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Abstract. The agricultural research sector is working to develop new technologies and management 
knowledge to sustainably increase food productivity, to ensure global food security and decrease 
poverty. Wheat is one of the most important crops into this scenario, being among the three most 
important cereal commodities produced worldwide. Precision Agriculture (PA) and specially Remote 
Sensing (RS) technologies have become in the recent years more affordable which has improved the 
availability and flexibility of acquiring images from both manned and unmanned vehicles. For this 
reason, CIMMYT’s research agenda aims at developing new crop management practices using 
PA/RS technologies. As part of these efforts, a wheat experiment was established on a farmer’s field 
in the Yaqui Valley, northwestern Mexico, sown in January and harvested in May 2014. This work 
focuses on the evaluation of narrow-band physiological spectral indices to estimate wheat grain 
protein content (GPC). Also to determine the optimum normalized difference spectral index (NDSI) 
and ratio spectral index (RSI), aiming to better explore the use of the hyperspectral signal on the 
assessment of GPC.  A weekly/biweekly flight campaign took place from GS31 stage (stem 
elongation) until harvest, totaling 10 airborne images acquired at high resolution with a micro-
hyperspectral imaging sensor ranging from 400-850 nm region, flying at 1200 m above ground 
resulting in a ground resolution of 1 m. Manual grain sampling took place just before harvest through 
a targeted grid of 14 sampling points on block A and a half regular / half stratified grid of 50 sampling 
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points each on block B. Under the conditions of this study, characterized by low spatial variability 
within the commercial field, the results obtained yielded coefficients of determination among 
vegetation indices (VIs) and GPC ranging from non-significant to 0.14 across all images. Complete 
two by two combinations of wavelengths approach applied into NDSI formula performed better on 
assessing GPC than VIs from the literature. However, the spectral region beyond the visible and 
near-infrared might be needed to assess GPC at field level. On the other hand, this approach 
allowed visualizing the spectral range/wavelengths that predominantly better explained GPC across 
the crop cycle than ordinary VIs.  
 
Keywords. narrow-band indices, normalized difference spectral index, ratio spectral index, spatial-
temporal variability  
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Introduction 
Wheat is one of the three most important cereal commodities produced worldwide, after maize and 
rice. It is also one of the most important crops in Mexico, grown on more than 500,000 ha in 2012, 
with average yields of 3.2 Mt (FAO, 2015). Crop management is key to profitable and sustainable 
wheat production, which must be able to address with soil and climate spatial and temporal 
variability, aiming to improve grain yield and quality. 

It is well known that there is spatial variability of yield and grain quality within a crop field due to soil 
spatial variability, weather conditions and crop management (Reyns et al., 2000; Stewart et al., 2002; 
Delin, 2004; Diacono et al., 2012). Although RS technologies show great potential to detect such 
variabilities within a crop cycle, there are only a few studies relating grain protein content with 
reflected electromagnetic radiation captured in satellite imagery (Basnet et al., 2003; Wright et al., 
2004; Zhao et al., 2005; Feng et al., 2014; Wang et al., 2014) or low-altitude platform and proximal 
sensing (Hansen et al., 2002; Wang et al., 2004; Wright et al., 2004; Jensen et al., 2007; Li-Hong et 
al., 2007). The majority of these studies used just multispectral data. 

RS technologies have become less expensive in recent years, which have improved the flexibility of 
acquiring images. The most commonly used VI is the Normalized Difference Vegetation Index 
(NDVI). It has been correlated with crop yield and quality (Mullan, 2012 and references therein). 
Although the results presented by those authors were considered useful, it is well documented that 
NDVI saturates at high leaf area index (LAI) values, and is also affected by other factors such as soil 
background, canopy shadows, illumination, atmospheric conditions and variation in leaf chlorophyll 
concentration (Zarco-Tejada et al., 2005a).  

New methods that use hyperspectral remote sensing allow for the calculation of several other 
narrow-band VIs, suggested as potentially useful for PA (Willis et al., 1999; Zarco-Tejada et al., 
2005a). Besides the VIs currently presented in the literature, hyperspectral signals can be used to 
calculate complete combinations of all available wavelengths using generic formulas, e.g. normalized 
difference spectral indices (NDSI) and ratio spectral indices (RSI), (Inoue et al., 2008a, 2008b; 
Stagakis et al., 2010; Inoue et al., 2012; Stratoulias et al., 2015). The present study examines the 
correlation between grain protein content (GPC) and narrow-band physiological spectral indices 
measured during the crop cycle in a wheat field and attempts to identify the optimum NDSIs and 
RSIs for the assessment of GPC. This approach allows to determine the consistency of VIs across a 
crop cycle, and shows possibilities on the prediction of potential areas of grain protein and also 
exploring possible different VIs across the spectrum.  

