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ABSTRACT 

 
A mobile sensor suite was developed and evaluated to predict plant water 
status by measuring the leaf temperature of nut trees and grapevines. It 
consists of an infrared thermometer to measure leaf temperature along with 
relevant ambient condition sensors to measure microclimatic variables in the 
vicinity of the leaf.  Sensor suite was successfully evaluated in three crops 
(almonds, walnuts and grapevines) for both sunlit and shaded leaves. Stepwise 
linear regression models developed for shaded leaf temperature yielded 
coefficient of multiple determination values of 0.89, 0.86, and 0.85 for 
almonds, walnuts, and grapevines, respectively. Stem water potential (SWP) 
and air temperature (Ta) were found to be significant variables in all models. 
Regression models were used to classify trees into stressed and unstressed 
categories with critical misclassification error for sunlit and shaded leaf 
models of 8.8 and 5.2% for almonds, 5.4 and 6.9% for walnuts, and 12.9 and 
8.1% for grapevines, respectively. Canonical discrimination analyses were 
also conducted using sensor suite data to classify stressed and unstressed trees 
with critical misclassification error for sunlit and shaded leaves of 9.3 and 
7.8% for almonds, 2 and 4.1% for walnuts, and 9.6and 1.6% for grapevines, 
respectively. These results show the feasibility that the sensor suite can be 
used to determine plant water status for irrigation and quality management of 
nut and vineyard crops. 
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INTRODUCTION 
 

     California is nation’s primary producer of fruit and nut crops and 
accounted for 52% of total national production of fruit and nut crops worth 
$13.3 billion in the year 2010 (CDFA, 2011). On the other hand, California is 
also leading in withdrawing irrigation water, consuming more than one-fourth 
of total irrigation water withdrawn in the nation (USGS, 2005). Because of 
limited water resources and continuous increase in urban demand for water, 
optimizing the use of irrigation water for these tree crops is a prime concern 
for many researchers. 
     Irrigation scheduling techniques have been developed based on soil 
moisture monitoring and plant’s response to water stress over the years (Jones, 
2004). Primary requirement to various irrigation scheduling techniques is 
frequent monitoring of plant water status. Pressure chamber measurements are 
considered as the standard method to measure plant water status as it measures 
leaf water potential (Boyer, 1967, Lampinen et al., 2001).  However, 
measurements of plant water status using pressure chamber are very time 
consuming and labor demanding which makes it impossible to obtain large 
number of samples necessary to develop efficient irrigation scheduling 
techniques. When a plant is under no water stress, it tends to open the stomata.  
When the stomata are open the water vapor diffuses out of the leaf and tends 
to cool the leaf.  On the other hand, if the plant is experiencing water stress, 
the stomata tend to close and the leaf temperature may increase depending on 
the ambient conditions (solar radiation, wind speed, relative humidity, and 
surrounding air temperature).  Therefore leaf temperature can be a good water 
stress indicator for plants (Jackson et al., 1981, Carlson et al., 1994). In recent 
studies, aerial thermal imaging has been used to measure canopy temperature 
to predict plant water status (Moller et al., 2007, Cohen et al., 2012). 
Inexpensive proximal leaf temperature measurements can also be used to 
predict plant water status. These measurements can be obtained conveniently 
and rapidly by use of non-contact infra-red sensors. As leaf temperature is not 
only function of plant water status, but also influenced by environment factors 
around the leaf (Jones, 1994). Therefore, we expect that simultaneous 
measurement of canopy temperature and other influential environmental 
parameters can be useful to predict plant water stress. 
     The objectives of this research were:  
(I) to evaluate a sensor suite to measure plant water status based on 
simultaneous measurements of leaf temperature, photosynthetically active 
radiation (PAR), air temperature and humidity,  and wind speed,  and  
(II) to validate its ability to measure plant-water status in almond, walnut and 
grape crops. 
 
