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Abstract. Quantification and assessment of soil health involves determining how well a soil is 
performing its biological, chemical, and physical functions relative to its inherent potential. Due to 
high cost, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide 
high resolution soil health data. Therefore, sensor-based approaches are important to facilitate cost-
effective, site-specific management for soil health. In the Central Claypan Region, visible, near-
infrared (VNIR) diffuse reflectance spectroscopy has successfully been used to estimate biological 
components of soil health as well as Soil Management Assessment Framework (SMAF) scores. In 
contrast, estimation models for important chemical and physical aspects of soil health have been less 
successful with VNIR spectroscopy. In this study, a sensor fusion approach was investigated that 
incorporated VNIR spectroscopy, soil apparent electrical conductivity (ECa), and penetration 
resistance measured by cone penetrometer (i.e., cone index, CI). Soil samples were collected from 
two depths (0-5 and 5-15 cm) at 108 locations within a 10-ha research site encompassing different 
cropping systems and landscape positions. Soil health measurements and VNIR spectral data were 
obtained in the laboratory, while CI and ECa data were obtained in situ. Calibration models were 
developed with partial least squares (PLS) regression and model performance was evaluated using 
coefficient of determination (R2), root mean squared error (RMSE), and residual prediction deviation 
(RPD). Models integrating ECa and CI with VNIR reflectance data improved estimates of the overall 
SMAF score (R2 = 0.78, RPD = 2.13) relative to VNIR alone (R2 = 0.69, RPD = 1.82), reducing 
RMSE by 14%. Improved models were also achieved for estimates of the individual biological, 
chemical, and physical soil health scores. The results of this study illustrate the potential for rapid, in-
field quantification of soil health by fusing VNIR sensors with auxiliary data obtained from 
complementary sensors. 
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Introduction 
Soil health represents the nexus of multiple soil functions, such as crop productivity, environmental 
protection, and soil conservation (Karlen et al., 2003). Assessment and quantification of soil health 
currently requires measurement of multiple soil chemical, physical, and biological soil properties, 
referred to as soil health indicators. Measurement of these indicators often involves costly and labor-
intensive laboratory analyses, which prohibits the production of spatially dense, field-scale 
information. In contrast, on-the-go sensor technology has the potential to provide high-resolution 
spatial data quickly at low cost (Hummel et al., 1996). Soil sensors have been widely used to 
estimate individual soil properties, and sensor fusion, as described by Adamchuk et al. (2011), has 
been applied to improve estimates of multiple soil attributes (e.g., Wetterlind et al., 2015). Although 
the ability to reliably estimate soil health indicators in the field has clear benefits for sustainable 
agricultural management, no single sensor has demonstrated the ability to estimate across the wide 
range of soil properties represented by soil health. Therefore, soil health assessment represents an 
ideal opportunity for the application of sensor fusion technology. 

Visible, near-infrared diffuse reflectance (VNIR) spectroscopy has been used to successfully 
estimate several biological soil health indicators, including soil organic C, total N, β-glucosidase 
activity, active C, microbial biomass-C, and soil respiration (Sudduth and Hummel 1991; Chaudhary 
et al. 2012; Kinoshita et al. 2012; Sudduth et al. 2012). Estimation of physical and chemical soil 
health indicators using VNIR spectra has been less consistent, although some studies have 
successfully estimated soil texture, aggregate stability, pH, P, and/or K (Chang et al. 2001; Bogrekci 
and Lee 2005; Vågen et al. 2006; Hu 2013). Physical attributes, such as the cone index (CI), can be 
measured by in-situ sensors such as a cone penetrometer. The CI is defined as the force per unit 
base area required to push the penetrometer through a specified increment of soil and reflects soil 
compaction, soil bulk density, texture, and moisture (ASAE, 2005; Chung et al., 2006). In addition, 
apparent electrical conductivity (ECa) reflects numerous soil physical and chemical attributes such as 
texture, mineralogy, CEC, and moisture (McNeill 1992; Sudduth et al. 2013). 