Material and Methods  

Field site and data collection 
The experiment was carried out on a wheat field in the Yaqui Valley near Ciudad Obregón, (Sonora), 
in north-western Mexico (27°23'43.83"N and 109°55'0.90"W), during the 2014 wheat crop cycle. It 
consisted of two furrow irrigated blocks (called here ‘A’ and ‘B’) of 40 ha each, which were sown with 
the variety Cirno-C2008 in January 2014 and harvested at the end of May. 

A weekly/biweekly flight campaign took place from GS31 stage (Zadoks et al., 1974) on 14th 
February until prior to harvest (07th May), resulting in 10 airborne images. They were acquired with a 
micro-hyperspectral imaging sensor (400-850 nm spectral region) flying at 1200 m above ground in a 
manned airplane, yielding a ground resolution of 1 m. 

The micro-hyperspectral sensor was radiometrically calibrated in the laboratory using derived 
coefficients with a calibrated uniform light source (integrating sphere, CSTM-USS-2000C Uniform 
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Source System, LabSphere, NH, USA) at four levels of illumination and six integration times. 
Hyperspectral imagery was atmospherically corrected using the total incoming irradiance at 1 nm 
intervals simulated with the SMARTS model developed by the National Renewable Energy 
Laboratory, US Department of Energy (Gueymard, 1995, 2005) using aerosol optical depth 
measured at 550 nm with a Micro-Tops II sun photometer (Solar LIGHT Co., Philadelphia, PA, USA) 
collected in the study areas at the time of the flights. SMARTS computes clear sky spectral 
irradiance, including direct beam, circumsolar, hemispherical diffuse, and total on a tilted or 
horizontal plane for specified atmospheric conditions. The algorithms were developed to match the 
output from the MODTRAN complex band models within 2%, using aerosol optical depth as input. 
The spectral resolution is 0.5 nm for the 280–400 nm region, 1 nm for the 400–1750 nm spectral 
regions. This radiative transfer model has been previously used in other studies to perform the 
atmospheric correction of narrow-band multispectral imagery. 

Manual grain sampling (Pask et al., 2012) took place just before harvest using a half regular / half 
stratified grid of 50 sampling points each in Block B (100 points in total), where 10% of the regular 
grid points were re-allocated in shorter distances than the original grid for a better variogram fitting. 
Each sampling point was based on 2 m2 frame centered on the point geocoordinates, where all 
wheat plants were harvested, threshed and a grain sub-sample was taken for laboratory quality 
analysis. In Block A, there were 14 sampling points, which were selected based on a simple 
inspection of the soil apparent electrical conductivity (ECa) map (Rodrigues Jr. el al, 2015), so that 
they covered the full range of variation of ECa.  

Data analysis 
The grain protein content (GPC) data from Block B was interpolated onto 3 m grid (pixels of 9 m2) 
using global block kriging, fitting the best global variogram according to the spatial variability of the 
data. The purpose of GPC mapping is to visualize the within-field spatial variability. Map analysis and 
display were done using the ArcGIS software suite (v10.1; ESRI, Redlands, USA). 

As a first step, the hyperspectral signal of each image was resampled into 7.5nm bandwidth to 
decrease noise effect, resulting in 58 wavelengths which were used for the subsequent analyses. 
Reflectance of the highest and lowest grain protein sampling point from each hyperspectral image 
were extracted and plotted. Afterwards, 41 different VIs ranging from chlorophyll, structural, red edge 
ratios and RGB indices (NDVI, RDVI, EVI, OSAVI, SR, MSR MTV1, MTV2, MCARI1, MCARI2 - 
Structural Indices; TVI, MCARI, TCARI, TCARI/OSAVI, MCARI/OSAVI, GM1, GM2, PSSRa, PSSRb, 
PSSRc, PSNDc - Chlorophyll Indices; ZMs - red edge ratios; Red, Green – RGB ratios; BG1, BG2, 
CAR, PRI515, PRI, PRIn, PRI*CI, PSRI, RARS, RNIR*CRI550, RNIR*CRI700, SIPI, VOG; (Zarco-
Tejada et al., 2001, 2005a, 2005b, 2013 and references therein) were calculated using the necessary 
wavelengths (400-850 nm) from each hyperspectral image. These VIs were chosen based on their 
structural information as well as on their relationships with chlorophyll. Both, canopy structure and its 
greenness are indicators of the N-status of the plants.  

