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ABSTRACT 
 
     We have developed a web-based decision support tool, Zone Mapping 
Application for Precision Farming (ZoneMAP, http://zonemap.umac.org), which 
can automatically determine the optimal number of management zones and 
delineate them using satellite imagery and field survey data provided by users. 
Application rates, say for fertilizer, can be prescribed for each zone and 
downloaded in a variety of formats to ensure compatibility with GPS-enabled 
farming applicators. ZoneMAP is linked to Digital Northern Great Plains, a web-
based application which hosts a rich archive of satellite imagery from Landsat, 
MODIS, and ASTER, as well as high resolution airborne imagery from 
AeroCAM and AgCam. ZoneMAP transparently handles projection conversion, 
grid resampling, and spatial subsetting for data from a variety of sources. We used 
an unsupervised clustering method, Fuzzy C mean (FCM), for classification. We 
tested two cluster estimation algorithms and found that the diagonal distance 
algorithm gives more consistent results than Mahalanobis distance. We also 
evaluated efficacy of ZoneMAP using real field data provided by end users. 
Management zones created by ZoneMAP mapped natural variation of the soil 
organic matter and other nutrients relatively well, and are consistent with zone 
maps created by the users. The results demonstrated that ZoneMAP can serve as 
an effective yet easy-to-use tool for those who want to practice precision 
agriculture. 

 
 

Keywords:     precision agriculture, FCM, management zone, zone map, remote 
sensing, variable rate application. 

 
 
 

http://zonemap.umac.org/


 
INTRODUCTION 

 
 A major goal of precision agriculture is to increase profitability, while 
reducing input costs and protecting the environment. Precision farming requires 
the ability to vary rates of application and precisely apply needed inputs, such as 
herbicide and fertilizer. In order to fully utilize the potential of variable rate 
technology (VRT), the variability of soil, yields and landscape characteristics 
need to be determined a priori. 

Soil surveys are the most accurate method to get the physical and chemical 
attributes of soil and they are often used in the fertilizer recommendations for 
agronomic crops. But usually a large number of distributed samples are needed to 
achieve statistical significance, which can be cost prohibitive and time consuming. 
On the other hand, coarse soil surveys are seldom useful in determining 
management zones (Franzen et al., 2002). 

Spatial variability in yields has been considered as another widely used factor 
for variable rate nutrient management (Johnson et al., 2003). The yield variation 
not only reflects within-field variation in soil productivity potential (Brock et al., 
2005) but also provides an indication of the nutrient level for the following spring 
if litter is left on soil to decay. However, the ability to gather yield information at 
harvest requires advanced combines, which are not available to most producers. 
In addition, the decision rules and underlying concepts of creating management 
maps from yield data still require additional research and development (Brock et 
al., 2005).  

The experiences of farmers are also important. They know qualitatively which 
areas of a field yield well and which areas are low in productivity. Fleming et al. 
(2000) evaluated the farmer-developed management zone maps and concluded 
that soil color from aerial photographs, topography, as well as the farmer’s past 
management experience are effective in developing variable rate application 
maps. By comparing and evaluating management zones developed from soil color 
and farmer experience with those developed from measurements of soil electric-
conductivity, Fleming et al. (2004) showed that both methods were able to 
identify homogeneous sub-regions within a field. 

Spatial imagery has been used for crop management since 1929, when aerial 
photography was used to map soil resources (Seelan et al., 2003). Remote sensing 
for precision agriculture is based on the relationships of surface spectral 
reflectance with various soil properties and crop characteristics (Moran et al., 
1997). Many laboratory-based, machine-attached, hand-held or airborne 
spectrometers have been used. Multi- or hyper-spectral reflectance of soil in the 
visible and near-infrared (VNIR) spectral regions have been used to map soil 
organic matter (SOM) with promising results (Daniel et al., 2004; Wetterlind et 
al., 2008). Read et al. (2002) used a spectroradiometer to measure the leaf and 
canopy reflectance within 350 to 950 nm and found that the reflectance of red 
edge region (690-730 nm) is sensitive to Nitrogen (N) stress. Fleming et al. 
(2000) found that soil color from aerial photography is useful in developing 
variable rate application maps. 



