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ABSTRACT 
For the sensing of crop conditions, a number of platforms, varying from 
proximal (tractor-mounted) ones to satellites orbiting the Earth, are available. 
Access to unmanned aerial vehicles (UAVs), or drones, that are able to carry 
sensors payloads providing data at a very high spatial resolution has recently 
aroused a great deal of interest. This study compares performance between UAV 
imagery acquired in a corn nitrogen (N) response trial set-up. The nitrogen (N) 
response trial consisted of two fields (one loamy, one clayey) sowed on two 
different dates at Agriculture and Agri -Food Canada’s L’Acadie Experimental 
Farm, in the Montérégie region of Quebec, Canada. Eight unreplicated N 
treatment rates (from 0 to 200 kg N ha-1) were applied, with or without 
irrigation, to create a gradient of crop development stages and N status at the 
time of imagery acquisition. Multispectral imagery from the Pléiades-1B 
satellite was acquired on 8 July 2013. Then, 4 d later, a multispectral image was 
acquired with a UAV responder. On the day of UAV imagery acquisition, a 
ground-truthing campaign was performed. Leaf area index (LAI), 
chlorophyllmeter (with a SPAD chlorophyll meter), and destructive biomass 
data were measured at 96 points. The Soil-Adjusted Vegetation Index (SAVI) 
was calculated for both the Pléiades-1B and the UAV images and was matched 
to the ground-truthing database to perform the statistical comparisons. 
Relationships were established between the  SAVI and the LAI, SPAD 
chlorophyll and biomass biophysical descriptors measured on the ground for 
both the satellite and the UAV imagery. The SAVI acquired from a UAV was 
better correlated than imagery from a satellite to fresh biomass (R2 = 0.93 for the 
UAV vs 0.88 for the satellite) and to LAI (R2 = 0.91 for the UAV vs 0.74 for the 
satellite). Image segmentation on the UAV imagery improved R2 by only 0.02 to 
0.03 points. The accurate remote estimation of chlorophyll status from a corn crop 
at an early growth stage remains a challenge, even with pure leaf endmembers 
resulting from image segmentation, because of relatively low and more variable 
LAI values at that stage than at a later ones. The finer spatial resolution provided 
by the UAV allowed the observation of drainage effects on the vegetation, which 
were not clearly visible in the satellite image. 
 



 

 
Keywords: Unmanned aerial vehicle, UAV, drone, unmanned aerial system, 
UAS, satellite, Pléiades-1, spatial resolution, nitrogen, chlorophyll, leaf area 
index, biomass, vegetation index, multispectral images 
 
 

INTRODUCTION 
 
     The recent introduction of unmanned aerial vehicle (UAV) platforms offers an 
additional option for crop sensing. Their interest lies in fast deployment, very high 
spatial resolution and the opportunity to customize the imaging payload to suit the 
spectral requirements of the mission. Zarco-Tejada et al. (2012) were able to 
measure chlorophyll fluorescence and other biophysical descriptors of vegetation 
from a UAV carrying a thermal and a hyperspectral detector. Rey et al. (2013) 
reported that multispectral UAV imagery correlated to vine vigor and yield 
parameters and that the images required very complex processing to be useful for 
quantitative measurement. Smaller pixel sizes offer a very detailed visual 
description of the field. They make it possible to determine the precise location of 
rows and plants at early stages in the growing season, a time when it is still 
possible to act with management practices or corrective measures in tall crops 
such as corn. Hunt et al. (2013) summarized the problems and opportunities 
related to UAV sensing for quantitative measurements in crop assessment. Those 
authors suggested that downscaling by averaging pixel values does not take 
advantage of the existence of pure endmembers of leaves, soil and shadow in a 
very high-spatial-resolution image. Indeed, smaller pixel sizes offer the 
opportunity to apply segmentation procedures that purify spectral information 
from vegetation and separate it from  background information. Zhang and Kovacs 
(2012) produced a detailed review of UAV use and its potential and limitations in 
precision agriculture. Laliberte et al. (2011) compared the spectral response of 
vegetation and soil from the WorldView-2 satellite and a multispectral MCA-6 
camera (Tetracam, Inc. Chatsworth, CA) on board a UAV. The images were 
acquired 2 wk apart. The correlation of reflectance measurements ranged from R2 
values of 0.57 to 0.97 but tended to be higher for vegetation targets.  
     Although a certain degree of correspondence can be expected between UAV 
and satellite imagery, their respective performance for precision farming has 
never been directly assessed on images at close acquisition dates (4 d apart). The 
objective of this study was to examine if the higher spatial resolution (±25 cm) 
provided by a UAV offers a significant advantage over high resolution satellite 
imagery (2-m resolution) for the characterization of vegetation indices and 
biophysical descriptors (biomass, leaf area index [LAI], and chlorophyll) of a 
corn crop at an early stage.  
 