Few studies have evaluated the simultaneous estimation of a broad range of biological, physical, and 
chemical indicators with the goal of estimating a comprehensive soil health index. Visible near-
infrared diffuse reflectance (VNIR) spectra were used by Cohen et al. (2006), Vågen et al. (2006), 
and Kinoshita et al. (2012) to estimate categorical soil health indices, and by Veum et al. (2015b) to 
estimate the Soil Management Assessment Framework (SMAF), a continuous soil health index. 
Veum et al. (2015b) found that VNIR worked well for estimation of the biological components of the 
SMAF, but did not perform well for estimation of chemical or physical SMAF scores. The SMAF was 
developed to integrate multiple soil health indicators into a comprehensive index to assess the 
impact of soil management practices on soil functions, such as ecosystem services, crop production, 
and/or environmental protection. The SMAF uses non-linear scoring curves and site-specific 
information (e.g., soil texture, mineralogy, slope, and climate) to translate laboratory measurements 
into a soil quality score based on a soil’s inherent potential (Andrews et al., 2004). The unitless 
scores are continuous and range from 0 to 100%, where a score of 100% represents a soil that is 
functioning at its full potential under the given site characteristics. Each scoring curve follows one of 
three general shapes: “more-is-better” (upper asymptotic sigmoid curve), “less-is-better” (lower 
asymptote), or “mid-point optimum” (Gaussian function). Currently, the SMAF integrates up to 13 
indicators representing soil biological, physical, and chemical functions (Andrews et al., 2004; Stott et 
al., 2010). The SMAF has been successfully applied to large-scale (Andrews et al., 2004), 
watershed-scale (Cambardella et al., 2004; Stott et al., 2011), and field-scale (Veum et al., 2014; 
Veum et al., 2015a) studies of the effects of land use and agricultural management practices on soil 
quality. 

Soils in the Central Claypan Region (Major Land Resource Area 113; USDA-NRCS, 2006) of 
northeastern Missouri, USA, contain subsurface horizons with 45 to 65% clay (Bray, 1935) that 
reduce water infiltration (Jung et al., 2007), impede root growth and development (Myers et al., 
2007), and contribute to rapid soil degradation (Soil Conservation Service, 1988). Due to the 
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sensitivity of this ecosystem, understanding the effects of management practices on soil health is 
critical, and development of rapid, low-cost methods using in-field sensors to assess soil health on 
claypan soils is a priority. The objectives of this study were to evaluate a sensor fusion approach 
using VNIR spectra in conjunction with ECa and CI data to estimate (1) multiple biological, physical, 
and chemical soil health indicators, and (2) SMAF soil health scores.  

Materials and Methods 

Study Site 
The study was conducted on a 10-ha site near Centralia, Missouri (39˚13 N, 92˚07 W). The 
experimental design was a randomized complete block with three blocks (i.e., replications) where 
management was the main plot and landscape position was the split plot (Fig. 1). All rotation phases 
of each cropping system were present each year, and each plot measured 18 m × 189 m (0.35 ha) 
running east-west parallel to the slope direction. Annual cropping systems included varying nutrient 
management, crop rotation, cover crops, and tillage. Perennial vegetation systems included 
permanent cool- and warm-season grasses and legumes under varying management including 
Conservation Reserve Program (CRP) systems, prairie restoration, and working grasslands (i.e., 
pasture, forage, and hay production). Soils at the site include Adco silt loam (fine, smectitic, mesic 
Vertic Albaqualfs) in summit positions with 0 to 1% slopes and Mexico silt loam (fine, smectitic, mesic 
Vertic Epiaqualfs) in backslope (1-3%) and footslope (1-2%) positions.  Detailed descriptions of the 
management systems are provided in Chaudhary et al. (2012). 

Fig. 1. Plot layout with soil series, cropping systems, elevation, and sampling points. Soils: 1-Adco silt loam, 0-1% slope; 2-
Mexico silty clay loam, 1-3%, eroded; 3-Mexico silt loam, 1-2%. Cropping systems: MTCS = mulch-till corn-soybean rotation; 

NTCS = no-till corn-soybean; NTCSW = no-till corn-soybean-wheat rotation; NTCS-CC = no-till corn-soybean with cover crops; 
CRP = conservation reserve program. CRP plots were further split lengthwise into three perennial grass systems.  
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Soil Sampling, CI, and ECa Data Collection 
Soil samples were obtained in the fall of 2010 from each landscape position within each plot (Fig. 1). 
At each landscape position, three sub-sample points were established in a triangular arrangement 
within a 3-m radius and three 3.2-cm diameter cores were obtained at each of the sub-sample points. 
The cores were divided into two depth increments, 0-5 cm and 5-15 cm, and the nine total samples 
were bulked for each landscape position. Samples were sealed in plastic bags and stored at 4º C 
prior to processing and laboratory analysis. Near each soil sampling point, a Veris Profiler 3000 
(Veris Technologies Inc., Salina, Kansas, USA) collected duplicate in-situ CI (kPa) and ECa (mS m-1) 
data. The ECa and CI data were extracted and averaged over the 6 total probes at each location for 
the 0-5 cm and 5-15 cm depth increments.  