The spectral information was extracted from each image using the point sampling location from both 
blocks (n=114). The extraction was done taking the average of a 3x3 window (9 m2) around each 
sampling point. Linear regressions were calculated between the VIs and the GPC (p≤0.05). The 
coefficients of determination (R2) were ordered into a decreased direction, aiming to identify the 
variables that showed higher correlations with GPC at each crop stage.  

Afterwards, we applied two types of generic formulas aiming to generate spectral indices (SI) with a 
complete two by two combinations of spectral wavelengths, the ratio spectral index (RSI) and the 
normalized difference spectral index (NDSI). The RSI and NDSI are defined as: 

 

𝑅𝑅𝑅(𝑖, 𝑗) = 𝑅𝑖
𝑅𝑗

 ; 𝑁𝑁𝑁𝑁(𝑖, 𝑗) =  𝑅𝑖−𝑅𝑗
𝑅𝑖+𝑅𝑗

 

where Ri and Rj are the reflectance for wavelengths i and j respectively. Representation of RSI and 
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NDSI are the PSSRa (Blackburn, 1998) and NDVI (Rouse et al., 1974). Both use near-infrared and 
red wavelengths. Spectral indices using the complete two by two combinations of the hyperspectral 
signal were generated applying the RSI and NDSI formulas, similar to studies from Inoue et al., 
(2008a, 2008b); Stagakis et al., (2010); Inoue et al., (2012); Stratoulias et al., (2015). 

Furthermore, regression analyses were done using RSI and NDSI indices as predictors for GPC. 
Maps of coefficient of determination (R2) between these SI and GPC were generated to provide 
inclusive information of the optimum pair of wavelengths to assess GPC along the crop cycle (Inoue 
et al., 2008a, 2008b). 

Results and Discussion 
Grain protein content showed a distribution with mean and median values close to each other, 
reflecting broadly symmetrical (normal) distribution (Fig. 1) although with a high value of kurtosis.  

 

Maximum 14.96 

3º Quartile 12.56 

Median 12.25 

2º Quartile 12.03 

Minimum 10.87 

Mean 12.32 

Variance 0.26 

Skewness 1.25 

Kurtosis 5.67 

CV 4.15 
Figure 1 – Descriptive statistics for grain protein content (GPC - %). 

 
Through the GPC mapping (Fig. 2) it is possible to visualize the within field spatial variability, which 
ranged from 10.8 to 14.9 %. The threshold of 12.5% had been chosen based on the farmer’s 
recommendation. The highest and lowest GPC were identified from the protein map and were 
afterwards used as reference for extracting the reflectance from the images during the crop cycle.  
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Figure 2 – Protein map. 

 
The reflectance profile (Fig. 3a) from the highest (dashed lines) and lowest (full lines) grain protein 
region followed similar spectral behavior from 400 to 770 nm, with exception of the image from 25 
April 2014 (around grain filling stage) which showed some difference in reflectance in the red region 
(around 680 nm) – more evident on Fig. 3b. At 840 nm (near infrared, NIR), it permitted to see some 
differences in the reflectance for the highest and lowest grain protein region. 

The dark red dashed and full lines (14 Feb) represent the GS31 stage, which is an early stage for 
wheat where nutrient stress diagnosis may already be made. The darker green and pink (dashed and 
full) lines are from the beginning and end of anthesis, representing the peak of vegetation. At the 
early growth stage (GS31, 14 Feb – dark red lines), a small reflectance difference in the NIR region 
is detectable, the difference increases up to February 27, decreasing gradually until it reached the 
beginning of anthesis and then had a high difference again at the end of anthesis (07 April - pink 
lines, Fig. 3b). 
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a  b 
Figure 3 – Reflectance profile (a) and delta (b) from the highest and lowest GPC across crop cycle. 

 
Zarco-Tejada et al. (2005a) found similar reflectance behavior for low and high growth areas of 
cotton. In the case of wheat, the best time to diagnose grain protein is around heading/anthesis stage 
as it corresponds to the time to increase grain protein through nitrogen management (Fischer et al., 
1993). Therefore, identifying differences in reflectance at heading/anthesis time opens the possibility 
for nitrogen stress diagnosis while there is still time to raise grain protein through crop management. 