 



 

MATERIALS AND METHODS 
 

Field site and experimental design 
 
     The experiment was conducted in the summer of 2013 on corn (Zea mays L.). 
The fields, named as 56-64 and 58-66, were located at the L’Acadie Experimental 
Farm, Quebec, Canada (�����ƍ�����Ǝ1�������ƍ�����Ǝ:). The fields were 
characterized mainly by loams and clay loams of the Laprairie and Sabrevoix 
series, and by clay loams of the Bearbrook and St.Laurent series (Lamontagne et 
al., 2001). These series are in the Typic Humaquepts subgroup. The fields were 
relatively flat, and the apparent soil electrical conductivity (ECa) measurements 
showed moderate variability from 3 to 10 10 mS mí1 at shallow depth, as 
measured with a VERIS model 3100 sensor cart system (Veris Technologies, 
Salina, KS).  
 
Table 1. Description of the experimental design 
 
 Field 56-64 Field 58-66 
Dominant soil texture clay-loam loam 
date of soil apparent 
electrical conductivity 18 October 2009 

block dimension (m) 50 × 15 
plot dimension (m) 6 × 15 
corn variety Pioneer 38M58 (2800 CHU†) 
sowing number# 1 2 1 2 
date of sowing  30 Ap. 5 June 30 Ap. 5 June 
irrigations Yes No Yes No Yes No Yes No 
numbers of plots 8 8 8 8 8 8 8 8 
In-season N app. (side-
dress at V5-6‡) 18 June 9 July 18 June 9 July 

date of irrigation #1 21 
June n/a 21 

June n/a 21 
June n/a 21 

June n/a 

date of irrigation #2 5 July n/a 5 
July n/a 5 

July n/a 5 July n/a 

date of irrigation #3 15 
July n/a 15 

July n/a 15 
July n/a 15 

July n/a 

date of satellite imagery 
acquisition 8 July 

date of UAV imagery 
acquisition 

11 July 

† CHU, crop heat units. 
‡Growth stage as defined by Ritchie et al. (1996). 
 



 

 
Figure 1. Experimental design and ground-truthing sampling locations 
(example for Field 56-64). 
 
     Eight in-season nitrogen (N)-rate treatments plots (including no nitrogen or 
Nil-N, and non-limiting N fertilizer applications or Rich-N) were randomized 
within four blocks for each of the two dominant soil textures. At sowing, all plots 
except the Nil-N one received 40 kg N haí1 banded (starter-N). The Rich-N plots 
also received 200 kg N haí1 broadcast before sowing. At the time of in-season N 
application (Table 1), the N-rate treatments were 40, 80, 120, 160 and 180 kg N 
haí1, on top of the starter-N application. Figure 1 shows how the treatments were 
laid out in Field 58-66. The fields were under conventional tillage with a row 
spacing of 0.75 m. One irrigation sprinkler line was established transversally in 
the middle of two of the four blocks (Fig. 1). This irrigation set-up was expected 
to produce a spatially variable water supply as the amount of water normally 
decreases as the distance from the sprinkler heads increases. The actual spatial 
distribution of the applied irrigation water was measured by a network of 
pluviometers corresponding to the sampling points. Table 1 shows all the details 
and field characteristics. 
 

Ground truthing 
 
     Two ground-truthing campaigns were conducted during the season. The first 
campaign took place during satellite image acquisition (Table 1) at side-dressing, 
covering only the Sowing 2 (late sowing) block area (total of 32 points). The 
second campaign was aligned with UAV image acquisition and covered all the 



 

plots (total of 64 points). These points were also used to analyse the satellite 
image since only 4 d separated the two campaigns.  
     Each sampling point was randomly selected and positioned with a RTK (real-
time kinematic) GPS receiver (SXBlue-IIIL; Geneq Inc., Montreal, QC, Canada) 
that is accurate to 5 cm). Figure 1 shows the distribution of the ground-truthing 
sampling points in Field 58-66 (see the grey rectangle within each plot, 
corresponding at the exact surface of measurement). Some plots had two sampling 
points (data not shown); therefore, a radius of at least 2 m was left between the 
two sampling points as well as between plot boundaries. Corresponding LAI 
measurements were take with a LAI-2200 instrument (Li-Cor inc., Lincoln, NE), 
and chlorophyll levels were estimated using a SPAD-502 chlorophyllmeter 
(Konica Minolta Camera Co., Ltd., Osaka, Japan). Fresh biomass was sampled, 
weighed and used to correlate with remote sensing parameters. Lastly, a database 
was created to superpose all the measurement values as the pixel values extracted 
from the satellite and the UAV imagery. 
 

