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Abstract. Low altitude remote sensing provides an ideal platform for monitoring time sensitive 
nitrogen status in crops. Research is needed however to understand the interaction between 
crop growth stage, spatial resolution and spectral indices derived from low altitude remote 
sensing. A TetraCam camera equipped with six bands including the red edge and near infrared 
(NIR) was used to investigate corn nitrogen dynamics. Remote sensing data were collected 
during the 2013 and 2014 growing seasons at four different sites in Waseca and Wabasha 
counties in Minnesota. At each of the four sites, experimental plots received different rates of 
nitrogen varying between 0 and 200 kg/ha and imagery was collected during corn growth stages 
V6, V10 and R6 at six cm spatial resolution. Ancillary data collected included SPAD readings, 
leaf N, biomass, and yield. Preliminary results show that, among the spectral bands and indices 
compared, combining the green and NIR bands into a green difference vegetation index (GDVI) 
had the highest correlation with nitrogen application rates, SPAD reading and yield. The GDVI 
index was used to compute a nitrogen sufficiency index (NSI). The correlation between nitrogen 
application rates and GDVI was higher (r=0.80) at early growth stages (V6) than later in the 
season. On the other hand, the correlation between yield and GDVI was highest at the end of 
the growing season (r = 0.75).  High resolution remote sensing can accurately detect nitrogen 
deficiency early in the season, leading to timely correction. 
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Introduction 
There are critical stages in corn development and growth where plant uptake of nitrogen is the 
most critical (Figure 1) and thus nitrogen availability is crucial. Nitrogen is usually supplied to 
plants in the form of a commercial fertilizer, although soil mineralization can provide a significant 
portion of plant’s nitrogen needs (Thorne, 1926; Ruffo et al. 2015). Manure is also used as a 
source of nitrogen for farmers with livestock operations. However, commercial nitrogen fertilizer 
remains the dominant source of nitrogen fertilizer in the Midwest (Erickson and Miller, 2013).  
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Fig.1 Critical stages of nitrogen uptake by corn (Richie et al., 1993) 
 

Nitrogen availability and uptake by plants is very complex and controlled by many factors 
including weather conditions (Pinter et al., 2003). In addition to the financial loss, when applied 
nitrogen is not used by corn plants (Smith et al. 2014), excess nitrogen beyond the root zone 
can leach from the soil profile and contribute to ground and surface water pollution (Randall and 
Mulla, 2001). Nitrogen is also subject to loss via denitrification under anaerobic conditions when 
soils are saturated long enough (Zak and Grigal, 2001).  Other forms of nitrogen loss related to 
poor management include volatilization, for example, when nitrogen fertilizer is surface applied 
without incorporation in the soil (Jones et al. 2007). 

Nitrogen management strategies that minimize the impact of inter-seasonal variation in weather 
conditions in rain-fed regions are needed in order to improve nitrogen use efficiency and reduce 
nitrogen loss to the environment. Specifically, wet springs in Minnesota are known to cause 
nitrogen losses via leaching and denitrification (Zak and Grigal, 2001) especially that a 
significant number of growers apply nitrogen in the fall (Bierman et al., 2012). One management 
strategy to address this issue would be to use a split application providing a portion of the 
nitrogen required by the crop before planting (or at planting) and the remaining portion during 
the growing season (in-season). 

Nitrogen management can be further improved if the second nitrogen application is calculated 
based on remote sensing (Hatfield, 2008; Zhang and Kovacs, 2012; Tremblay et al., 2014). Of 
particular interest to this study is to use multi-spectral high resolution imagery as the basis for 
in-season nitrogen application. This type of remote sensing has the advantage of flexibility both 
in time and sensor technology. It is also not affected by clouds as opposed to satellites (Hunt et 
al., 2013). 

Vegetation indices derived from satellite remote sensing such as the ubiquitous normalized 
difference vegetation index (NDVI) (Tucker, 1979) and the green normalized difference 
vegetation index (GNDVI) (Shanahan et al., 2001) have been successfully deployed to map 
vegetation and crop health. The GNDVI was found to positively correlate with nitrogen status in 



3 
 

corn (Shanahan et al., 2001), and it is computed using the near infrared (NIR) and green bands 
reflectance. The green band reflectance supply information about the chlorophyll in the leaf as 
nitrogen is known to be associated with chlorophyll. On the other hand, the NIR reflectance 
provided information about the cell structure as healthy leaves tend to reflect more NIR (Slatan 
et al., 2001). Research is needed however to understand the interaction between crop growth 
stage, spatial resolution and spectral indices derived from low altitude remote sensing. 

