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ABSTRACT 
 

Available nitrogen is the amount of this nutrient available to plants in the soil 
and the amount of nitrogen provided by fertilizers. Compared to total nitrogen, 
nitrogen availability is a more useful tool for determining how much fertilizer you 
need and when to apply it. Determining the level of nitrogen available in field soil 
is also a useful method to increase the efficiency of fertilizer. Most soil properties 
are time-consuming and costly to measure, and also change over time. Fast and 
accurate prediction of soil properties is a necessary to overcome the lack of 
measured soil property information. Satellite imagery provides contiguous spatial 
coverage of a field and can be used as a surrogate to measure soil attributes. In the 
past three decades, considerable progress has been made which prove the capacity 
and potential of remote sensing in soil science. The spectral characteristics of a 
number of nutrition content in soil have been studied and huge number of field 
nutrition mapping were implemented successfully.  

Yet there still three major obstacles that prevent the wide application of remote 
sensing derived soil nutrition status map in precision farming, they are: 1) 
common remote sensing means cannot detect the entire soil body (“pedon”) that 
extends from the surface to the parent material, not mention that the thin, upper 
layer sensed by optical sensors may easily be affected by many factors such as 
dust, rust, crop residue, plowing and particle size distribution; 2) in most studies 
that mapping soil nutrition status based on its spectral characteristics, high 
spectral resolution data are required, yet ever since the failure of EO-1 Hyperion 
in 2009, there has been a period of more than 4 years that has no satellite-mounted 
hyper-spectral images at the resolution higher than 30 m. The acquisition of 
hyper-spectral satellite image cannot be guaranteed. 3) crop coverage in crop 
growing season make it difficult to obtain soil radiometric property directly, the 
short period of soil explosion between crop seasons make it difficult to obtain 
satisfactory satellite images.  

To deal with these three obstacles in mapping field soil nutrition status with 
satellite images, a new method was put forward and tested in mapping available 
nitrogen content. The basic concept of the method put forward by this research is 
that soil nutrition deficiency is the primary limitation on crop yield when other 
conditions are favorable (water, temperature and radiation). Firstly we map the 
crop yield of three major crops (wheat, soybean and maize) in last 4 years with a 
light use efficiency (LUE) model –CASA, which can integrate remote sensing 
indicators and meteorological data to describe crop growth. Secondly, yields of 



different crops (wheat, soybean and maize) were normalized to make them 
comparable, a value (normalized yield index, NYI) between 0 and 1 were assigned 
to each pixel based on its place in the yield range of the crop type. Thirdly, the 
maximum NYI in the last 4 years was calculated for each pixel to represent the 
NYI in favorable crop growing conditions. At last the relationship between 
maximum NYI and observed soil available nitrogen content was identified 
through regression analysis, and then a map of field soil available nitrogen were 
produced. 

In this study, taking HJ-1 CCD image as major data source and a farm in 
Northeast China as study area, the method proposed by the author was tested. The 
technical procedure, application and validation of this method were introduced in 
detail. After explore the potential of mapping field nutrition status with remote 
sensing derived crop yield, this paper provides some ideas on how to propel this 
technology forward to enable its widespread adoption in precision farming. 
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INTRODUCTION 
 

Available nitrogen is the amount of this nutrient available to plants in the soil 
and the amount of nitrogen provided by fertilizers. Field tillage pattern and 
environmental conditions such as rainfall and temperature have a direct impact on 
the quantity of available nitrogen in the soil. The availability of nitrogen is often 
used to calculate the cost-to-benefit ratio of using fertilizer in a given area. 
Compared to total nitrogen, nitrogen availability is a more useful tool for 
determining how much fertilizer you need and when to apply it. Determining the 
level of nitrogen available in field soil is also a useful method to increase the 
efficiency of fertilizer. Using the level of nitrogen availability as a guide, one can 
accurately determine when to fertilize the crops. 

Most soil properties (including soil available nitrogen) are time-consuming and 
costly to measure, and also change over time. Fast and accurate prediction of soil 
properties is a necessary to overcome the lack of measured soil property 
information.  

In today’s world of advanced technology various techniques are being used to 
study field parameters and gathering data for agricultural benefits. Remote sensing, 
for one, has a proven ability to provide spatial and temporal measurements of crop 
and field properties (Meng et al. 2013). In the past three decades, considerable 
progress has been made in such predictions following the development of remote 
technology. At this time, remote sensing appears to be an important and promising 
milestone in soil science (Ben-Dor et al. 2009). For the emerging discipline of 
precision agriculture, the remtoe sensing technology can assess fields before, 
during, and after the growing season, and thus provide farmers with a spatially 
explicit quantitative overview of the soil properties and phenomena in question. 

