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Abstract 
 

This paper addresses the problem of predicting biomass and grain protein 
FRQWHQW�XVLQJ� LPSURYHG�SDUWLFOH�¿OWHULQJ� �,3)�� First, we propose to use the IPF 
for improving nonlinear and non-Gaussian crop model predictions. In case of 
VWDQGDUG� SDUWLFOH� ¿OWHULQJ� �3)��� WKH� ODWHVW� REVHUYDWLRQ� LV� QRW� FRQVLGHUHG� IRU� WKH�
evaluation of the weights of the particles as the importance function is taken to be 
equal to the prior density function. Unlike the PF which depends on the choice of 
sampling distribution used to estimate the posterior distribution, the IPF yields an 
optimum choice of the sampling distribution based on minimizing Kullback-
Leibler divergence, which also accounts for the observed data. Second, we apply 
the state estimation techniques PF and IPF for predicting biomass and grain 
SURWHLQ�FRQWHQW�� ,Q�D�¿UVW� VWHS��ZH�SUHVHQW�DQ� DSSOLFDWLRQ�RI� WKH� ,3)� WR� D� VLPSOH�
dynamic crop model with the aim to predict a single state variable, namely winter 
wheat biomass. In a second step, we apply the IPF for updating predictions of 
complex nonlinear crop models in order to predict protein grain content. The 
performance of the estimation techniques is evaluated on a synthetic example in 
terms of estimation accuracy and root mean square error. 
 
Keywords: Crop model; Bayesian methods; Grain protein; Biomass. 
 

1. Introduction 
 
Dynamic crop models such as EPIC [1], WOFOST [2], DAISY[3], STICS 

[4], and SALUS [5] are non-linear  models that describe the growth and 
development of a crop interacting with environmental factors (soil and climate) 
and agricultural practices (crop species, tillage type, fertilizer amount,…). They 
are developed to predict crop yield and quality or to optimize the farming 
practices in order to satisfy agricultural objectives, as the reduction of nitrogen 
lixiviation. More recently, crop models are used to simulate the effects of climate 
changes on the agricultural production. Nevertheless, the prediction errors of 
these models may be important due to uncertainties in the estimates of initial 
values of the states, in input data, in the parameters, and in the equations. The 
measurements needed to run the model are sometimes not numerous, whereas the 
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field spatial variability and the climatic temporal fluctuations over the field may 
be high. The degree of accuracy is therefore difficult to estimate, apart from 
numerous repetitions of measurements. For these reasons, the problem of 
state/parameter estimation represents a key issue in such nonlinear and non-
Gaussian crop models including a large number of parameters, while 
measurement noise exists in the data.  

For example, it is useful to predict the evolution of variables, such as the 
biomass and the grain protein content during the crop lifecycle. State estimation 
techniques can be of a great value to solve that problem since they have the 
potential to estimate simultaneously the variables and several parameters. As an 
example, involved parameters are the radiation use efficiency, the maximal value 
of the ratio of intercepted to incident radiation, the coefficient of extinction of 
radiation, the maximal value of LAI, ... The estimation problem that is addressed 
here can be viewed as an optimal filtering problem, in which the posterior 
distribution of the unobserved state, given the sequence of observed data and the 
state evolution model, is recursively updated. 
Several state estimation techniques are developed and used to estimate state and 
parameters in environmental systems [6, 7, 8, 9].  These techniques include the 
extended Kalman filter (EKF) [10, 11], the unscented Kalman filter (UKF) [11, 
12], the particle filter (PF) [13, 14], the variational Bayesian filter (VBF) [15, 16, 
17, 18] and more recently the improved particle filter (IPF) [19].  
 

The objectives of this paper are twofold. The first objective is to use 
improved Particle filtering (IPF) based on Kullback-Leibler divergence 
minimization for improving nonlinear and non-Gaussian crop model predictions, 
by assuming time-varying statistical parameters. 
The second objective is to apply the state estimation techniques PF and IPF for 
predicting biomass and grain protein content. In a first step, we present an 
application of the IPF to a simple dynamic crop model with the aim to predict a 
single state variable, namely winter wheat biomass. In a second step, we apply the 
IPF for updating predictions of complex nonlinear crop models in order to predict 
protein grain content. 
 