 
 
 
 
 



THEORETICAL CONCEPT 
 

      As mentioned earlier, a plant under water stress tends to close leaf stomata 
to reduce transpiration which in turn rises temperature of the leaf surface. 
Cooling of leaf surface due to evaporation of water through leaf stomata 
during the transpiration process is an indicator of percentage opening or 
closing of the leaf stomata.  Therefore, difference of leaf temperature from 
ambient temperature has been studied to determine water stress level of plants.  
Involvement of other weather parameters effecting leaf temperature can be 
obtained by studying the energy balance equation for the leaf surface as 
follows:  

 Φn − H − λE = S                                                          [eq. 1] 
where, Φn (W/m2) is net heat gain from radiation, and H (W/m2) is ‘sensible’ 
heat loss given by: 

 
 
 
where, ρ = density of air in kg/m3, cp is specific heat capacity of air (1012 
J/kg/K), TL and Ta are temperature of leaf and air respectively, rh is resistance 
to heat transfer, λE (W/m2) is heat loss due to evaporation from leaf surface 
derived from the difference between  water vapor concentration in leaf and 
air.  This evaporative cooling can be represented as: 

 
 
 
 where, rL is stomatal resistance, rw is boundary layer resistance to water 
vapors in s/m, γ is psychrometric constant in Pa/K, e is water vapor pressure 
in Pa, es is saturation vapor pressure in Pa, and S [eq.1] is physical heat 
storage in leaf which is relatively small compared to other terms in eq. 1, 
especially when changes in ambient temperature occur slowly.  
By substitution of eq.2 and 3, into eq. 1, it can be modified to calculate leaf 
temperature as follows:  

 
 
 
 
where, δe = (es [Ta] – e[Ta]), is vapor pressure deficit of air in kg/m3, s = 
(es[TL] – es[Ta])/(TL – Ta )  is slope of curve relating saturation vapor pressure 
to temperature in units of Pa/K. 
     From equation 4, we can see that TL is a function of Ta, Φn, rL, rW, rh and 
δe.  In this study, all these variables were measured simultaneously except rL. 
For a plant, rL depends on the percentage opening of stomata which in turn 
depends upon current water status of the tree. Other major factor that comes 
into play is the exposure of leaf to the sun, because stomatal sensitivity to the 
light is not the same under different exposure conditions. Therefore for each 
tree sunlit and shaded leaves were studied separately.  

TL = Ta +  
 rh � γ Φn �rL +rw � ρ cp δe� 
ρ cp 

�γ �rL +rw �+ s rh�
                                      [eq. 4]  

   λE =  
  ρ cp (es[TL]−e[Ta])

γ (rL +rw)
                                      [eq. 3]   

H =  
  ρ cp (TL−Ta)

 rh
                                                        [eq. 2]   



     Infra-red radiation (Φir) emitted by leaf surface was measured as it was 
related to leaf temperature by Stefan-boltzman law, Φir = εσTL

4, where, ε is 
the emissivity of leaf surface and was assumed to be 0.98 and σ is Stefan-
Boltzmann constant. Since, net long-wave radiation depends on the 
temperature difference between leaf and its environment (e.g., soil, sky, and 
other leaves).  However, this part is expected to be relatively small and could 
be neglected (Jones and Rotenberg, 2011). The incident solar radiation, Φn is 
related to photosynthetically active radiation (PAR) falling on leaf surface and 
rw depends on wind speed, i.e., rw = 151 (d/u)0.5 (Jones, 1994),  where, d is 
characteristic dimension of leaf and u is wind speed in m/s. Wind speed was 
measured to calculate rw.  The parameter, δe is a function of relative humidity 
and temperature of air around the leaf. 
 