In the last decade remote sensing has been proved useful to support precision 
farming by guiding field management as sowing, irrigation and fertilization. Yet 
the application of remote sensing to precision management of crops has suffered 



from the cost and data availability constraints that restrict the wider application of 
satellite images (Zhang et al. 2002). As the performance of radiation sensors has 
improved, satellite and airborne receivers have provided increasingly detailed 
information on the reflected spectra, while fast digital processing of their output 
data, coupled with data fusion techniques, have led to a variety of powerful 
application (Sidney 2002). 

Yet still there are several limitations that hinder the widely application of 
remote sensing in optimizing field fertilization: 

(1) For all of these applications, single or even multi-band remote sensing 
means is rather limited and problematic when striving for quantitatively accurate 
information. For that purpose, high spectral resolution data are required. Based on 
comprehensive studies over the past decade that showed the VIS (400–700 nm), 
NIR (700–1100 nm), and SWIR (1100–2500 nm) spectral regions to serve as a 
powerful tools for recognizing soils qualitatively and quantitatively (Ben-Dor and 
Banin,1995a; Malley et al., 2004; Viscarra-Rossel et al., 2006). Only a few studies 
have successfully applied quantitative techniques to soil using low spectral and 
spatial resolution data (Ben-Dor and Banin, 1995c); ever since the failure of EO-1 
Hyperion in 2009, there has been a period of more than 4 years that has no 
satellite-mounted hyper-spectral images at the resolution higher than 30 m. Pre-
processing and converting the hyperspectral raw data into reflectance is a 
complicated process that requires experience, knowledge, and specific 
infrastructures not available to many users, whereas quantitative spectral models 
require good quality data (Ben-Dor et al. 2009). It requires expensive sensors, air 
hours, professional staff time and a sophisticated infrastructure that cannot be 
regularly used. Difficult and complex work in statistics and modeling is necessary. 
Beside that, the small coverage of hyper-spectral sensors also limited its 
application in wide area. 

(2) Apparently, most of the optical remote sensing means cannot detect the 
entire soil body (“pedon”) that extends from the surface to the parent material. 
Moreover, the thin, upper layer that is eventually sensed by optical sensors may be 
affected by many factors such as dust, rust, plowing, particle size distribution, 
vegetation coverage, litter, and physical and biogenic crusts. Thus, optical remote 
sensing of soils from far distances becomes a significant challenge. The major 
limitation is that the entire soil profile, which is the ultimate parameter for soil 
classification, cannot be viewed because the radiation of the sun actually interacts 
with only the upper 50 mm of the soil surface (Ben-Dor et al., 1999). 

(3) In addition, it should be remembered that the soil surface is not always flat, 
smooth, or homogenous and therefore sample preparation (as is done in the lab) is 
almost impossible. This leads to problems such as variations in particle size, 
adjacency, Bidirectional Reflectance Distribution Function (BRDF) effects, which 
may further reduce the accuracy (Ben-Dor et al. 2009). Partial or complete 
coverage of weeds, growing crops and crop residue will further reduce the signal 
of soil in the spectral reflectance information.  
These limitations serve as a barrier that impedes potential end-users, inhibiting 
researchers from trying this technique for their needs of mapping soil nutrition 
parameters. To deal with these limitations and, this paper tests the concept of 
evaluating soil available nutrition parameters with indirect remote snesing 



indicators---farmland productivity for avalible nitrogen in this case. This may be 
helpful to promote the application of satellite remote sensing in mapping soil 
available nutrition content---once it is proved that those nutrition parameters 
(namely available N, P, K) which are hard to map with their indistinctive spectral 
charsacteristics can be evaulated with other remote sensing derived indicator. 
 

MATERIALS AND METHODS 
 

Although it has long been proposed that assessing the plants' status during the 
growing season can provide indirect information about the soil situated 
underneath its canopy (Palacios-Orueta et al., 1999), its potential has never been 
fully utilized. Unlike commonly researches focus on the spectral characteristic of 
soil properties, this research will used yield as indirect indicator to evaluate soil 
nutrition status. 
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Figure 1 Technical process of the soil available nitrogen estimation 
 