VNIR Spectral Data Collection and Processing 
Soil spectral reflectance data were obtained in the laboratory on oven-dried samples from the surface 
(0-5 cm) and subsurface (5-15 cm) layers using an ASD FieldSpec Pro FR spectrometer (Analytical 
Spectral Devices, Boulder, CO). Oven-dried samples were crushed and sieved (< 2 mm), then 
poured into a glass-bottomed cup for spectral collection by a halogen lamp. Samples were scanned 
from 350 to 2500 nm in 1 nm intervals. Each spectrum, the average of 30 scans, was adjusted using 
dark current scans. A Spectralon white reference standard (Labsphere Inc., North Sutton, NH) was 
scanned after every 10 samples to convert the raw spectral data to decimal reflectance. Spectra 
were obtained in triplicate by rotating the sample cup ca. 60 degrees between sets of scans, and 
averaged for each sample. Subsequently, VNIR spectra were restricted to 400 – 2500 nm to 
eliminate regions with a low signal to noise ratio, and averaged across 5 nm intervals. Based on 
earlier work evaluating the effects of spectral preprocessing (Chaudhary et al., 2012), spectra were 
log-transformed to absorbance units [log(1/reflectance)] and mean-normalized and centered. 

Laboratory Soil Analyses 
In brief, soil bulk density and gravimetric moisture content were determined by the Grossman and 
Reinsch (2002) method. Soil texture was determined using the hydrometer procedure of Gee and Or 
(2002). Percent silt was calculated by subtracting percent sand and clay from 100.  Total soil organic 
carbon was measured by dry combustion at 950°C (Nelson and Sommers, 1996) on a LECO 
TruSpec CN analyzer (LECO Corp., St. Joseph, MI) following a negative effervescence test. ß-
glucosidase activity was determined by incubating 1 g soil samples with p-nitrophenyl-ß-D-glucoside 
substrate for 1 h at 37°C (Eivazi and Tabatabai, 1988). Electrical conductivity (Whitney, 1998) and 
water pH (pHw) were determined on 2-mm, air-dried soil using a 1:1 soil/water ratio (Watson and 
Brown, 1998). Mehlich III extractable P and K were determined using an inductively coupled plasma–
atomic emission spectrograph (Mehlich, 1984).  

Soil Management Assessment Framework Scores 
Seven soil health indicators representing biological (soil organic C and β-glucosidase activity), 
physical (bulk density), and chemical (pHw, electrical conductivity, and extractable P and K) soil 
function categories were included in the SMAF. Each indicator was scored using SMAF algorithms 
based on sample location-specific details such as soil texture, mineralogy, crop, and climate 
information. In this study, all samples represented the same organic matter, climate, mineralogy, and 
weathering factor classes used to parameterize algorithms in the SMAF. Slope categories included 
slope class one (0-2% slope) in summit and toeslope landscape positions, and slope class two (2-
5%) in backslope positions. All of the soil samples in this study were from texture class three (silt and 
silt loam) or texture class four (silty clay and silty clay loam). Crop-specific factors for pHw, electrical 
conductivity, and P were based on the dominant species or the most recent crop in rotation systems. 
The individual indicator scores were combined to generate scores for the biological, physical, and 
chemical soil function categories and an overall SMAF soil health score for each soil sample using 
the algorithms published in Andrews et al. (2004), Weinhold et al. (2009), and Stott et al. (2010).  
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Partial Least Squares Analysis 
Data analysis was carried out in Unscrambler version 10.4 (CAMO Inc., Oslo, Norway). Partial least 
squares (PLS) regression was used to develop models of soil properties and SMAF scores using a 
20-fold cross validation procedure to select the number of PLS factors. Models were evaluated and 
compared using coefficient of determination (R2), root mean square error of cross-validation 
(RMSECV), and relative prediction deviation (RPD). The RPD scales model error by population 
dispersion and facilitates comparison of results from datasets with different degrees of variability 
(RPD = standard deviation/RMSE). In general, RPD decreases as model performance decreases 
(Chang et al., 2001; Pirie et al., 2005). Following the categories proposed by Chang et al. (2001), 
models with R2 ≥ 0.75 and RPD ≥ 2.0 were considered the most reliable, models with R2 ≥ 0.63 and 
RPD ≥ 1.6 were considered acceptable, models with R2 ≥ 0.50 and RPD ≥ 1.4 demonstrated 
potential, and all other models were considered poor and unreliable. 

