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Abstract. Soil available nutrient (SAN) plays an important role in crop growth, yield formation, 
and plant-soil-atmosphere system exchange. Nitrogen (N), phosphorus (P) and potassium (K) are 
recognized as three primary nutrients in crop production. Accurate and timely information on SAN 
conditions at key crop growth stages is important for developing beneficial management practices. 
While traditional field sampling can obtain reliable information for limited number of sites, it is 
infeasible for spatially intensive sampling across an extended area at frequent temporal intervals. 
With recent advancements in Earth observation (EO) technologies, both hardware and software, 
spatial-temporal information on soil nutrients and crop growth conditions can be successfully 
captured. Conventional methods to link EO data with SAN conditions rely heavily on statistical 
models. The robustness and accuracy of these models require further improvements. In this 
study, we developed a new approach to improve model performance by integrating the World 
Food Studies (WOFOST) model and time series EO data. First, the WOFOST model was modified 
to simulate the daily nutrient-limited crop growth. Then the Ensemble Kalman Filter (EnKF) 
method was used to assimilate the time-series data acquired by an unmanned aerial vehicle 
(UAV) into the modified WOFOST model to simulate crop growth. Through comparison of the 
above two simulations, errors in the nutrient-limited crop growth caused by inaccurate SAN input 
were obtained. By eliminating these errors, a method was developed to estimate the SAN status. 
Finally, a field experiment was conducted on spring maize to assess the SAN estimation 
performance of the proposed method. The results demonstrate that, in addition to providing 
improved spatial details, the accuracy of the SAN estimation also improved through the synergy 
of the UAV data and WOFOST model. 
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1 Introduction 
As an important component in precision agriculture (Robert 2002), variable rate fertilization (VRF) 
is a management practice to optimize soil nutrient utilization. Studies have demonstrated that 
VRF is beneficial to boost yield and protect the environment (Basso et al. 2013&2016). With the 
advancement of mechanized farming and control technologies, the operability and accuracy of 
the VRF have been significantly improved through a reasonable prescription map derived from 
timely soil nutrient content (Reyes et al. 2015). However, conventional methods for soil nutrient 
content measurement, include field surveys (Janik et al. 1998) and ground soil reflectance 
spectroscopy (Leon et al. 2003), can hardly meet the need for VRF application because they are 
time consuming, costly and with low application value (Lamsal 2009). Alternative methods are 
needed for operational applications over large areas.  
A number of remote sensing based models have been proposed to address the issues, including 
a direct estimation model using soil spectrum (Leon et al. 2003) and an empirical model based 
on crop growth status (Meng et al. 2015). Soil reflectance spectrum can be successfully exploited 
to predict soil nutrients (Leon et al. 2003; Tian et al. 2012; Zheng et al. 2016). However, as 
reflectance information is only acquired for bare soil surface, it cannot capture the nutrient 
information below the surface or the surface with any coverage (crop, snow or water); hence, its 
application is limited (Meng et al. 2015). Using an indirect method to replace the direct 
spectroscopy has been a research hotspot. Statistical models can be built by combing soil 
available nutrient (SAN) contents and crop growth parameters estimated from multispectral 
remote sensing (RS) data. Such models can overcome the limitations of the direct estimation 
model and field surveys by estimating the real-time available nutrient contents with low cost and 
high efficiency (Meng et al. 2015; Cheng et al. 2018). However, the disadvantages of the statistical 
models, including low stability and accuracy, should be addressed before VRF application.  
Crop models are able to simulate crop growth and provide reliable information on crop status 
throughout the growing season (Gerakis et al. 1998; Ma et al. 2013), therefore provide a feasible 
alternative to replace the statistical methods. Furthermore, as soil nutrient is usually an important 
input variable to crop models, and the changes in soil nutrient content can be easily revealed in 
crop growth simulations, a more stable relationship between the crop growth status and soil 
nutrient content can be established using a crop model. However, simulating crop growth at the 
field or regional scale requires calibration of additional parameters, which is difficult to conduct 
through field sampling. This has led to the development of time-series remote sensing (T-RS) 
data assimilation into crop models  (Ma et al. 2013; Boogaard et al. 2013; Chen et al. 2014; Dong 
et al. 2013; Huang et al. 2015). Among them, the ensemble Kalman filter (EnKF) assimilation 
method is a widely used method based on variable updating (Meng et al. 2007; Huang et al. 2016; 
Cheng et al. 2016). Crop growth parameters can be accurately simulated by assimilating T-RS 
into a crop model. 
In this study, we proposed a new method to estimate SAN contents of a spring maize field in 
Hongxing Farm. The World Food Studies (WOFOST) model was modified and calibrated to 
simulate nutrient-limited crop growth. The EnKF was used to assimilate time-series remote 
sensing data acquired by an unmanned aerial vehicle (UAV) into the modified WOFOST model 
(UAV-WOFOST). Through comparison of the two different simulations, the SAN contents can be 
estimated. The estimation accuracy was assessed using field data and complete details of the 
SAN estimation method and accuracy analysis are presented in the following sections.  