One of the primary principles of soil property prediction is “when predicting a 
variable, there should be a physical basis for the predictors” (Minasny and 
Hartemink 2011). The basic concept of the method put forward by this research is 
that soil nutrition deficiency is the primary limitation on crop yield when other 
conditions are favorable (water, temperature and radiation). Firstly we map the 
crop yield of three major crops (wheat, soybean and maize) in last 4 years with a 
light use efficiency (LUE) model –CASA, which can integrate remote sensing 
indicators and meteorological data to describe crop growth. Secondly, yields of 
different crops (wheat, soybean and maize) were normalized to make them 
comparable, a value (normalized yield index, NYI) between 0 and 1 were assigned 
to each pixel based on its place in the yield range of the crop type. Thirdly, the 
maximum NYI in the last 4 years was calculated for each pixel to represent the 
NYI in favorable crop growing conditions. At last the relationship between 
maximum NYI and observed soil available nitrogen content was identified 



through regression analysis, and then a map of field soil available nitrogen were 
produced. 

 
I. Experimental set up and field campaign 

 
The study area, Hongxing Farm, locates in the north of Heilongjiang province, 
Northeast China (48°48ƍN, 125°31ƍ E). This place lies within the Mid-Temperate 
Zone characterized by average annual precipitation of 555mm and average annual 
accumulative temperature (higher than 10 celsius degree) of 2250 celsius degree. 
The major crops are soybean, spring corn and spring wheat. Corn and soybean 
account for more than 90% of total crops in the area.The growing season of study 
area is from beginning of May to end of October. The acreage of the farm is 
76,000 acres, with an average field size of 1,500 acres. 

 
Figure 2 Study area (Shuangshan Farm) and experimental sites 
 
The field campaigns were carried out between 25th, Apr. and 1st, May (before the 
start of the crop growing season) in 2013. Totally 89 sites were selected in 2011 
(Fig. 1). Each site can represent a relative homogeneous area of 30m×30m. All the 
sites are located in cron and soybean planting plots. When more than one sites are 
located in one plot, the average distance between neighboring sites was controlled 
at 300m. Four soil samples were collected in each site, with a total sampled soil 
weight of 24g (6g for each sample) for each site. Soil sampling was performed at 
soil depths of 0-10 and 10–20 cm, the soil sampled at these two depths was mixed 
to test the available nitrogen content of the site. The SAN content were measured 
by Kjeldahl method. The GPS coordinates was recorded at the center of each site. 
 

II. HJ-1 data and its pre-processing 
 

The HJ-1 constellation system, which belongs to Environment and Disaster 
Observing Satellite System of China, consists of two small optical remote sensing 
satellites (HJ-1A and HJ-1B) and a microwave satellite (HJ-1C satellite) (Wang 
2012). The satellites were planned for use in monitoring environment and natural 
disasters. HJ-1A/B satellites were launched successfully in September 2008. The 
onboard imaging systems and infrared cameras provide a global scan every two 



days. HJ-1 satellites combine two identical CCD cameras that observe a broad 
coverage of 360 km with a high spatial resolution of 30 m. The CCD cameras 
have four visible and near-infrared bands, which include B1 (0.430.52 mm), B2 
(0.520.60 mm), B3 (0.630.69 mm), and B4 (0.760.90 mm). 

Cloud-free HJ-1A/B CCD images covering the Hongxing between 15th, April 
and 10th, October in 2010-2013 were gathered from China Centre for Resources 
Satellite Data and Application (CRESDA). The data used are listed in table 1: 

Table 1. Dates of HJ -1 CCD images used in this study. 
DATE (DD/MM/YY) 

2010 2011 2012 
26/07/2011 26/07/2011 26/07/201

 11/08/2011 11/08/2011 11/08/201
 26/08/2011 26/08/2011 26/08/201
 10/09/2011 10/09/2011 10/09/201
 05/08/2011 05/08/2011 05/08/201
 16/08/2011 16/08/2011 16/08/201
 29/08/2011 29/08/2011 29/08/201
 01/09/2011 01/09/2011 01/09/201
 10/09/2011 10/09/2011 10/09/201
 The HJ-1 images were released on the website in the form of multi-bands DN 

(digital number) grid. We converted the digital numbers of images to at-sensor 
reflectance and normalize it to a uniform solar zenith angle (thermal band not 
included). The equation to calculate reflectance is: 

ȡ '1��&0* + M0*ˈȡ
 ȡ�FRV��șV��                                       (1) 

ZKHUH�ȡ�LV�VSHFWUDO�UHIOHFWDQFH�DW�VHQVRU��'1�LV�WKH�GLJLWDO�YDOXH�RI�HDFK�SL[HO��
C0* and M0
�DUH�WKH�JDLQ�DQG�ELDV�RI�FRQYHUVLRQ��ȡ
�LV�the normalized reflectance, 
șV�LV�the solar zenith angle. The gain and bias in the conversion are provided by 
CRESDA (http://www.creada.com). Then the FLAASH model in the ENVI 
software was used during the atmospheric correction procedure. Accurate 
geometric correction was done with ground control points derived from 1:50000 
topographic maps. A final geo-correction error of less than 0.5 pixels was 
achieved.  