Image acquisition 
 

Mini-MCA 
 
     A multispectral camera (Mini-MCA, Tetracam inc., Chatsworth, CA) was used 
to acquire images at very high spatial resolution (<25 cm). The camera provided 
six spectral bands (450, 550, 650, 700, 740 and 850 nm) from the blue to the near-
infrared (NIR). The charge-coupled device counted 1.3 megapixels with an 8bit 
unsigned radiometric precision. Figure 2 shows the filter sensitivity for each of 
the six bands (the sensitivity was carefully chosen in order to reduce the influence 
of the atmospheric gases transmittance). The camera was carried by a responder-
type UAV (http://ingrobotic.com/aircrafts/rotorcraft-responder/) operated by ING 
Robotic Aviation (Sherbrooke, QC, Canada) (Fig. 3). The campaign was 
performed on 11 July (Table 1) at the end of the afternoon (between 3 and 4 PM) 
under a clear sky with winds less than 15 km hí1, at an altitude of around 244 m. 
White panels (0.50 × 0.50 m) had previously been installed on the ground and 
GPS-located for image georeferencing. The responder has a 25-min flying time. 
Its payload can reach 12 kg and the radio line of sight from the operator is 10 km. 
     To transform the pixel numeric value into a ground reflectance value, two 
radiometric corrections were applied, as follows. (1) Since it was necessary to 
reduce the “vignetting” effect, which was high in this case owing to the UAV’s 
low altitudes of acquisition (150 to 250 m), a “geometric-optic” model based on 
the relationship DNcorr = DNori . (cosș)4 was used, where DNcorr is the new digital 
numbers from the corrected image, DNori is the digital numbers of the uncorrected 
image, and ș is the viewing angle calculated for each pixel of the image. (2) 
Surface reflectance was estimated, as required when multispectral data are used to 
estimate biophysical parameters. The image corrected for vignetting was 
transformed into ground reflectances using the simple model Refl = a DNcorr + b. 
The parameters a and b were estimated by considering samples of pixels in 
surfaces (trees, bare soil, gravel) of known reflectances found in the ASTER 
spectral library. All the operations were performed in MATLAB (MathWorks, 
Natick, MA) and Geomatica (PCI Geomatics, Richmond Hill, ON, Canada). 

http://ingrobotic.com/aircrafts/rotorcraft-responder/


 

 

 
Figure 2.  Mini-MCA camera configuration and sensitivity of the bandpass 
filters for each band versus atmospheric transmittance and the standard 
vegetation reflectance curve.  
 
 

 
Figure 3. Picture of the responder and its payload. 
 
Pléiades-1B 
 
     A satellite image from the Pléiades-1B sensor (Astrium, Toulouse, France) 
was acquired on 8 July 2013 at around 11 AM. The image covered more than 100 
km2 and was considered to be high quality with 0% cloud cover. The image 
presented panchromatic features (0.5 m; 470 to 830 nm) and multispectral 
features (2 m, R+G+B+NIR; 430 to 940 nm). Ground reflectance was estimated 
from the Pléiades-1B images using REFLECT radiative transfer model (Bouroubi 



 

et al., 2010) in three steps: (1) sensor calibration, where apparent radiance (Lsat) 
was calculated from digital numbers (DN) using calibration coefficients given in 
the auxiliary files; (2) calculation of apparent reflectance (ȡsat) by dividing Lsat by 
the radiance of a Lambertian target with unit reflectance given by (E0�FRVșs��ʌ��
where E0 is the solar radiation at the top of the atmosphere and șs the solar zenith 
angle; and (3) calculation of ground reflectance using the formula ȡG = T 
ȡsat + Latm, where the atmospheric parameters T (transmittance) and Latm (path 
radiance) are calculated using the routines of the 6S atmospheric code that 
estimates gaseous and aerosol scattering and gaseous absorption from 
meteorological inputs (mainly aerosol optical depth and water vapor content).  
 