Table 1 shows the best 10 R2 for all images. Across the images, the R2 ranged from non-significant 
to 0.14 (TVI from 27 February), changing the top VIs correlated to GPC across crop cycle, e.g. G in 
the first image (0.07), SR in the second (0.04), TVI in the third (0.14), and so on. Although specific VI 
with higher R2 changed along the crop cycle, it is possible to claim the image date had bigger effect 
on describing GPC than the VIs per say. This affirmation is based on the range variation of top 10 R2 
within the same image, which did not vary much (e.g. 14 February – from 0.06-0.07).   

Grain protein content is a function of the conversion of plant nitrogen content into protein (further 
reading in Mariotti et al. 2008), which could make us expect that leaf nitrogen concentration 
estimated through RS techniques may be able to partially explain grain protein content variation 
(Feng et al., 2014). Few studies reported the potential use of individual wavelengths and/or different 
VIs such as PPR (R550-R450/R550+R450), NDVI (R810-R680/R810+R680), RVI (R810/R680), 
GNDVI (R810-R560/R810+R560), GRVI (R810/R560) to describe nitrogen status and GPC (Hansen 
et al., 2002; Wang et al., 2004; Zhao et al., 2005; Li-Hong et al., 2007; Feng et al., 2014; Wang et al., 
2014), all of them using VIs derived basically from green, red and NIR wavelengths into normalized 
and simple ratio formulas. NDVI, for instance, in our study was not part of the top 10 coefficients with 
GPC across the images and growth stages. However, the majority of those studies were carried out 
under controlled conditions, with different levels of nitrogen application. This may explain the rather 
low coefficients of determination observed in this study which was carried out on a farmer’s field 
without treatments, resulting in a low range of variability.  

In a further exploration from the hyperspectral signal, the RSI and NDSI formulas were applied to all 
possible combinations of the wavelengths – extracting the VIs calculated through this step and 
applying regression analysis using them individually as predictor variables for GPC. Since the results 
from the regression analysis using RSI and NDSI showed to be quite similar, just NDSI results are 
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shown here. The coefficient of determination (R2) maps resulting from the regression analysis of the 
NDSI indices versus GPC are shown in Fig. 4.  

Using the contour maps of R2, it is possible to infer which wavelengths performed better when 
assessing GPC, being able to compare with R2 from Table 1. The highest R2 across the crop cycle 
were obtained in the images from 27 Feb – around booting stage (0.20 – R700, R574), 28 March - 
beginning of anthesis (0.18 – R515, R479) and 07 May 2014 - around ripening stage (0.21 – R707, 
R523). These values can be compared with the highest coefficients of VIs versus GPC from the 
same images (Table 1), with an R2 of 0.14 for TVI (27 Feb), 0.03 for MCARI/OSAVI (28 Mar) and 
0.11 for RARS (07 May), with an improvement on assessing GPC by NDSIs of up to 0.15 R2 units. 
Although the complete two by two combinations of wavelengths improved the assessment to GPC, 
visible near-infrared (VNIR) may not be enough to assess GPC at field level 

Through the contour maps it is also possible to visualize the wavelength region where R2 were 
predominantly high, such as from 574 to 700nm on Ri and 400 to 574nm on Rj from 27 Feb – booting 
stage, strictly 515 to 530nm on Ri and specifically at 479nm on Rj from 28 March – anthesis and 707 
to 840nm on Ri and 486 to 530nm on Rj – ripening stage; all of them showing slight R2 differences 
once within those spectrum regions. This information is useful to decide about which sensor to use 
for measuring certain specific crop trait. 
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Table 1 – Best 10 coefficients of determination (R2) between VIs and protein 

 

* coefficients statistically NOT significant at 5% probability; Prot – Protein. 

Image - 14 Feb 
2014 19 Feb 2014 27 Feb 2014 11 Mar 2014 17 Mar 2014 28 Mar 2014 07 April 2014 15 April 2014 25 April 2014 07 May 2014 

VIs Prot VIs Prot VIs Prot VIs  Prot VIs Prot VIs  Prot VIs Prot VIs Prot VIs Prot VIs Prot 