Satellite observations provide measurements of surface reflectance with 15 - 
60 m resolution (e.g. SPOT, Landsat or ASTER) on a temporal scale of multiple 
visits during a growing season. Sullivan et al. (2005) used soil sampling data and 
IKONOS imagery to estimate the soil properties’ variability and concluded that 
the high resolution multi-spectral data is a good soil-mapping tool. Seelan et al. 
(2003) compared a 9-m-wide N test strip where purposely no fertilizer was 
applied with adjacent strips on IKONOS imagery and could detect N deficiency. 
Bhatte et al. (1991) found that the soil organic matter (SOM) distribution 
estimated from Landsat images was strongly correlated with that determined from 
soil sampling. Salisbury and D’Aria (1992) reported that thermal infrared band 
ratios from the ASTER sensor (range 8-14 µm, resolution 90 m) could be used to 
differentiate soil properties such as particle size, soil moisture, and soil organic 
content. 

Given steeply rising prices in chemicals and fuel, and increasing awareness of 
the need to preserve our natural environment, producers rely more and more on 
precision farming to reduce costs, both economical and environmental. Despite 
the potential advantage and many industrial efforts to develop various hardware 
and software tools, precision farming has yet to be adopted widely. 

Fridgen et al. (2004) developed a Management Zone Analysis (MZA) tool for 
subfield management zone delineation. This Windows-based software is easy to 
use and effective in delineating management zones (2005). However, it places a 
stringent and onerous requirement on data preparation – all the input layers, 
vector or raster, have to be gridded into common grid cells. In addition, MZA and 
many other application tools fail to address a major issue that has prevented the 
wide adoption of precision agriculture: access to data. 

We have developed and recently released a web-based decision support tool, 
Zone Mapping Application for Precision Farming (ZoneMAP), which not only 
can be used for classifying fields into zones but also has seamless access to a rich 
archive of remote sensing data spanning the past 30 years. By streamlining format 
conversion, reprojection, and gridding of data from various sources, ZoneMAP 
(http://zonemap.umac.org), provides users with a tool as well as data that are 
available at their finger tips. 

Here we report development of the algorithms used in ZoneMAP for 
classification and automatic determination of optimal number of zones, describe 
the image database, and provide examples of ZoneMAP outputs for two farm 
fields and their evaluation. 

 
CLASSIFICATION ALGORITHM FOR ZONEMAP 
 
 We chose fuzzy c-means (FCM) as the clustering algorithm for ZoneMAP. It is 
basically the same as that used by Fridgen et al. (2004) but slight difference in 
estimating the measure of similarity between an observation and cluster centers. 
Typically, measure of similarity can be estimated using Euclidean distance, 
diagonal distance, or Mahalanobis distance. Since the Euclidean distance 
algorithm requires variables to be of equal variances, which are rarely true in 
reality, we only implemented the latter two algorithms. For diagonal distance, 
instead of adjusting the estimate by the variance of the related variables, we 
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reshape the input variables such that they all have a mean of zero and a unit 
variance. This process does not affect the classification results, but it is faster and 
therefore highly suitable for a web-based application, such as ZoneMAP. 
 Mahalanobis distance accounts for situations where input variables are 
statistically dependent with unequal variance. Since it relies on a variance-
covariance matrix for weighting, which has to be calculated for all the input 
variables, it is more computationally intensive than estimating diagonal distance. 
Also we noted that with Mahalanobis distance the final classification may vary 
depending on the initial values assigned to the cluster centers, a problem also 
reported by Fridgen et al. (2004). However this variation was not encountered 
when diagonal distance was used. We do not know if this has anything to do with 
reshaping of input data. 
 

ALGORITHM FOR OPTIMAL NUMBER OF ZONES 
 

 Determining the most appropriate number of zones is difficult in the 
interpretation of unsupervised classification. Fridgen et al. (2004) used the 
convergence of fuzziness performance index (FPI) and normalized classification 
entropy (NCE) to determine the optimal number of management zones. 
Theoretically, the best classification occurs when membership sharing (FPI) and 
the amount of class disorganization (NCE) is at a minimum with the least number 
of classes used. However, sometimes NCE and FPI do not converge and the 
optimal number of zones suggested by one parameter is significantly different 
from the one suggested by another (Brock et al., 2005). 