2 Materials and methods 

2.1 Study area and field campaign 
This study was conducted in an experimental plot located in the southeast of Hongxing Farm 
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(48°09ʹ N, 127°03ʹ E), Heilongjiang Province, Northeast China. Hongxing Farm is within a mid-
temperate monsoon climate zone characterized by an average annual precipitation of 548.8 mm 
and an average annual cumulative temperature (base 10°C) of 2293°C (2014). The growing 
season of spring maize extends from the beginning of May until mid-October. The experimental 
plot is about 15.7 hectare (ha), and the soil is black soil with a depth of 0.9–1.2 m. The 
experimental plot is named as 5-1-2 in this study. The location of the experimental plot is shown 
in Fig. 1. 

 
Fig. 1. Location of study area and the field observation sites in 2015 

Experiments were conducted in 2015. Basic SAN content was collected from May 10 to 15. Totally 
27 sampling quadrats (shown in Fig. 1.) were established in the plot using the isometric sampling 
method (Cheng et al. 2018) (with fixed distance of 100 m). Each quadrat was 10 m × 10 m, and 
data was collected at three sampling points along the diagonal (shown in Fig. 2.). At each 
sampling point, a soil sample to a depth of 40 cm was obtained by using a soil auger. After drying 
and pulverizing the samples, the basic N, P and K contents were tested in the lab. The mean 
value of the three points as the SAN content of the quadrat. Leaf area index (LAI) was measured 
on June 29 and 30 using an LAI-2000 (Li-Co 1992). Totally 34 LAI sampling quadrats were 
established using similar approach as SAN acquisition, but with a quadrat of 6 m × 4 m (shown 
in Fig. 2.). Yield was measured on October 5 and 6 using the same LAI quadrats. For each 
quadrat, three plants along the diagonal were selected for grain yield determination.  

 

Fig. 2. The layout of and samples in different quadrats 
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2.2 WOFOST model calibration and modification 
The WOFOST model was selected to simulate crop growth in this study. The model, as a primary 
member of the Wageningen crop models (van Ittersum et al. 2003) and a core component of the 
Crop Growth Monitoring System (CGMS) (Boogaard et al. 1998), can provide reliable crop growth 
simulations because of its comprehensive mathematical formulations of key physical and 
physiological processes, simulation of soil processes, and ability to overcome issues such as 
abnormal weather conditions and natural disasters (Ma et al. 2013). Calibration is required to use 
the model under different meteorological, soil and management conditions. Farm and field data 
were collected to calibrate the core parameters in this study. Farm data included historical field 
and management data, such as historical yield and daily meteorological data. Field data included 
yield, LAI, biomass, soil nutrients, and crop phenological stages for calibration.  
 As the nutrient module in the original crop model is only used at the end of a growing season, 
modification must be performed to conduct nutrient-limited crop growth within the growing season. 
The modification included three aspects: the reintegration of modules to adjust the calling 
sequence of modules, formulation of the daily nutrient uptake, and combination of SAN content 
and fertilizer amounts. The detailed introduction of the modifications and the two calibration 
methods can be found in our previous papers (Cheng et al. 2016 &2018) 