The rest of the paper is organized as follows. In Section 2, a description of 
an improved particle filtering for nonlinear crop model predictions is presented. 
Then, in Section 3, the performances of the proposed new improved particle 
filtering are evaluated and compared to the standard particle filtering through the 
application cases. Finally, some concluding remarks are presented in Section 4. 
 

2. Description of Improved Particle  Filtering 
 
Particle filtering suffers from one major drawback. Its efficient 

implementation requires the ability to sample from � �1|k kp z z � , which does not 

take into account the current observed data, ky , and thus many particles can be 
wasted in low likelihood (sparse)  areas [20]. This issue is addressed by the 
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proposed improved particle filter (IPF), which is described in the next sub-
section. 

 
2.1. Improved Particle  Filtering (IPF) 

 
The distribution of interest for the state takes the form of a marginal posterior 
distribution � �kk yzp :0 . The proposed extended Bayesian sampling algorithm (also 
named as improved particle filtering, IPF) is proposed for approximating 
intractable integrals arising in Bayesian statistics. By using a separable 
approximating distribution � � )(ˆ,ˆ)(ˆ :01:0

i
kikkkk zqyzzqzq 3  �  to lower bound the 

marginal likelihood, an analytical approximation to the posterior probability 
� �kk yzp :0  is provided by minimizing the Kullback-Leibler divergence (KLD) 

[18]: 
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Where, 
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Minimizing the KLD subject to the constraint 1)(ˆ)(ˆ  3 ³³ i

k
i
kikk dzzqdzzq , the 

Lagrange 
multiplier scheme is used to yield the following approximate distribution [21], 
 

� �> @)(ˆ:0 ),(log(exp)(ˆ j
kik zqjkk

i zypEzq z3v                                          

(3) 
 

where � � )(ˆ:0 ),(log( j
ki zqjkk zypE z3 denotes the expectation operator relative to the 

distribution )(ˆ j
k

zq . Therefore, these dependent parameters can be jointly and 
iteratively updated. Taking into account the separable approximate distribution 

)(ˆ
1

j
k

zq
�

at time 1�k , the posterior distribution )( :0 kk yzp is sequentially 
approximated according to the following scheme: 
 

                )(),()()(ˆ :0 kpkkkkkkk qzpzypyzp PPOv                      
(4) 

 
where                                                 111 )(ˆ)()( ���³ kkkkkp dqpq PPPPP                                   
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Hence, the particles ^ `N
i

i
kz 0
)(

:0   are sampled according to the following optimal 
function: 
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The recursive estimate of the importance weights can be derived as follows: 
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(6) 
Equation (5) provides a mechanism to sequentially update the importance 
weights, given an appropriate choice of proposal distribution, � �kkk yzzq :01:0 ,ˆ � . 
Then, the estimate of the augmented state kẑ can be approximated by a Monte 
Carlo scheme as follows: 

                           ¦
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3. Simulation Results Analysis 
 
3.1. Case 1 : A simple example: a dynamic model simulating wheat 

biomass 
 

3.1.1.  The overall formalism 
 

In this section, we describe a simple dynamic crop model that will be used 
to compare the performances of PF and IPF. The crop model has a single state 
variable representing above-ground winter-wheat biomass. This state variable is 
simulated on a daily basis in function of the daily temperature and the daily 
incoming radiation according to the classical method presented in ([22]). The 
biomass at time k+1 is linearly related to the biomass at time k as follows: 

 
                                   � � kk

LAIK
ibkk wPAReEEBiomBiom k ��� �

� 1max1    ,                            
(8) 

where k  is the day number since sowing, kBiom  is the true above-ground plant 

biomass on day k , kPAR is the incoming photossynthetically active radiation on 

day k , kLAI is the leaf-area index on day k  and kw  is a random term representing 

the model error. The crop biomass at sowing is set equal to zero: 01  Biom . kLAI
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is calculated in function of the cumulative degree-days (over a basis of 0°C) from 
sowing until day k , noted tT  , as follows ([23]): 

             ¸
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(9) 

where the parameter 2sT  is set equal to � �11log
1

sATeB �
 in order to have 01  LAI . 