MATERIALS AND METHODS 
 

Sensor suite development 
 

     A mobile sensor suite developed by Udompetaikul et al. (2011) was used 
to measure leaf temperature using an infrared sensor (6000L, Everest 
Interscience, Tucson, AZ).  The sensor suite consisted of three other sensors 
to measure environmental parameters such as photosynthetically active 
radiation (PAR) using a PAR sensor (LI-190, LICOR inc., Lincoln, NE), air 
temperature and humidity using an air temperature and humidity probe 
(HMP35C, Visalia Inc., Woburn, MA) and  wind speed around tree canopy 
using an anemometer (WindSonic, Gill Instruments Ltd., Hampshire, UK).  
Sensor suite with all its components is shown in figure 1. Standard pressure 
chamber (figure 1) measurements were taken for validation of sensor suite 
measurements. Data logger (CR3000 micrologger, Campbell scientific Inc., 
Logan, UT) was used to acquire and store data for all the sensors. 

 

 
 

Fig.1.   Mobile sensor suite and pressure chamber during data collection in 
an almond orchard. 
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     Sensor suite was evaluated on three different crops i.e. almonds, walnuts 
and grapevines during 2010 and 2011 growing seasons.  More information 
regarding study areas is presented in table 1. 
     Trees/grapevines of all three crops were subjected to different stress levels 
to cover the whole practical range of water stress level encountered by each 
crop. These orchards/vineyard were visited multiple times throughout the 
season to collect data.  During each visit, mid-day stem water potential of 
each tree was measured using the pressure chamber (figure 1) and 
simultaneously leaf temperature, air temperature, relative humidity, wind 
speed, and PAR data were recorded using the sensor suite for 10-20 
leaves/tree within a time span of 5-10 minutes. In case of almond and walnut 
crops, data was recorded for ten leaves per tree. But, for grapevines twenty 
leaves were studied per vine.  However, in all cases half of the leaves studied 
were sunlit and half were shaded leaves.  
 
Table 1: Study areas and crops used for sensor suite evaluation 

 
  Almonds Walnuts Grapevines 
Growing season  2011 2010 2011 

Site name Nickel’s/Madera Nickel’s 
MAST 
Ranch 

county Colusa/Madera Colusa Yolo 

Crop variety 
Nonpareil(5 
yrs)/Nonpareil(4 yrs) 

Howard(8 yrs) & 
Chandler(4 yrs) 

Cabernet 
sauvignon 

 
 

Statistical analysis 
 

     Ultimate goal of developing sensor suite was to predict real-time plant 
water status by measuring leaf temperature and microclimatic information and 
then classify the trees into stressed or unstressed categories so that this 
information can be used to implement variable rate irrigation management.  In 
this study, data obtained from the sensor suite and pressure chamber were 
analyzed using SAS software package (SAS Institute, Inc. v.9.2. Cary, NC) to 
develop regression models for leaf temperature as the dependent variable. By 
utilizing stepwise model selection approach with k-fold cross validation 
(Hastie et al., 2009; SAS, 2010), empirical models for leaf temperature as 
functions of SWP, PAR, air temperature, RH, and wind speed were developed 
for each crop and light exposure conditions.  Second order polynomial model 
was used to account for quadratic effects, if any. 
Moreover, we proposed a technique to classify the plant water status as 
stressed or unstressed based on the critical values of stem water potential.  The 
prediction models were used to determine critical values of the leaf 
temperature (TLc) corresponding to critical values of stem water potential 
(SWPc). Plants were classified as stressed if its leaf temperature TL was higher 
than TLc.  Classification accuracy was verified by comparing predicted stress to 
the measured stress level. 

http://en.wikipedia.org/wiki/Colusa_County,_California


     Actual tree stress level was defined by considering the plant water potential 
below the baseline, which is maximum SWP achieved when plant gets fully 
irrigated.  This baseline depends on crop type and vapor pressure deficit.  
Baseline functions (BSWP) for almonds, walnuts and grapevines1 given by 
(McCutchan and Shackel, 1992;Shackel et al., 1997) are shown in figure 2 
with their respective critical SWP and measured pressure chamber SWP data. 
     The plant stress threshold was defined as a straight line parallel to the 
baseline (figure 2).  In our study, the plant stress threshold was placed under 
the baseline by 8 bars, 4 bars and 6 bars for almonds, walnuts, and grapevines, 
respectively.    
 