2.3 UAV data assimilation 
The Earth observation (EO) data used in this study were acquired using an UAV, with a five-band 
mini multiple camera array (MCA) system. The camera provides images of 1280 × 1024 (1.3 M) 
pixels in five bands centred at 470 nm (blue), 550 nm (green), 690 nm (red), 710 nm (red edge) 
and 810 nm (near-infrared). Three flights were conducted in 2015, and the detailed specifications 
are listed in Table 1. 

Table 1. UAV acquisitions 

Date Orbit altitude 
(m) 

Spatial 
resolution (m) 

Flight line 
length (km) Flight line overlap (%) Number of 

Images 
June 30 100 0.054 6.4 50% (longitudinally) 35% 

(laterally) 
208 

July 29 100 0.054 7.4 55% (longitudinally) 40% 
(laterally) 

226 

August 30 100 0.054 7.8 60% (longitudinally) 40% 
(laterally) 

237 

LAI was selected as the state variable to be derived from NDVI calculated from the EO data for 
assimilation： 

 NDVI = (NIR-RED) / (NIR+RED)                                           (1) 

where NIR and RED are the reflectance of the near-infrared band (800-820 nm) and the red band 
(680-700nm), respectively. A simple regression model (listed in Table 2) was built to estimate LAI 
from NDVI. The model is represented by a piecewise linear function, with two different equations 
separated at DVS = 1 (peak LAI). The statistical model was built using data collected in 2014 
(Cheng et al. 2018):  

Table 2. The regression models for LAI calculation. 

Time  Model 
DVS = 0–1 LAI = 5.828NDVI − 0.784 
DVS = 1–2 LAI = 4.564NDVI + 0.026 

The EnKF method was used to assimilate the time-series UAV data into the WOFOST model. 
The method (Burgers et al. 1998) is based on Monte Carlo ensemble generations and performs 
a model forecasting where the state variables are propagated forward in time based on the model 
dynamics and a filter update in which the ensemble of the model state is adjusted through 
incorporating available observations (Ma et al. 2013). EnKF is a major assimilation method that 
can be easily applied to the WOFOST model (Cheng et al. 2013&2018; De Wit et al. 2007). The 
core algorithm is shown in the following equation: 
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Aa = Af + Ac HT (HAc HT + Dc)-1(Dt - HA) = Af + K (Dt - HA)                    (2) 

where Aa is the optimal estimated ensemble, Af is an ensemble of forecast, 𝐾	is the Kalman gain 
matrix, Dt is an ensemble of observation, and HA is typically equal to 1. For each pixel (0.5 × 0.5 
m), the EnKF algorithm integrates the UAV-based LAI and model-simulated LAI to generate the 
forecast ensemble (Ma et al. 2013). The resulted ensemble was used as the input LAI in the next 
step for crop growth simulation. 

2.4 SAN estimation  
In this study, we proposed a new method for SAN content estimation. This method was designed 
based on the influence of the mid-season SAN absorption amounts on crop growth. To express 
the SAN estimation procedure clearly, the procedure of crop growth simulation was divided into 
two stages: growth simulation stage and SAN estimation stage. At the growth simulation stage, 
crop growth was simulated using the WOFOST model with EnKF assimilation method to ensure 
the accuracy of the input crop growth status variable (Biomass, soil water content, and LAI). Then, 
the SAN content was estimated at the second stage. Using the similar crop growth simulation 
method at the first stage, the UAV-WOFOST based short-term crop growth (LAI) was simulated. 
Additionally, the nutrient module in the WOFOST model was used to simulate the nutrient-limited 
LAI. Because the inadequate calibration of soil nutrient parameters at the pixel scale, the two 
types of LAI simulation yield different results. Nevertheless, the nutrient-limited LAI can be 
calculated at different levels by varying the input nutrient within a large range. Then the target 
SAN contents were determined via a comparison with the UAV-WOFOST based LAI. In this study, 
the N, P and K were estimated separately. For example, when N was estimated, the mean values 
of P and K for the plot were calculated and used in the nutrient module. The processes of crop 
growth simulation and SAN estimation are shown in Fig. 3. 