G 0.07 SR 0.04 TVI 0.14 
TCARI/ 
OSAVI 0.10 MCARI 0.06 

MCARI/
OSAVI 0.03* 

MCARI
/OSAVI 0.05 

MCARI/
OSAVI 0.04 CAR 0.02* RARS 0.11 

SR 0.06 CI 0.04 
MCARI
1 0.14 

MCARI/
OSAVI 0.10 TCARI 0.06 

TCARI/ 
OSAVI 0.03* 

TCARI/ 
OSAVI 0.05 

TCARI/ 
OSAVI 0.04 GM1 0.02* 

PSND
c 0.11 

R750/R
670 0.06 GM2 0.04 MTVI1 0.14 TCARI 0.09 

TCARI/ 
OSAVI 0.06 TCARI 0.02* TCARI 0.03* 

R710/ 
R700 0.02* CI 0.02* CAR 0.10 

R710/R
670 0.06 

R750/R7
00 0.04 PRIxCI 0.14 MCARI 0.09 

MCARI/
OSAVI 0.06 MCARI 0.02* MCARI 0.03* PRI 0.02* GM2 0.02* 

PSSR
c 0.10 

PSSRa 0.06 
R750/R6
70 0.04 EVI 0.13 PRIxCI 0.07 

R700/ 
R670 0.05 PRI 0.01* CAR 0.02* MCARI 0.02* 

R750/ 
R700 0.02* 

RNIRx
CRI70 0.08 

PRIxCI 0.06 PSSRa 0.04 
MCARI
2 0.13 

MCARI
1 0.06 

R710/ 
R670 0.04 

R700/ 
R670 0.01* CI 0.01* TCARI 0.02* RDVI 0.02* 

RNIRx
CRI55 0.07 

MCARI
2 0.06 MCARI2 0.04 MTVI2 0.13 MTVI1 0.06 PRI 0.04 PRIn 0.00* GM2 0.01* GM2 0.02* PRI 0.02* PRI 0.07 

MTVI2 0.06 MTVI2 0.04 RDVI 0.12 TVI 0.06 SR 0.04 PRIxCI 0.00* 
R750/ 
R700 0.01* 

R750/ 
R700 0.02* EVI 0.02* GM1 0.06 

GM2 0.06 MCARI1 0.04 G 0.12 
R710/ 
R670 0.06 G 0.04 

R710/ 
R670 0.00* GM1 0.01* CI 0.02* MCARI1 0.02* SIPI 0.05 

R750/R
700 0.06 

MTVI1 
0.04 

R710/ 
R700 0.12 

R700/ 
R670 0.06 

R750/ 
R670 0.03 

PSSRc 
0.00* 

PRIxCI 
0.01* 

CAR 
0.01* 

MTVI1 
0.02* 

MCAR
I/OSA
VI 0.04 
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14 Feb 2014 19 Feb 2014 27 Feb 2014 

11 Mar 2014 
 

17 Mar 2014 28 Mar 2014 

07 April 2014 15 April 2014 25 April 2014 

 

07 May 2014 

 

Figure 4 – Contour maps of the coefficient of determination (R2) between NDSI (Ri, Rj) and GPC using the complete combinations of two 
wavelengths at i and j nm. 
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Those preliminary results showing low R2s obtained between and VIs and GPC (Table 1) and NDSIs 
(Fig. 4) may be due to a non-linearity response, so further analyses should be done to check it.  
Furthermore, multivariate methods to join the best NDSI combinations along the crop cycle aiming at 
better assessment of GPC may also be considered. Another potential analysis would be to check 
how the complete two by two combinations approach can describe within yield variation and to apply 
cluster techniques to delineate management zones prior to harvesting. 

Conclusion  
The reflectance profile from the highest and lowest protein region followed similar spectral behavior 
from 400 to 770 nm, with exception of the image acquired during the grain filling stage, showing 
some difference on reflectance at the red region (around 680 nm). At 840 nm (NIR), it was possible 
to see small difference in the reflectance for the highest and lowest grain protein region at GS31 
stage, increasing up to booting, and again at anthesis, giving support to further work for nutrient crop 
management to optimize grain protein through RS techniques.  

Whilst it was possible to detect differences in reflectances, the coefficients of determination among 
VIs with GPC were in general weak across the crop cycle, which might be due to the lack of spatial 
variability within the commercial field used in this study. The top VIs varied for each image, and some 
image dates were more suitable to describe GPC.   

Although the complete two by two combinations of wavelengths approach applied into NDSI formulae 
performed better on assessing GPC than VIs from the literature, VNIR may not be enough to assess 
GPC at field level, and additional assessments using the SWIR region might be needed. The 
approach reported in this paper allowed for visualizing the range of wavelengths within VNIR that 
predominantly better explained GPC across the crop cycle.  
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