 

Calculation of the vegetation indices 
 
     Three vegetation indices were used for this study. The Soil-Adjusted 
Vegetation Index (SAVI), (Huete, 1988) and the Optimized Soil-Adjusted 
Vegetation Index (OSAVI), (Rondeaux et al., 1996) were selected because of 
their ease of use in the context of operational observations on agricultural 
landscapes and because they reduce the effect of soil (Haboudane et al., 2002). 
The third vegetation index used in this study was the ratio of the Transformed 
Chlorophyll Absorption in Reflectance Index (TCARI) to the OSAVI (Haboudane 
et al., 2002) which was shown to remove LAI influence on chlorophyll estimates. 
All the vegetation indices were calculated, using Geomatica, from the reflectance 
values of the imagery presented in this paper. Mapping and merging with the 
sampling point database were done with the ArcGIS software suite (ESRI, 
Redlands, CA).  
 

Creation of an accurate database 
 
     The small size of the total scene and the flight altitude obviated the need to 
mosaic the images from the Mini-MCA/UAV system. The aim of the campaign 
was to cover all experimental units in a single soil type in one shot. The two 
resulting images were post-treated separately.  
     To compare the images with the ground-truthing data, an average pixel value 
was calculated from all pixels contained in the 1.5 × 1.0 m sampling area 
(Fig. 4A). The results were integrated in the database. For the Pléiades-1B image 
(2 m resolution), an average of the pixels involved in the sampling area was 
calculated. 
 

RESULTS AND DISCUSSION 
 
     There was a highly significant linear relationship (R2 = 0.88) between the 
SAVI estimates from the Pléiades-1B satellite and those from the Mini-MCA 
camera (Fig. 5), within the range of correlation reported by Laliberte et al. (2011). 
SAVI estimates were generally higher with the Mini-MCA possibly owing to the 
later acquisition with that device (4 additional days of growth) and to the fact that 
pixels in the Pléiades-1B image contain more soil that Mini-MCA pixels. 
 



 

 
Figure 4. Visual representation of the pixels contained in the ground 
sampling zone forthe Mini-MCA image (A) and the Pléiades-1 image (B). 
 
 

 
 
Figure 5. Relationship between the Soil-Adjusted Vegetation Index (SAVI) 
from satellite imagery (Pléiades-1B) and the SAVI from from the unmanned 
aerial vehicle imagery (Mini-MCA). 
 
     Figure 6 shows a representation of the plots in the Field 56-64 as seen from the 
Mini-MCA imagery. Differences in the SAVI values due to the sowing date are 
clearly apparent in both images. A line with higher SAVI values is visible 
particularly in the middle and on the north and south borders of Sowing 2, in the 



 

upper (64, irrigated) and the lower (56, not irrigated) parts of the field, 
respectively. These linear patterns were traced back to the presence of tile drains 
and were much more evident in the Mini-MCA than in the Pléiades-1B imagery 
(not shown) owing to the higher spatial resolution of the former. It is apparent on 
the Fig. 6 that the presence of tile drains had a favorable effect on the crop at an 
early stage of growth, probably by removing the excess water, particularly in the 
upper field (64) characterized by fine soil textures. Lelong et al. (2008) showed 
how the fine spatial resolution was able to locate a transition pattern between two 
N fertilization treatments sprayed on a wheat trial. 
 

 
 
Figure 6. Representation of the plots in the Field 56-64 showing the 
variability in the SAVI values and the tile drainage effect. 
 
     Figure 7 presents the results of the Mini-MCA image segmentation. Pixels 
representing soil or shadow were masked in order to extract only those containing 
pure vegetation spectral characteristics. This segmentation was done to examine 
the potential benefit of imagery at a high spectral resolution in comparison with 
imagery at a coarser (satellite-based) resolution for obtaining biophysical 
descriptors that are better correlated to ground-truthing data. 



 

 
Figure 7. Result of image segmentation showing the selection of pure 
endmembers of leaves. N, nitrogen; UAV, unmanned aerial vehicle. 
 
     Figure 8 shows the relationships between fresh biomass and the SAVI from 
Pléiades-1B and from the Mini-MCA, without or with image segmentation. The 
SAVI from Pléiades-1B showed a steeper relationship with fresh biomass, 
ranging from about 0.15 to 0.5. The SAVI from the Mini-MCA was better spread 
out than the SAVI from Pléiades-1B between low and high SAVI values. The 
SAVI from the Mini-MCA ranged from about 0.2 to 0.7 without segmentation, 
and from about 0.27 to 0.67 with segmentation. 
 