The first objective of this study is to evaluate the application of high resolution multispectral 
remote sensing for nitrogen deficiency detection in corn by comparing indices derived from 
UAVs with SPAD readings. A second objective is to evaluate the potential use of UAV derived 
indices for sidedressing nitrogen. 

Materials and Methods 

The experimental design for the study was randomized complete block (RCB) with four 
replications (Figure 2). The RCBD is a very popular design in agricultural research as it provides 
a powerful mean of controlling field variability and thus reducing the experimental error (Clewer 
et al. 2001). Preplant nitrogen treatments were conducted as a factorial with seven rates 
corresponding to 0, 30, 60, 90, 120, 150 and 180lb/ac of nitrogen. The treatment plan for the 
sidedress study was a 2 by 2 factorial corresponding to two sidedress rates of 60 and 90 lb/ac 
and two application times corresponding to V6 and V12 of corn growth stages. The study was 
replicated in four field locations in Minnesota, USA in 2013 and 2014 growing seasons. Two of 
the four locations had a clay loam soil texture on a glacial till deposit in south central MN 
(Janesville, 2013 and New Richland, 2014). The other two fields were located on a silty loam 
texture in eastern part of the state (Theilman, 2013 and St Charles 2014). Soil organic matter 
and soil residual nitrogen (spring before planting) were measured before planting for each plot 
and were used as covariates to correct for potential uncontrolled source of variation. 

 
Fig. 2 UAV image showing individual plots from two adjacent blocks 

 

At each of the three corn growing stages V6, V12 and R2, SPAD chlorophyll meter readings 
(SPAD Plus 502, Minolta) were collected from 20 plants within each plot and averaged. Spectral 
data was collected using an Octocopter equipped with a six-bands multispectral camera (MCA, 
Tetracam Inc, CA USA) providing plant reflectance in the blue, green, red, red edge, and near 
infrared (NIR) of the light spectra. The Octocopter was flown in autonomous mode using 
Mission Planner software. To further control the variability between plots, each of the four blocks 
in each site was captured in one image so that any bias introduced from flying and imagery 
stitching can be captured in the block effect.  
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Furthermore, to reduce edge effects, only reflectance data collected from the central four rows 
of each plot were used. At the end of the growing season, leaf nitrogen content, total biomass, 
and yield were also measured for each plot. Yield data were used to develop the nitrogen yield 
response curve for each of the location and to extract yield values that correspond to the 
economic optimum nitrogen rate (EONR). ArcGIS (ESRI) was used to process the multi-spectral 
imagery. Processing included registering the six bands, georeferencing and extraction of the 
spectral data for each plot within the RCB.   

Soil background was removed using the histogram method by finding threshold values that 
allow the separation of the plant from the soil. Image segmentation was conducted on V6 corn 
growth stage imagery where the soil background is visible. Indices were converted to relative 
sufficiency indices (Hatfield, 2008; ; Sambroski et al., 2009) to minimize the effect of the 
environment (Debaeke et al. 2006; Lemaire et al., 2008; Sambroski et al., 2009), and to allow 
comparison of different fields and growth stages. 

Results and Discussion 

Economically optimum nitrogen rate (EONR) 

Nitrogen yield response using a quadratic fit with plateau (Cerrato and Blackmer, 1990) allowed 
the computation of the EONR using 0.10 ratio for price of one pound of nitrogen to the price of 
one bushel of corn produced. Table 1 shows that the locations with heavy textures (Janesville 
and New Richland) had higher EONR compared to the light textured locations. Similar findings 
were published in a meta-analysis study conducted in the Midwest (Tremblay et al., 2012) and 
more recently by the Purdue University extension (Camberato and Nielson, 2016). 

Table 1: The EONR for the four locations of the study 
Location EONR 

Janesville 2013 116 
Theilman 2013 150 

St. Charles 2014 159 
New Richland 2014 137 

 

SPAD correlation with nitrogen 

Previous research has shown a strong correlation between leaf nitrogen content and chlorophyll 
content (Piekelek and Fox, 1992; Matsunaka et al., 1997) and SPAD sufficiency index  has 
been found to correct for genotype and environment effect (Debaeke et al. 2006). 