 
III. Crop biological yield mapping 

 
Crop yield (Y) was computed by (1), with the above ground biomass 

(BIOMASSAGB) and harvest index (HI). While crop biomass is estimated with 
remote sensing data, HI is required from field observation data analysis. 

 
AGBY BIOMASS HI u                                                               (2) 

 
The accumulation of aboveground biomass is proportional to accumulated 

APAR (Absorbed Photosynthetically Active Radiation) according to the Monteith 
model (Monteith, 1972): 



( ( ) ( ))AGB APAR t tH u¦                                                                (3) 

where AGB is the accumulated aboveground dry biomDVV�LQ�SHULRG�W��İ��J�0--
1) represents the light use efficiency (LUE) and t describes the period over which 
accumulation takes place. APAR can be approximated directly from 
photosynthetically active radiation (PAR) and the fraction of PAR absorbed by 
photosynthetic tissues (FPAR). PAR (0.4-����ȝP��LV�SDUW�RI�WKH�VKRUW�ZDYH�VRODU�
radiation (0.3-���ȝP�� ZKLFK� LV� DEVRUEHG� E\� FKORURSK\OO� IRU� SKRWRV\QWKHVLV� LQ�
plants, and PAR is thus a fraction (0.48 in this study) of incoming solar radiation. 
PAR could be estimated from the simple ratio (SR) by linear functions, and here 
FPAR was calculated as a linear function of SR, following Sellers et al. (1996): 

min max min
min

max min

( ) ( )SR SR FPAR FPARFPAR FPAR
SR SR

� u �
 �

�                                      (4) 

1
1

NIR NDVISR
RED NDVI

�
  

�                                                         (5) 

where NIR and RED are the near-infrared and red reflectance, respectively. 
SR is the value of the simple ratio at a given pixel, SRmin and SRmax are related 
to the vegetation variety (here they correspond to the 5th and 95th percentile of SR 
for all cropland). FPARmin and FPARmax are defined as 0.01 and 0.95, 
respectively. 

/8(�LV�FDOFXODWHG�DV�WKH�SURGXFW�RI�DQ�RSWLPDO�/8(��İ
��DQG�LWV�WHPSHUDWXUH�
and water stressors 

*
1 2( ) ( ) ( ) ( )t T t T t W tH H u u u                                                   (6) 

ZKHUH� İ
� LV� WKH� W\SLFDO�PD[LPXP�/8(� IRU� DERYHJURXQG� ELRPDVV�ZKHQ� WKH�
environmental conditions are optimal. T1, T2, and W are scalars representing 
environmental stressors that reduce LUE under unfavorable conditions (Field et 
al., 1995). T1 represents a physiological reduction of LUE at both very low and 
very high temperatures (higher or lower than an optimal temperature (Topt (ć)), 
defined as mean air temperature during the month of maximum NDVI 
development). T2 reduces LUE as temperatures deviate from 20ć, representing 
constraints beyond physiological compensation at extreme temperatures. W is a 
water condition down-regulator. T1 and T2, are calculated with the following 
formulas (Field et al., 1995). 

2
1 0.0005( 20) 1optT T � � �                                                       (7) 

2
1 1

1 exp{0.2( 10 )} 1 exp{0.3( 10 )}opt mon opt mon

T
T T T T

 u
� � � � � � �                                 (8) 

where Tmon (ć) is the mean monthly air temperature. 
Time series of ET (evpotranspiration) from ETWatch (Xiong et al., 2010) was 

used in estimating water stress in biomass production. 
 



VI. Yield Normalization 
 

The major crops in the study area are maize, wheat and bean. To make the 
yield of different crops comparable, the yield of each crop (namely maize, wheat 
and bean) was normalized to a value between 0 and 1. In this process, firstly we 
use a normal function to fit the PDF (probability density function) of each crop; 
then the average yield of the crop and its standard devaition were derived; at last 
we define a minium and a maximum thresholds to normalize crop yieds. The 
equation for yield normalization is listed below: 

 
yieldnor=(yield-yieldmin)/(yieldmax-yieldmin)                                                  (9) 

 
where yieldnor is the normalized crop yield, yield is pixel value on crop yield 

map, yieldmaxand yieldmin are the predefined maximum and minimum yield 
thresholds, which are computed as the following formulas: 

 
yieldmax=yieldave+2*į                                                            (10) 
yieldmin= yieldave-2*į                                                            (11) 

 
where yieldave is the average crop yield for each crop andį is the standard 

devaition of the yield. 
After crop yield normalization, the maximum normalized yield index (NYI) 

were computed for each pixel along the time series 2010-2012. We assume this 
NYI map can resprenent the NYI at favorable growing conditions (when SAN is 
the dominant limitation for crop yield).  