 

 

 
 
 
 
BSWP = -1.20 VPD – 4.10 
Critical SWP = BSWP – 8  
 
 
 

 
 
 
 

BSWP = -0.64 VPD – 2.78 
Critical SWP = BSWP – 4  
 
 
 
 
 
 
 
 
BSWP = -0.68 VPD – 2.29 
Critical SWP = BSWP – 6  
 
 

 

 
Fig. 2.  Baseline and critical SWP for (a) almonds, (b) walnuts and (c) grapevines 
used for classification analysis. 
 

1 Grapevine baseline equation was provided by Dr. Ken Shackle in personal communication 



SWP value on the threshold line is the critical SWP (SWPc).  A tree was 
considered as stressed if the measured SWP is lower than the SWPc at that 
ambient condition (i.e., VPD value).  This criterion was used to define the true 
stress level of trees and vines in discriminant analysis also. 
 
     In the discriminant analyses trees and vines were classified into two 
groups, stressed and unstressed, from leaf temperature, air temperature, RH, 
PAR, and wind speed data. Canonical discriminant analysis was used to find 
canonical variables which are linear combinations of the quantitative variables 
that provide maximal separation between classes (SAS, 2010).    Since only 
two classes were involved in this study, one canonical variable was necessary.    
Separate analyses were conducted for each crop and light exposure condition.  
Classification accuracies of discriminant models were determined by 
performing leave-one-out cross-validation technique (Khattree and Naik, 
2000).  Both classification techniques were compared to propose suitable 
models to discriminate between stressed and unstressed trees. 
 
 
 

RESULTS AND DISCUSSION 
 

Regression analysis 
 

Table 2 shows basic descriptive statistics of data collected for all the variables 
by sensor suite in field experiments for 193, 74, and 62 observations on 
almonds, walnuts and grapevines, respectively. Stepwise regression linear 
models developed for leaf temperature yielded high correlations between stem 
water potential and other microclimatic variables. Multiple linear regression 
models obtained and their respective R2 values for sunlit and shaded leaves 
are given in table 3. Quadratic models did not improve the model performance 
significantly as compared to simple linear models. Shaded leaf prediction 
models had higher R2 values as compared to sunlit leaf models in all cases, in 
spite of more variables turning up as significant in sunlit leaf models in 
almonds and walnuts. This outcome can be due to factors like sun angle and 
leaf orientation in case of sunlit leaves as  PAR was found to be significant in 
all sunlit models.   
     As expected from theoretical considerations, SWP was found to be 
significant variable in all the models.  Air temperature was also significant in 
all cases expect in model for sunlit grapevine leaf. This explains the lower R2 
value for sunlit grapevine leaf model. But other important reason for low R2 
value was high variability of temperature over the sunlit grapevine leaf. Due 
to the bigger size and cone-like shape of grapevine leaves, different parts of 
the leaf surface received different amount of solar radiation at different angle 
as seen in infra-red thermal camera picture (figure 3).    Therefore it was hard 
to get one representative value of leaf temperature. To verify this effect, multi 
spectral images of shaded and sunlit leaves were taken using a multispectral 
camera (Tetracam inc., Chatsworth, CA) with NIR, red and green bands.   
 



 
 

 
 

 
 
 
 
 
 
 



 
 
 
 

 
 
 
 
 



NIR and red band reflectance values at different locations over the single leaf 
surface were measured. Point selection on leaf surface was done in a way to 
cover low and high values over the leaf surface. Standard deviation of NIR 
and red reflectance values on shaded and sunlit grapevine leaves (figure 4) 
shows high variability of leaf temperature over the single leaf surface, 
especially in sunlit leaves. In the future studies, we plan to incorporate 
simultaneous NIR and red reflectance measurements along with temperature 
measurement on multiple locations on a single leaf. 
 

 

 
 

Fig.3. Infra-red thermal camera picture taken for purpose of showing 
temperature variability on typical sunlit grapevine leaf. 
 
 

 
 

Fig.4. standard deviations of three readings of NIR and red bands 
obtained from multispectral camera pictures of sunlit and shaded 
grapevine leaves showing variability of radiations received over the 
leaf surface.  
 