Results and Discussion 
Summary statistics of the measured soil health indicators and SMAF scores for the dataset can be 
found in Table 1. Of the seven soil health indicators measured, the coefficient of variation (CV) was 
the lowest for pHw (5.4%), followed by bulk density (14.8%), and soil organic carbon (37.7%). All 
other indicators had a CV greater than 50%.  Although a high CV does not necessarily imply 
success, soil properties with a low CV generally are not well-estimated by VNIR. In general, soil 
properties with a wide range of values may produce more stable and reliable models (Vågen et al., 
2006; Bogrekci and Lee, 2007). 
 

Table 1.  Descriptive statistics for laboratory-measured soil health indicators and Soil Management Assessment Framework 
(SMAF) scores. SD = standard deviation, CV = coefficient of variation (%) 

Soil Health Indicator Mean SD Min Max CV 

SOC, g kg-1 16.8 6.4 9.0 41.9 37.7 

β-glucosidase activity, mg kg-1 h-1 96.7 51.5 17.2 247.2 53.3 

K, mg kg-1 83.4 48.4 15.1 353.2 58.0 

P, mg kg-1 11.1 8.4 0.0 41.7 75.9 

Bulk density, g cm-3 1.26 0.19 0.56 1.57 14.8 

pHw 6.07 0.32 4.95 6.64 5.4 

Electrical conductivity, dS m-1 0.14 0.07 0.01 0.59 51.2 

SMAF Scores, % Mean SD Min Max CV 

Overall 71.6 15.4 43.4 98.6 21.4 

Biological 48.0 26.9 12.6 99.7 56.0 

Physical 79.0 22.8 33.8 99.4 28.9 

Chemical 81.6 11.9 54.1 99.6 14.6 

 

Summary statistics for PLS models estimating the laboratory measured soil health indicators 
developed using VNIR alone and using VNIR in conjunction with CI and/or ECa data can be found in 
Table 2. As seen in many other studies, models of soil organic carbon performed well using VNIR 
alone (R2 = 0.82, RPD = 2.38), and addition of ECa and CI did not substantially improve model 
performance. Given that organic matter and minerals are the primary soil constituents that produce 
VNIR spectral features, it is not surprising that soil organic carbon models performed well with VNIR 
alone and did not improve with the addition of other sensor data. Similarly, acceptable models were 
developed for β-glucosidase activity, which was highly correlated with soil organic carbon (r = 0.81) 
in this dataset, and likely performed well by proxy. Bulk density and pHw models were only slightly 
improved by the addition of CI and ECa data. Using data from all three sensors, RMSE was reduced 
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by 6% for bulk density and 3% for pHw. Models for electrical conductivity, P, and K were poor and 
unreliable for all sensor combinations. These results emphasize the importance of primary or 
secondary associations (i.e., surrogate or proxy relationships) between the soil health indicator and 
VNIR spectral features or auxiliary sensor information for reliable estimation. 
 

Table 2.  Partial least squares (PLS) regression cross-validation statistics for models of measured soil properties with visible, 
near infrared (VNIR) spectra, apparent electrical conductivity (ECa), and/or cone index (CI) data. NF = number of PLS factors used 

in the model; RMSECV = root mean square error of cross validation; RPD = standard deviation /RMSE. 