Another method to evaluate classification success is to estimate how much 
within-cluster variability is reduced for a number (n) of clusters as compared with 
n-1 clusters. We have found that generally the percentage of total within-cluster 
variability with respect to the total initial variability decreases as the number of 

 
Fig. 1. The total within-cluster variability as a percentage 
of initial variance normally decreases with the number of 
zones. 



clusters increases as shown in Figure 1. A similar trend for the variance reduction 
was found by Broker et al. (2005). We also found that typically the total within-
cluster variance decreases rapidly initially and then approaches an asymptotic 
value slowly as the number of clusters continues to increase. The optimal number 
of zones is therefore decided as the number of clusters that reduces the variance 
significantly as compared to the initial variability, yet changes little when the 
number of zones is further increased. By trial and error, we came to two criteria 
that can capture this turning point in a relatively consistent manner: 1) overall 
reduction of variance is > 50%; and 2) consecutive reduction of variance is < 20% 
or the trend is broken, i.e., within-cluster variability increases instead of 
decreasing. For the case shown in Fig. 1, the optimal number of zones should be 5.  
 
DESIGN OF ZONEMAP 
 
 ZoneMAP was designed for end users like farmers, ranchers, or extension 
specialists to practice precision agriculture; therefore the ease of use is important. 
Also important is the access to data, especially remote sensing observations which 
have been shown to be extremely effective in capturing field variability (e.g., 
Seelan et al., 2003; Sullivan et al., 2005).  

 
Remote Sensing Imagery 
 

 We have collected a rich archive spanning more than 30 years of remote 
sensing imagery over the northern Great Plains including North and South Dakota, 
Minnesota, Montana, Wyoming, and Idaho. Data include medium resolution (20 – 
250 m) multispectral images from satellite sensors of Landsat MSS, TM and 
ETM+, ASTER, and MODIS, surface relief from SRTM, and high resolution ( 1 – 
2 m) images from AeroCam, a multispectral airborne camera that we developed 
and operate. These data are publicly available through Digital Northern Great 
Plains website (http://dngp.umac.org). ZoneMAP is internally linked to the 
database and has seamless access to this valuable digital resource. 

To ensure consistency in temporal and spatial comparisons, all the satellite 
images have been atmospherically corrected. The final product is reflectance on 
the ground. Although the AeroCam sensor has been carefully calibrated at the 
NASA Ames Research Center to determine its spectral and radiometric 
characteristics, we did not perform the atmospheric correction for AeroCam 
images because at typical altitude of 2 – 3 km, the contribution to signals by the 
atmosphere is small. The final product for AeroCam is radiance at the aircraft. 
 Reflectance of canopy will change during a growing season as vegetation goes 
through stages of first growth, maturity, reproduction, and senescence. Vegetation 
indexes, such as Normalized Differential Vegetation Index (NDVI) estimated 
using reflectance measurements at the red and near-infrared (NIR) wavelengths, 
or Green NDVI estimated by replacing the red with the green, have been 
developed to track the vigor of plants and have been used widely for developing 
management zones (Metternicht, 2003; Moran et al., 1997). ZoneMAP will 
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estimate NDVI and GNDVI on-the-fly if a user chooses to the vegetation index 
for classification. 
 
 
Image Processing 

 
 For management zones to be representative various factors affecting the soil 
characteristics and potential productivity need to be considered. This often entails 
the use of data from different sources, of different ground sampling distances, and 
with different formats and projections. Before being combined for further cluster 
analysis, different data need to be projected onto a common grid, which often 
involves subsetting, reprojecting, and resampling procedures.  

Typically, a remote sensing image covers a much bigger area than a farm field. 
Instead of processing the entire image, ZoneMAP automatically crops the image 
using an area of interest (AOI) defined by the user, which considerably enhances 
the overall performance. ZoneMAP also automatically reprojects and resamples 
different images to a common projection plane with an equal ground sampling 
distance determined by the user. We used the open source libraries GDAL and 
OGR to implement these procedures. 