In this study, the strength of the correlation between indices and SPAD measurements was 
used as a mean to compare spectral indices. The assumption is that SPAD measurements are 
related to chlorophyll in corn leaves and thus to nitrogen. When SPAD was not well correlated 
with nitrogen treatment as is the case for Janesville at V6, further investigation revealed a 
strong block effect (linear regression was fitted using the four replicates). Overall SPAD showed 
a strong correlation with preplant nitrogen and the correlation was the strongest at corn 
reproductive stage R2.  One could also limit the use of SPAD correlation to blocks where yield 
response to nitrogen was strong, filtering out blocks that show a weak response to nitrogen. 
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This could be followed by developing spectral sufficiency indices based on data from the 
remaining responsive blocks. A similar approach was used by Holland and Schepers (2010) 
where the authors reduced the number of blocks based on block behavior. In this study 
however, all blocks were used to compute the correlation. It is worth stating that the correlation 
was stronger when each block was treated separately. 

Table 2: Correlation between SPAD chlorophyll reading and preplant nitrogen. 
Location              V6 V12 R2 
Janesville 2013 0.66 0.80 0.73 
Theilman 2013 0.78 0.77 0.83 
St. Charles 2014 NA 0.84 0.88 
New Richland 
2014 NA 

0.84 0.82 

 

Index comparison 

Several indices were computed and compared based on their correlation with SPAD (Figure 3). 
Among these indices, the NDVI performed very well early in the season at V6 but shortly 
weakened at growth stages V12 and R2. These finding corroborate similar findings that showed 
NDVI to saturate in mid-season (Hatfield et al., 2010).  On the other hand, the green difference 
vegetation index (GDVI) performed better than the NDVI during all growth stages for all sites 
(data not shown). Additionally, index performance was stage dependent with the highest 
performance observed at V6 and R2 for the majority of indices. 

 
Fig.3 Correlation between UAV derived indices and SPAD meter at V6, V12 and R2, Theilman 
2013 
 

Spatial resolution and resampling 

High spatial resolution images require huge storage space and processing time for operations 
such as stitching can be long. In this study we compared the raw resolution of 7 cm to a 
resampling resolution of one meter using bilinear interpolation (Table 3).  Resampling to a 
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coarser resolution does not seem to affect the correlation. This provides advantages in 
processing speed and storage size. 

 
Table 3: Resampling and resolution effect on indices correlation strength 

 with yield at V12 for St. Charles 

 

 

Image segmentation 

One of the advantages of acquiring imagery with UAVs is the enhanced spatial resolution over 
satellites. The higher spatial resolution permits the separation of plant from soil background. In 
this study, raw images had a 7cm spatial resolution allowing for individual rows of corn plants to 
be identified and isolated from the soil background. The red and green bands provided the best 
results for soil background discrimination. Two indices GDVI and GRVI (Sripada et al, 2003) in 
addition to the NDVI were used to compare index correlation with yield, nitrogen treatments and 
chlorophyll (SPAD) before and after image segmentation (Figure 4). The results show that the 
correlation between the indices and yield, nitrogen applied, as well as leaf chlorophyll (SPAD) 
did not improve after image segmentation. For example the correlation between the amount of 
N applied at preplant and the GRVI decreased from 0.62 to 0.50 after soil background removal. 
Likewise, the correlation between SPAD and the GRVI decreased from 0.88 to 0.71 (Table 4). 
While this may be surprising, similar results were recently reported in Canada using a similar 