 
Figure 8. Relationships between fresh biomass and the the Soil-Adjusted 
Vegetation Index (SAVI) from Pléiades-1B (A), from the Mini-MCA without 
image segmentation (B), and from the Mini-MCA after image segmentation 
(C). 
 
     Hunt et al. (2010) reported a linear relationship between green NDVI and LAI 
(R2 = 0.85 for 0 < LAI < 2.7). Figure 9 shows the exponential relationships 



 

between LAI and SAVI from Pléiades-1B or from Mini-MCA, without or with 
image segmentation. As for fresh biomass (Fig. 8), SAVI from Pléiades-1B 
showed a steeper relationship with LAI and a narrower range than the SAVI from 
the Mini-MCA which was better spread than Pléiades-1B between low and high 
SAVI values, particularly without segmentation. 
 
 

 
 
Figure 9. Relationships between leaf area index (LAI) and the Soil-Adjusted 
Vegetation Index (SAVI)  from Pléiades-1B (A), from the Mini-MCA without 
image segmentation (B), and from the Mini-MCA after image segmentation 
(C). 
 
     The evaluation of chlorophyll status was limited to the Mini-MCA imagery 
since Pléiades-1B did not offer the required waveband in the red edge for 
TCARI/OSAVI estimation (Fig. 10). Berni et al. (2004) reported at least as good 
estimates from a low-cost UAV system carrying a thermal and multispectral 
imaging payload as from traditional manned airborne sensors for biophysical 
parameters in an agricultural context. The greater scatter of points at a low SPAD 
chlorophyll value was consistent with the greater influence of variable LAI in this 
context as found by Haboudane et al. (2002). Indeed, the relationship between 
SPAD chlorophyll and the TCARI/OSAVI was less scattered for Sowing 1 
(higher and more uniform LAI) than Sowing 2 (lower and less uniform LAI). 
Image segmentation (Fig. 10B) slightly improved the relationship between SPAD 
chlorophyll and the TCARI/OSAVI. Berni et al. (2004) estimated chlorophyll 
a + b concentration from the TCARI/OSAVI index with a R2 of 0.89 as compared 
with field measurements, after the extraction of pure tree crown regions using 
Mahalanobis supervised classification. Those authors concluded in favor of the 
capabilities of the multispectral MCA-6 camera onboard a UAV platform for 
estimating chlorophyll content at the crown level. Based on the present results, 
however, the accurate remote estimation of chlorophyll status from a corn crop at 
an early growth stage remains a challenge, even with pure leaf endmembers 
resulting from image segmentation, because of relatively low and more variable 
LAI values at that stage than at later ones. 
 



 

 
 
Figure 10. Relationships between SPAD chlorophyll and the TCARI/OSAVI 
(ratio of the Transformed Chlorophyll Absorption in Reflectance Index to 
the Optimized Soil-Adjusted Vegetation Index) from the Mini-MCA without 
image segmentation (A) and after image segmentation (B). It was not possible 
to calculate the TCARI/OSAVI from the Pleiades-1B image, owing to a 
missing waveband in the red edge. 
 
 
     In summary, remote N status assessment in corn is normally achieved from a 
vegetation index or the estimation of biophysical parameters such as biomass, 
LAI, and chlorophyll. This study showed that the SAVI acquired from a UAV 
was better correlated than imagery from a satellite to fresh biomass (R2 = 0.93 for 
the UAV vs. R2 = 0.88 for the satellite) and LAI (R2 = 0.91 for the UAV vs. 
R2 = 0.74 for the satellite). Image segmentation on the UAV imagery improved R2 
by only 0.02 to 0.03 points. Working from pure endmembers of leaves did not 
appear to drastically improve the relationships to biophysical parameters as 
suggested by Hunt et al. (2013). Image segmentation tended to narrow the 
dynamic range of the SAVI describing the relationships to biophysical 
descriptors. It also appears that the accurate remote estimation of chlorophyll 
status from a corn crop at an early growth stage remains a challenge, even with 
pure leaf endmembers resulting from image segmentation, because of relatively 
low and more variable LAI values at that stage than at later ones. The finer spatial 
resolution provided by the UAV allowed the observation of drainage effects on 
the vegetation which were not clearly visible in the satellite image. The UAV 
images required however additional care for radiometric corrections (vignetting 
reduction and growth targets with known references). 
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