Table 1.  

 
Property NF* R2 RMSEP RPD Slope Bias 
Soil Quality       
  Glucosidase activity 6 0.66 30.2 1.71 0.669 32.1 
  SOC 8 0.84 2.55 2.49 0.847 2.58 
  TN 11 0.69 0.283 1.87 0.738 0.443 
  C:N Ratio 9 0.18 1.39 1.50 0.262 7.28 
  WSA 5 0.16 15.0 1.09 0.240 50.9 
Soil Fertility       
  pH 7 0.69 0.245 1.80 0.711 1.83 
  B     No PLS regression solution achieved 
  Ca 6 0.36 673 1.25 0.407 0.0013 
  Co 1 0.06 0.187 1.03 0.0678 0.200 
  Cu 5 0.22 0.265 1.13 0.250 0.391 
  Fe 6 0.15 19.0 1.10 0.215 56.4 
  K 8 0.41 37.2 1.30 0.463 45.3 
  Mg 6 0.64 87.7 1.72 0.654 83.0 
  Mn 10 0.38 6.63 1.27 0.462 11.6 
  Mo 1 0.02 0.0388 1.01 0.0223 0.0137 
  Na 10 0.15 51.6 1.18 0.211 307 
  NH4 3 0.01 0.377 1.00 0.0177 0.169 
  Ni 4 0.13 0.319 1.08 0.149 0.194 
  NO3 4 0.09 3.13 1.04 0.114 2.35 
  P 6 0.33 6.95 1.21 0.360 7.10 
  Zn 2 0.15 6.02 1.08 0.153 6.83 

* NF = number of PLS factors used in the model; RMSEP = root mean standard 
   error of prediction; RPD = standard deviation /RMSEP.  

 
 

SUMMARY  
 

The ability of VNIR DRS data to estimate soil quality and soil fertility 
properties across farming systems was investigated. Most laboratory-measured 
soil properties were strongly variable across the study area, as a consequence of 
approximately 20 years of differential management. VNIR DRS provided very 
good estimates of SOC, and good estimates of TN and GluAct. Further 
investigation is warranted to determine if GluAct estimations are a direct spectral 
response or are due to a strong correlation with SOC. Relative accuracy of soil 
fertility estimates generally followed previously reported results, with pH and Mg 
providing the best results. 

These results show that VNIR DRS has potential to estimate several key SQI, 
including SOM, TN, microbial activity (i.e., GluAct), and pH. However, other 
key SQI, such as aggregate stability, plant available nutrients, and other N forms 
were not successfully estimated by this technology. Thus, a sensor fusion 



approach combining VNIR DRS with other technologies would likely be needed 
for implementing a sensor-based soil quality index.  
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