 
Fig. 3. The processes of soil nutrient estimation. 

3 Results and discussions 

3.1 Calibration of the WOFOST Model 
The input parameters of the WOFOST model include meteorological, soil, and crop parameters. 
Daily meteorological data were obtained from the weather station in Hongxing Farm. The soil and 
crop parameters needed to be calibrated through field data collection. Based on sensitivity 
analysis (referred in the previous work (Cheng et al. 2018), 21 parameters significantly sensitive 
to LAI were calibrated in this study. The values of the calibrated parameters are listed in Table 3.  

Table 3. Crop and soil parameter calibration results of the WOFOST model. 

Parameters Description Values Unit 
TSUM1 Temperature sum from emergence to anthesis 890 °C*d 
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TSUM2 Temperature sum from anthesis to maturity 710 °C*d 
CVL Conversion efficiency of assimilates into leaf 0.64 kg/kg 
CVO Conversion efficiency of assimilates into storage organ 0.81 kg/kg 
CVR Conversion efficiency of assimilates into root 0.70 kg/kg 
CVS Conversion efficiency of assimilates into stem 0.66 kg/kg 
FRTB Fraction of total dry matter to root 0–0.40 kg/kg 
FOTB Fraction of above ground dry matter to storage organs (DVS = 0.1–1.7) 0–0.74 kg/kg 
FLTB Fraction of above ground dry matter to leaves (DVS = 0.1–1.7) 0.20-0.75 kg/kg 
FSTB Fraction of above ground dry matter to stem (DVS = 0.1–1.7) 0.06–0.57 kg/kg 

NBASE Mean basic soil nitrogen content 388 mg/kg 
PBASE Mean basic phosphorus content 32 mg/kg 
KBASE Mean basic potassium content 137 mg/kg 

NF Quantity of nitrogen fertilizer 261.5 kg/ha 
PF Quantity of phosphorus fertilizer 138 kg/ha 
KF Quantity of potassium fertilizer 150.5 kg/ha 

SMTAB Volumetric moisture content (pF = −1–6) 0.084–0.41 cm3/cm3 
SMFCF Soil moisture content at field capacity 0.289 cm3/cm3 
SMW Soil moisture content at wilting point 0.081 cm3/cm3 
SM0 Soil moisture content of saturated soil 0.39 cm3/cm3 

RDMCR Maximum root depth allowed by soil 0–1.7 m 

The calibrated WOFOST model was used to simulate spring maize growth of the experimental 
plot in 2015. Nutrient-limited LAI (WOFOST based LAI) and yield were selected as the indices to 
assess the parameter simulation accuracy. The analysis results (listed in Table 4) indicate that, 
compared with the original model, the calibrated model showed an improved simulation accuracy 
and reduced RMSE for both LAI and yield. 

Table 4. The LAI and yield simulation accuracies of WOFOST model. 