Reflectance Indices 7cm 30cm 50cm meter
Green 0.69 0.69 0.70 0.69
Blue 0.48 0.48 0.49 0.49
Red 0.67 0.68 0.67 0.68
Red Edge 0.63 0.63 0.63 0.63
NIR1 0.24 0.23 0.22 0.22
NIR2 0.18 0.19 0.18 0.17
Blue NDVI 0.50 0.51 0.51 0.50
NDVI 0.69 0.70 0.68 0.69
Green NDVI 0.75 0.76 0.76 0.74
RENDVI 0.70 0.70 0.70 0.69
DVI 0.72 0.73 0.71 0.72
RVI 0.69 0.70 0.69 0.70
NSI (RVI) 0.52 0.53 0.50 0.51
SR 0.67 0.67 0.67 0.66
MCARI2 0.52 0.53 0.51 0.54
TCARI 0.34 0.34 0.32 0.31
OSAVI 0.69 0.70 0.68 0.69
TCARI/OSAVI 0.68 0.69 0.69 0.68
GDVI 0.79 0.80 0.80 0.78
GRVI1 0.49 0.50 0.47 0.50
GRVI2 0.73 0.74 0.74 0.72
SR2 (NSR) 0.48 0.50 0.45 0.48
SR7 0.51 0.51 0.49 0.48
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setup. Tremblay et al (2014) found no significant improvement in the correlation between SAVI 
and nitrogen applied after segmentation. It is possible that removing the soil background 
increases the importance of the biomass at the expanse of the chlorophyll.  Overall, image 
segmentation does not seem to improve the predictability of nitrogen level in corn leaves. This 
finding shed lights on the need for developing new indices that can take advantage of the high 
resolution and image segmentation. 

Table 4: Indices comparison before and after image segmentation (V6, New Richland): 

 

Whole Plot Correlation 
Segmented Image 

Correlation 

NDVI GRVI GDVI NDVI GRVI GDVI 

Yield 0.91 0.62 0.53 0.74 0.57 0.52 

Applied 
N 

0.82 0.62 0.51 0.70 0.50 0.46 

SPAD 0.78 0.88 0.84 0.77 0.71 0.67 

 

 
Fig.4 Segmentation based on histogram thresholding on green and red bands 
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Sufficiency Indices for the EONR 

A nitrogen sufficiency index (NSI) was developed for each location, growth stage, and index 
used. The sufficiency index was computed based on the EONR. Table 5 shows the sufficiency 
index computed based on the GDVI for all locations. 

Table 5: NSI values derived from the GDVI and the EONR 
Locations Janesville Theilman St. Charles New Richland 
Stage V6 V12 R2 V6 V12 R2 V6 V12 R2 V6 V12 R2 
NSI 
(EONR) 0.92 0.89 0.90 0.94 0.89 0.83 0.80 0.96 0.93 0.86 0.92 0.94 

NSI (Zero 
N) 0.72 0.74 0.70 0.70 0.74 0.73 0.45 0.60 0.65 0.50 0.63 0.73 

N Recs 
per NSI 
fraction 
(lb/ac) 

58 77 58 62 100 150 45 44 57 38 47 65 

 

The NSI for the EONR level appears to be dynamic with both a temporal and spatial variation. 
This variation highlights the fact that the NSI may be field specific and thus using the virtual 0.95 
reference for split nitrogen application (Holland and Schepers, 2012) may not be appropriate in 
this study. The NSI value was consistently lower than 0.95 across all locations (except for St. 
Charles at V12).  The difference in NSI values between the zero N and EONR treatments is the 
highest for light soil likely because of the lower soil organic matter of these soils, thus resulting 
in a higher nitrogen requirement for similar increases in NSI values. Assuming that preplant 
nitrogen and sidedress nitrogen have the same impact on yield, and also assuming a linear 
relationship between the NSI values and the nitrogen requirements (or at least in the range 
between the zero nitrogen and EONR rate), one can compute the amount of in-season nitrogen 
required. This amount requires knowing the NSI for the zero nitrogen in addition to the NSI of 
the EONR. The sidedress amount will be computed based on differences in the NSI values of 
the EONR and zero nitrogen strips.  

Implications 

In-season nitrogen recommendations based on NSI are field and soil specific. Variation of the 
NSI highlights the fact that the NSI may be field specific and thus one cannot use the 0.95 
threshold value as a benchmark for real-time nitrogen application. High resolution remote 
sensing can accurately detect nitrogen deficiency early in the season, leading to timely 
correction. Our research also shows that accuracy is not degraded with 1 meter pixel resolution, 
thus allowing a greater areal footprint for images. 

Further investigations are underway to compare the impact of different nitrogen management 
strategies on NSI improvement after sidedressing. Specifically, we are looking at temporal NSI 
dynamics following in-season application to help understand how the split nitrogen application 
can correct nitrogen deficiency and potential yield. 
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