By automating these tedious yet critical image processing steps transparently 
to users, we expect the learning curve for using ZoneMAP will be greatly reduced. 

 
Users Data 
 

 All users’ data are saved in a secure online database so that across-season or 
multi-year comparisons of management zones can be performed to evaluate their 
consistency. Field measurements, such as yield or electrical-conductivity (EC) of 
soil, can be uploaded into the ZoneMAP database and used along with remote 
sensing imagery for delineating management zones. For each creation of a set of 
management zones, metadata is generated describing the procedure and datasets 
used such that the classification can be reproduced later. 

Users of ZoneMAP can download their results in three formats, raster image, 
grid text, and shape file. For each format, there are multiple projections to choose 
from. In addition, users can input application rates for each zone to generate a 
variable rate application map. 

 
TESTING 
 

 We tested the performance of ZoneMAP using data from two private farm 
fields. The two fields are for production and are not specifically designated for 
research. Despite uncertainties that may be associated with this data collection 
policy, we feel that it is important for us to evaluate the performance of 
ZoneMAP using real data by real users. 
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Fig. 2. The histograms of measurements of pH (a), P (b), K (c) and SOM (d) 
for the first testing field. 

Field 1 
 

The first field of 238.7 acres is located in Polk County, Minnesota, with 
soybeans planted in 2004 and wheat in 2005. The soil sampling conducted in the 
fall of 2005 after the harvest analyzed the contents of phosphorus (P), potassium 
(K), soil organic matter (SOM) and pH. Fig. 2 shows the histograms of the 
measurements. It is interesting to note that the distributions of P, K and SOM all 
exhibit a heavy tail towards higher values, while pH shows a moderate tail 
towards smaller values.  

 
Fig. 3. Temporal variation of the mean (and the standard deviation) of surface 
reflectance by Landsat at the blue and the NIR bands and vegetation indexes of 
NDVI and GNDVI for the growing season of 2004 (solid line) and 2005 
(dashed line).  



Eight Landsat images between June 2004 and August 2005 covered the first 
field. The temporal variations of surface reflectance measured by Landsat at the 
wavelengths of the blue and the NIR along with the corresponding NDVI and 
GNDVI are shown in Fig. 3. The cloud cover limited the satellite coverage to the 
first half of the 2004 growing season and to the second half of the 2005 growing 
season. 

Due to strong absorption by chlorophyll pigments at the blue wavelengths, the 
reflectance of band 1 of Landsat typically decreases as chlorophyll concentration 
increases with maturation and then increases as chlorophyll concentration 
decreases towards senescence. The trend is opposite to the reflectance at the NIR 
(and the green and red, not shown), which is positively linked with leaf cellular 
structure. The maximum reflectance in the NIR and the maximum vegetation 
indexes (NDVI and GNDVI) occurred on July 26 for 2004 (soybeans) and July 13 
for 2005 (wheat). These maximums likely occurred when crops reached full 
canopy. 

The optimal number of zones determined by ZoneMAP was 3 when two NIR 
images were used and the resulting zone map is shown in Fig. 4-a. Each zone is 
clearly defined into distinctive domains defined by NIR reflectance of 20040726 
vs. 20050713 (Fig. 4-b). The histogram distribution of SOM within each zone 
(Fig. 4-c) showed that these subfield zones have separated SOM into three classes, 
with the mean for each class being 3.15, 2.95, and 2.42. The means of pH values 
for each zone are 8.42, 8.19, and 8.36, respectively. The ANOVA test showed that 
classification of SOM and pH based on the management zones created using two 
NIR images at two growing seasons were significant, with Pr < 0.0001. 

The distributions of K and P are less distinctive than SOM and pH values; 
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Fig. 4. Management zones (a, left) and the corresponding scattering plot (b, 
UR) created using a pair of reflectance measurement at NIR by Landsat on 
July 26 2004 and July 13 2005. The histograms of SOM within each zone and 
for the entire field is plotted in c (LR). 
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however they do show a clear trend of variation among different zones. Higher 
values of K and lower values of P were found in zones 1 and 2, which have high 
and medium concentration of SOM, while lower K and higher P values mostly 
occur at zone 3, whose SOM concentration is the lowest. Similar variations of 
nutrients with SOM were reported by Fleming et al (2004; 2000), who suggested 
that lower productivity areas would remove less P resulting in a buildup of the 
soil test P-level. 