The model includes two input variables '],[ kkk PARTX   and seven parameters

� �1maxmax ,,,,,, sib TBALKEE . bE  is the radiation use efficiency which expresses 

the biomass produced per unit of intercepted radiation, maxiE  is the maximal 
value of the ratio of intercepted to incident radiation, K  is the coefficient of 
extinction of radiation, maxL is the maximal value of LAI, 1sT  defines a 
temperature threshold, and A  and B  are two additional parameters. At this 
stage, the parameter values are assumed to be known and obtained from ([23]). 
 

We suppose that N measurements of biomass, Nyyyy ,...,,, :32:1 , are made 
at different times before harvest on the site-year of interest. In practice, values of 

ky  can be derived from plant samples or from remote-sensing data. We assume 

that each measurement ky is related to the biomass kBiom  by 

                              kkk vBiomy �                                                          
(10) 

 
where kv  is a random term representing measurement errors. In the next section 
we show how such measurements can be used to improve the accuracy of biomass 
predictions. 
 

3.1.2. Numerical application 
 
3.1.2.1. Estimation of the biomass 

 
Based on the equation (10), the Biomass is estimated at each date of measurement 
using both PF and IPF algorithms (Fig. 1).  Table 1 illustrates the Root Mean 
Square Error (RMSE) using the two algorithms PF and IPF. Fig. 1 and Table 1 
show that IPF outperforms PF, these advantages of the IPF are due to the fact it 
provides an optimum choice of the sampling distribution used to approximate the 
posterior density function, which also accounts for the observed data. 
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Fig. 1. Estimation of state variable Biomass versus N (days) using PF and IPF techniques.  

 
                                                          Technique         ERROR                          

 Biomass 
Kg/ha 

PF 6.113 
IPF 4.245 

  Table 1. ERROR of estimated Biomass 
 

3.2. Case 2 : IPF  for complex nonlinear crop models 
 

3.2.1. The overall formalism 
 
A nonlinear complex crop model can be defined by: 
 

                                                           � �1111 ,,, ���� kkkkk wuxfx T                                                
(11) 
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Suppose that a measurement ky  is available at time k  and that ky  is related to the 
state variable vector by: 

                                                                     � �kkkkk vuxhy ,,, T                                                 
(12) 

 
Note that in equations (11) and (12). The process and measurement noise vectors 
have the following properties:  

> @ 0kE w  , 
T

k k kE w w Qª º  ¬ ¼ , > @ 0kE v  , 
T

k k kE v v Rª º  ¬ ¼ . 
The function f  is used to predict the value of the state vector at some time step 

)(k  given its value at the previous time step )1( �k , and the function h  relates 

the measured vector )( ky  to the state vector )( kx  at the same time step.  Also, 

defining the augmented vector, ku is the vector of input variables, kT is a 

parameter vector (assumed to be known), ky  is the vector of the measured 

variables, kw and kv  are respectively model and measurement noise vectors, and 

the matrices, kQ and kR represent the covariance matrices of the process and 
measurement noise vectors, respectively. 

  
Since we are interested to estimate the state vector kx , as well as the parameter 

vector kT , let’s assume that the parameter vector is described by the following 
model: 
  

                   1 1k k kT T J� � �                      
  (13)  

where 1�kJ  is white noise. In other words, the parameter vector model (13) 
corresponds to a stationary process, with an identity transition matrix, driven by 
white noise. We can define a new state vector that augments the two vectors 
together as follows: 
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where kz is assumed to follow a Gaussian model as ),(~ kkk Nz OP   , and where at 

any time k  the expectation kP and the covariance matrix kO  are both constants. 
Also, defining the augmented vector,  
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the models (11) and (12) can be written as: 
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where the two nonlinear differentiable functions �  and � in equation (16) are 
nonlinear differentiable functions that describe the changes in the state variables 
over discrete time. The function � is used to predict the value of the state vector 
at some time step )(k  given its value at the previous time step )1( �k , and the 

function �  relates the measured vector  ky  to the state vector kz  at the same 
time step.   
 