The regression models obtained were used in classification analysis to 
classify the observed trees into stressed and unstressed trees. Using critical 
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SWP values (figure 2) in corresponding regression models (table 3) for 
each crop, critical leaf temperatures were calculated.  If measured leaf 
temperature is higher than this critical temperature, the tree was classified 
as stressed. Two types of misclassification errors were possible i.e. 
predicting an actual stressed tree as unstressed tree, which is designated as 
“critically wrong decision” as this has implications on plant growth and 
yield and a less serious error of classifying unstressed tree as stressed tree 
which is designated as “over irrigation error”. The critical errors (table 4) 
for sunlit and shaded leaf models were 8.8 and 5.2% for almonds, 5.4 and 
6.9% for walnuts, and 12.9 and 8.1% for grapevines, respectively. Shaded 
leaf models yielded overall less error rates, hence better performance in 
classification analyses also except in walnuts. 

 
Canonical discriminant analysis 

 
Objectives of canonical discriminant classification analyses were also to 
classify the observed trees into two classes – (i) stressed, and (ii) unstressed 
trees, and to determine the misclassification error rates. Critical, over 
irrigation, and total error rates of classification analyses, compared to standard 
classification according to SWP (figure 2) obtained are listed in table 4.          
The critical errors rates for canonical discriminant analysis for sunlit and 
shaded leaves were 9.3 and 7.8% for almonds, 2 and 4.1% for walnuts, and 
9.6 and 1.6% for grapevines, respectively. This technique could discriminate 
stress levels very effectively by keeping the total and critical errors low.  
     Form the above results, it can be concluded that MLR models show a 
better relationship between the plant water status and the leaf temperature for 
shaded leaves than sunlit leaves.  According to both classification analyses, 
classification accuracies for sunlit and shaded leaves were not any different. 
However, amount of light interception normal to the leaf surface is necessary 
to make accurate classification based on data obtained from sunlit leaves.  
This is a very important and interesting outcome as sunlit leaves change leaf 
orientation depending on the light intensity making it difficult to obtain 
radiation data normal to the leaf surface.  From a practical point of view, it is 
much more convenient to obtain shaded leaf data using the sensor suite.   
Results from this study suggest that good regression and discriminant models 
could be developed using only shaded leaf data. The small number of 
observations was the reason for differences in results between regression and 
classification analyses for grapevines, as compared to almonds and walnuts. In 
addition, some issues with sunlit grapevine leaf explained earlier (figure 3) 
may also be responsible. 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 

      
CONCLUSIONS 



 
A mobile sensor suite was developed and evaluated to predict plant water 
status by measuring the leaf temperature of nut trees and vines. It consists of 
an infrared thermometer to measure leaf temperature along with relevant 
sensors to measure microclimatic variables.  Sensor suite was successfully 
evaluated in three orchard crops i.e. almonds, walnuts and grapevines on 
sunlit and shaded leaves. Stepwise linear regression models developed for 
shaded leaf temperature yielded coefficient of multiple determination values 
of 0.89, 0.86, and 0.85 for almonds, walnuts, and grapevines, respectively. 
Stem water potential (SWP) and air temperature (Ta) were found to be 
significant variables in all models. Regression models were used to classify 
trees into stressed and unstressed categories.  Critical misclassification error 
(classifying a stressed tree as unstressed) for sunlit and shaded leaf models 
were 8.8 and 5.2% for almonds, 5.4 and 6.9% for walnuts, and 12.9 and 8.1% 
for grapevines, respectively. Canonical discrimination analyses were also 
conducted using sensor suite data to classify stressed and unstressed trees with 
critical misclassification error for sunlit and shaded leaves of 9.3 and 7.8% for 
almonds, 2 and 4.1% for walnuts, and 9.6 and 1.6% for grapevines, 
respectively. These results suggest feasibility that the sensor suite can be used 
to determine plant water status for irrigation and quality management of nut 
and vine crops. 
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