 
V. Regression analysis 

 
In this paper, the focus is on exploring the feasibility of estimation SAN with 
multi-year remote sensing derived crop yield map. To determine whether these 
remote sensed indicators are sensitive to SAN, correlation coefficients were 
computed with the following formula: 

ݎ = σ (ܴ݅ െ ݅ܰܣܵ)(݁ݒܴܽ െ ݊(݁ݒܽܰܣܵ
݅=1

ඥσ (ܴ݅ െ 2݊(݁ݒܴܽ
݅=1 ඥσ ݅ܰܣܵ) െ 2݊(݁ݒܽܰܣܵ

݅=1
 

                                          (2) 

Where Ri is the remote sensing derived indicators in the image pixel that 
spatially match the ith field observations, Rave is the average of sensing derived 
indicators, SANi is the observed SAN of site i and SANave is their average. 

 
RESULTS AND DISCUSSION 

 
I. Crop yield map 

 
The remote sensing derived crop yield of 2010-2012 were listed in figure 3:  
 



 

 

 
Figure 3. Yield for major crops of Shuangshan (2010-2012) 

Brown, green and cyan colors are used to presnent the yield of wheat, maize 
and soybean. The yield for wheat is between 2400-6200 kg/ha, and that for 
soybean and maize are 1400-3000 kg/ha and 7600-13000 kg/ha. Generally 
speaking, the yield of 2010 is higher than that in 2011 and 2012, this is because a 



more favorable meteorological consition (temperature and precipation) was 
witnessed in 2010. 

 
II. Yield normalization and maximum NYI map 

 
The PDF for yield normalization for wheat, maize and soybean are listed in figure 
4: 

 
(a) wheat 

 
(b) maize 

 
(c) soybean 

 
Figure 4. The PDF for yield normalization for wheat, maize and soybean 
 

After normalization, maximum NYI was cromputed (fiure 5): 



 
Figure 5. The maximum NYI map of Shuangshan 
 

III. SAN estimation model and SAN map 
 

Based on spatial matching, the relationshop between NYI and observed SAN 
was analyzed. Figure 6 quantitative relationship between them.  
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Figure 6. Quantitative relationship between NYI and SAN 
 

Based on the model derived from Figure 6, the SAN map of Shuangshan were 
derived (figure 7): 
 



 
Figure 7. Estimated SAN map of Shuangshan 

 
According to the SAN map derived in this study, the SAN in Shuanshan farm 

varied from 120 to 260 mg/kg. Fields on the west tends to have a higher SAN 
(above 210) than fields on the east (lower than 150). The SAN not only varies 
between fields, the in-fields variation of SAN could also be as high as 100 mg/kg. 

 
DISCUSSION AND CONCLUSION 

 
The method and analysis presented in this paper is intended to respond to the 

increasing needs in optimizing field management with earth observation 
technology, namely fertilization management specifically. The discussion of this 
paper will focus on the advantage, disadvantage and uncertainties of the study, as 
well as proposing future research focus in this field. 

Advantage: The proposed approach exploits inherent relationship between 
crop yield and field soil nutrition status, it can provide new information on soil 
that cannot be extracted by field work using traditional soil sampling or point 
spectrometry measurements. Compare to common method that estimating soil 
nutrition status with satellite image from its spectral characteriscs, the method put 
forward in this study can map soil status at a certain soil depth and no hyper-
spectral data is required. 

Limitation: Along with these advantages, this approach also has inherent 
limitations. The method only works when SAN is the dominant limiting factor of 
crop yield. But in real crop growing conditions, factors like drought, topographty 
and other meteorological conditions all have influence on crop yield. The effect of 
SAN on crop yield is hard to be distinguished from that of other factors. Although 
the computation of maximum NYI may alleviate the influence of other factor, the 
influence of continuous unfavorable growing conditions still can not be removed. 

Uncertainties: Crop yield estimation is implemented in this research to 
estimate SAN. The performance of yield estimation model is not analyzed in this 
paper, yet the inaccuracy in yield mapping will certainly induce uncertainty in the 
result. 
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