The management zones classified using NDVI or GNDVI did not separate 
SOM and pH into classes as distinctive as the zones based on the NIRs. Within 
zones created with NDVI or GNDVI, the spread of SOM in zone 2 covers that of 
both zones 1 and 3. Similarly less effective classifications were found for pH, K, 
and P as well. This result is not surprising. We found relatively high correlation (~ 
0.4) between SOM and the reflectance at the NIR as compared to ~ 0.3 between 
SOM and the two vegetation indexes. Since reflectance at the NIR is primarily 
affected by the leafy structure of crops, our results suggested that cellular 
structure of canopy correlates well with the soil organic matter concentration. 

The results mentioned above were based on the two Landsat images acquired 
at the full canopy stage of the growing seasons. We also tested classifications 
using images at other growing stages. The subfield zones were not as effective in 
terms of partitioning SOM. However, they may be more effective for other 
applications, say fertilizer application. 

 
Field 2 
 
The second field is located in Potter County of South Dakota with an area of 

112.0 acres. The rotation of crops from 2003 to 2005 was corn, sunflowers and 
spring wheat. Using a yield map collected in 2003 (Fig. 5-a) and an NDVI map by 
Landsat on August 25, 2004 (not shown), the farmer created four subfield zones 
(Fig. 5-b), to determine the application rates of urea for the year of 2005. As a 
result of this variable-rate application, the spring wheat planted in 2005 delivered 
a much more uniform yield (Fig. 5-c). While the mean yields of each crop are 
about the same, 116.78 bu/ac for corn and 114.29 bu/ac for spring wheat, the 
standard deviation (SD) was reduced from 30.76 bu/ac for corn of 2003 to 19.64 
bu/ac for spring wheat of 2005. 

Some farmers do not have yield monitoring capabilities, so we tested whether 
replacing the yield map with satellite imagery, preferably close to the time of 
harvest, can generate an equally good zone map. The NDVI derived from Landsat 
on September 1, 2003 (Fig. 5-d) showed some correlation with the corn yield of 
2003 (Fig. 5-a).  And the zone map created using the NDVIs from September 1 
2003 and August 25 2004 is shown in Fig. 5-e, whose zones 1, 3 and 6 roughly 
correspond to the zones with low, moderate and extra high rate in Fig. 5-b, 
respectively.  

Even though the management zones shown in Figs. 5-b and 5-e are similar, 
there are marked differences, especially for the zone designated as “extra high 
rate”. Actually, we have tested with combinations of different bands, indices, or 
dates, and none can reproduce the zone map created using yield data. This 
corroborates one argument that has been frequently stressed by our end users who 



are early adopters of precision agriculture, “it is critical to monitor the yield and 
use it in zone management”.  

 

 

 

 

 
Fig. 5. Using 2003 yield map of corn (a, top) and 2004 NDVI map by Landsat 
of August 25, 2004, the farmer created the management zones (b, 2nd row) as a 
basis for determination of variable rate fertilizer application resulting in a more 
uniform yield for 2005 spring wheat (c, 3rd row). The zone map (e, bottom) 
when the yield data of 2003 is replaced with NDVI data of September 1, 2003 
(d, 4th row) 

 



 
CONCLUSIONS 

 
With the rising costs of raw materials and chemicals, a rapidly degrading 

natural environments, and increasing global population, we believe precision 
agriculture is a critical step towards sustainability. ZoneMAP is a web-based 
decision support tool designed to promote precision agriculture. With its ease of 
use, extensibility, and access to a rich archive of existing remote sensing data, we 
hope this tool entice more users to adopt variable rate application through subfield 
zone management. By testing with real field data from our end users, our results 
confirm that remote sensing data can be effectively incorporated into delineation 
of management zones despite many limitations. We also recognize that field 
surveys of soil attributes and nutrient conditions are important and sometimes 
cannot be replaced by today’s remote observations. However, a preliminary 
mapping of subfield zones using remote sensing data may help to design a cost-
effective plan.  
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