Soil Property NF R2 RMSECV RPD 

Soil organic carbon     

     VNIR 8 0.82 2.67 2.38 

     VNIR + ECa 9 0.82 2.66 2.39 

     VNIR + CI 9 0.83 2.59 2.45 

     VNIR + ECa + CI 9 0.82 2.66 2.39 

β-glucosidase activity     

     VNIR 6 0.65 30.5 1.69 

     VNIR + ECa 7 0.65 30.4 1.70 

     VNIR + CI 7 0.66 30.0 1.72 

     VNIR + ECa + CI 9 0.67 29.6 1.74 

Bulk density     

     VNIR 8 0.44 0.14 1.33 

     VNIR + ECa 9 0.47 0.14 1.37 

     VNIR + CI 6 0.50 0.13 1.42 

     VNIR + ECa + CI 5 0.50 0.13 1.42 

Electrical Conductivity     

     VNIR 6 0.43 0.056 1.31 

     VNIR + ECa 7 0.40 0.057 1.30 

     VNIR + CI 8 0.44 0.056 1.33 

     VNIR + ECa + CI 9 0.42 0.057 1.31 

pHw     

     VNIR 7 0.59 0.21 1.56 

     VNIR + ECa 9 0.61 0.20 1.60 

     VNIR + CI 9 0.61 0.20 1.60 

     VNIR + ECa + CI 9 0.61 0.20 1.60 

Phosphorus     

     VNIR 6 0.31 7.01 1.20 

     VNIR + ECa 6 0.34 6.85 1.23 

     VNIR + CI 3 0.34 6.89 1.22 

     VNIR + ECa + CI 3 0.36 6.77 1.25 

Potassium     

     VNIR 6 0.35 39.1 1.24 

     VNIR + ECa 7 0.35 39.0 1.24 

     VNIR + CI 6 0.34 39.3 1.23 

     VNIR + ECa + CI 5 0.32 39.8 1.22 
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Summary statistics for PLS models estimating SMAF scores developed using VNIR alone and using 
VNIR together with CI and/or ECa data can be found in Table 3. The most improvement was 
observed for the overall SMAF score between models with VNIR alone (R2 = 0.69, RPD = 1.82) and 
models with ECa and CI (R2 = 0.78 and RPD = 2.13), demonstrating a 14.3% reduction in RMSE. 
This suggests that adding ECa and CI data provided information that related to one or more of the 
SMAF scoring categories. For individual SMAF categories, modest improvements were seen in the 
biological and chemical score categories as a result of combining sensor information. Robust 
estimates of the biological SMAF score were achieved with VNIR alone (R2 = 0.81, RPD = 2.29), and 
only improved slightly with the addition of ECa and CI (R2 = 0.83, RPD = 2.42). Models for the 
chemical SMAF score were poor for all combinations of sensors (R2 ≤ 0.41, RPD ≤ 1.31), although 
very slight improvements were observed with ECa and CI data. In contrast, the physical SMAF score 
demonstrated a 10% reduction in RMSE with the addition of ECa and CI to the VNIR spectra, 
although model performance was still below the acceptable range (R2 = 0.53, RPD = 1.46). 
Therefore, the improvement in estimation of the overall SMAF score is most likely due to information 
related to soil physical characteristics (i.e., soil strength, texture, and mineralogy) that are reflected in 
the ECa and CI data. 

  
Table 3.  Partial least squares (PLS) regression cross-validation statistics for models of SMAF Scores with visible, near infrared 

(VNIR) spectra, apparent electrical conductivity (ECa), and/or cone index (CI) data. NF = number of factors in the model; RMSECV 
= root mean square error of cross-validation; RPD = standard deviation /RMSE; SMAF = Soil Management Assessment 

Framework 
 

SMAF Score NF R2 RMSECV RPD 

Overall Score     

     VNIR 6 0.69 8.41 1.82 

     VNIR + ECa 7 0.74 7.85 1.96 

     VNIR + CI 6 0.75 7.69 2.00 

     VNIR + ECa + CI 8 0.78 7.21 2.13 

Biological Score     

     VNIR 8 0.81 11.73 2.29 

     VNIR + ECa 9 0.82 11.26 2.39 

     VNIR + CI 8 0.83 11.21 2.40 

     VNIR + ECa + CI 9 0.83 11.10 2.42 

Physical Score     

     VNIR 6 0.42 17.41 1.31 

     VNIR + ECa 7 0.47 16.55 1.38 

     VNIR + CI 4 0.50 16.02 1.42 

     VNIR + ECa + CI 5 0.53 15.67 1.46 

Chemical Score     

     VNIR 5 0.38 9.41 1.27 

     VNIR + ECa 6 0.41 9.14 1.30 

     VNIR + CI 4 0.41 9.12 1.31 

     VNIR + ECa + CI 3 0.40 9.14 1.30 
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Conclusion 
On-the-go sensor fusion technology has the potential to provide rapid, cost-effective, and high-
resolution soil health assessments to inform site-specific management decisions. Many important soil 
health indicators do not have strong absorbance or reflectance features in the VNIR range, or do not 
consistently correlate with primary soil properties that produce VNIR features. Therefore, a sensor 
fusion approach is ideal for in-field assessment of soil health. The results of this study support using 
ECa, and CI sensors with VNIR to improve assessment of biological and physical aspects of soil 
health. Chemical and fertility-related soil properties that were not well estimated by this sensor fusion 
combination may require different sensors or supplementary field test kits. Overall, in-field, sensor-
based technology has the potential to estimate a comprehensive soil health index for improved 
sustainability, profitability, and environmental protection. 
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