3.2.2. Application to a crop model predicting grain protein 
content 

 
The AZODYN crop model ([24]) is a nonlinear dynamic model simulating 
winter-wheat crop in function of environmental variables (characteristics of the 
crop at the end of winter, soil characteristics, climate) and of nitrogen fertilization 
(dates and rates of fertilizer applications). We consider a particular site-year 
(2008-2009). This model can be used to predict grain yield, soil mineral nitrogen, 
and grain protein content at harvest.  AZODYN is a useful tool for studying the 
effects of nitrogen management on crop yield, grain quality and risk of pollution 
by nitrate ([25]). Before flowering, five state variables are simulated each day by 
AZODYN: nitrogen uptake (NU), dry matter (DM), nitrogen-nutrition index 
(NNI), leaf-area index (LAI), soil mineral nitrogen supply (SNS). We consider 
chlorophyll-content measurements obtained with a chlorophyll meter. These 
measurements are correlated to one of the model state variables, namely nitrogen 
uptake, and can be easily performed by farmers, collecting-firm operators, or 
farmers’ advisors. Here, we suppose that only one chlorophyll-content 
measurement is performed at flowering and that this measurement is linearly 
related to the model state variables as follows: 
 

                       kkk mHm vmxy �� P                                                     
(17) 

 
where kmy  and kmx   are, respectively, the chlorophyll-content measurement and 
the (5×1) vector of the true state-variable values at flowering, P  is an intercept 
parameter, and H  is a one-row matrix defined by )0,0,0,(D H  where D  is 
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the slope of the linear equation relating the measurement to nitrogen uptake. We 
assume that the error term kvm  is Normally distributed, ),0(~ RNvmk . The IPF is 
used to update  the five states variables nitrogen uptake (NU), dry matter (DM), 
nitrogen-nutrition index (NNI), leaf-area index (LAI), soil mineral nitrogen 
supply (SNS) given a single chlorophyll-content measurement kmy  performed at 
flowering. Yield and grain protein content at harvest are then estimated from the 
updated state variables.  
 
Figures 2, 3 and Table 2 show the estimation of the two states variables Yield and 
grain protein content using PF and IPF. The results show the performance of IPF 
over PF, the efficiency of IPF is due to the fact it uses the KLD divergence to 
compute the optimum sampling distribution used to approximate the posterior 
density function, which also accounts for the observed data. 
 

 
Fig. 2.  Updated value of grain protein content (kg/ha) versus N (days) using PF and IPF 

techniques.  
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Fig. 3 Updated value of yield (kg/ha) versus N (Days) using PF and IPF techniques.  

 
 

Table 6. ERROR of estimated states 
 
                                                        Technique                ERROR                                       

 Yield  grain protein 
content  

PF 0.942 0. 0603 
IPF 0.736 0.0381 

 
 

4. Conclusions 
 
In this paper, we developed an improved Particle Filter (IPF) for crop model 
predictions. Specifically, two comparative studies are performed. In the first 
comparative study, we presented a simple application of the new IPF to a linear 
dynamic crop model predicting only one state variable, namely winter wheat 
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biomass.  In the second comparative study, we used the proposed IPF for updating 
predictions of complex nonlinear crop models. In this case, the proposed IPF is 
applied to a nonlinear model predicting an important winter-wheat quality 
criterion and grain protein content. The results of both comparative studies show 
that the IPF provides a significant improvement over the PF because, unlike the 
PF which depends on the choice of sampling distribution used to estimate the 
posterior distribution, the IPF yields an optimum choice of the sampling 
distribution, which also accounts for the observed data. The performance of the 
proposed method is evaluated on a synthetic example in terms of estimation 
accuracy, and root mean square error. 
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