Index Method R2 RMSE 
LAI Original model 

Calibrated model 
0.31 
0.44 

0.31 
0.28 

Yield  Original model 
Calibrated model 

0.21 
0.37 

618.23 
576.55 

3.2 Results of LAI simulation and assimilation 
Using the linear regression model and the time-series UAV data, time-series LAI was estimated. 
LAI derived from the UAV data were then assimilated into the WOFOST model to update the 
model simulated LAI and generate UAV-WOFOST based LAI for SAN estimation. The accuracies 
of the LAI derived from the two methods were assessed using field LAI. The results (shown in 
Fig. 4.) indicate that the linear regression model can provide accurate LAI simulation (R2 = 0.61; 
RMSE = 0.22). Benefit from the mechanism of the WOFOST model, the accuracy of the UAV-
WOFOST LAI was improved slightly (R2 = 0.63; RMSE = 0.22). Furthermore, compared with 
results of Table 4, the UAV-WOFOST based LAI has an obvious higher accuracy than WOFOST 
based LAI (R2 = 0.44). The difference of the UAV-WOFOST based and WOFOST based LAI 
simulation accuracy means the input SAN values are inaccurate, which is important for us to 
design the SAN estimation method by adjusting the WOFOST based LAI to be close to UAV-
WOFOST based LAI by varying the input SAN and then determine the target SAN contents.  

 

(a)                                                                                         (b) 
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Fig. 4. Analysis results of UAV based (a) and UAV-WOFOST based LAI (b) simulations. 

3.2 Results of SAN estimation 
The proposed SAN estimation algorithm was applied to create a connection between the UAV-
WOFOST based and nutrient-limited crop growth for SAN content estimation. The ranges of N, P 
and K were set to 0–800, 0–250, and 0–600 mg/kg, respectively. The mean values of the 
experimental plot for N-P-K are 388-31-137 mg/kg. The start of SAN estimation stage is on June 
10 and the three end dates are June 30, July 31 and August 30 to include the three acquired UAV 
images. Then the SAN estimation method was repeated to estimate the SAN contents (new 
method based SAN contents) on the three dates. Additionally, a common statistical method was 
applied to estimate the SAN contents (statistic model based SAN contents) using NDVI and SAN 
contents. The estimation accuracies of the proposed method (the new approach) and the 
statistical method were also assessed using field data. The analysis results of N, P and K are 
listed in Table 5. The results show that the new approach can provide SAN estimations with higher 
accuracy than the statistic model. Applying the new method on June 30 for N and on July 29 for 
P and K can obtain SAN estimations with highest accuracy. 

Table 5. The SAN estimation accuracies of new approach and statistical model. 
Nutrient Time Method R2 Method R2 

N June 30 New approach 0.51 Statistic model 0.24 
July 29 0.34 0.13 

August 30 0.16 0.05 
P June 30 New approach 0.25 Statistic model 0.09 

July 29 0.39 0.15 
August 30 0.09 0.03 

K June 30 New approach 0.17 Statistic model 0.06 
July 29 0.21 0.11 

August 30 0.11 0.02 

Meanwhile, the results also show that the K estimation accuracy was lower than the other two 
nutrients. The low stability of K in soil could be an important reason for its lower estimation 
accuracy. The potassium ion is the main form of K in soil, which means that it can be easily 
influenced by soil water flow. To analyze the K’s stability, we calculated the coefficient of variance 
(CV). The CV of field K, N, P were calculated as K 11.31%, N 8.59%, and P 9.81%. The low 
stability brings difficulties in K estimation, and optimizing the K uptake action mechanism in both 
crops and soil can be a feasible method to improve the estimation accuracy of K. 

Conclusions 
In this study, we proposed a SAN content estimation method based on the modified WOFOST 
model and time-series UAV data. In this approach, the UAV-WOFOST based LAI is simulated by 
assimilating the UAV derived LAI into the modified WOFOST model, and the nutrient-limited LAI 
of the same period is estimated by integrating the nutrient module and the water-limited crop 
growth simulation results. By comparing the LAI derived from the two simulations, the SAN 
content can be estimated. The accuracy analyses indicate that the new approach is an effective 
method to improve the SAN estimation accuracy by addressing problems, including time 
consuming, costly, low stability and with low application value, associated with the existing SAN 
content monitoring method. 
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