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Abstract. In precision agriculture, monitoring of soil moisture plays an essential role in correct 
decision making. In practice, regular mesh installation, or large random deployment of moisture 
sensors over a large field is not possible due to cost and maintenance prohibitions. Consequently, 
direct measurement of moisture is possible at only a few points in the field. A value for the 
moisture may then be estimated for the remaining areas using a variety of algorithms.  
It is shown that although soil moisture varies spatially, the values are typically spatially correlated. 
Consequently, they have a sparse representation in the frequency domain. For such signals, 
compressive sensing (CS) has proven to be an effective tool in estimating the missing variable 
values, from sensed values. 
CS theory is based on a l0-norm optimization problem which is non-deterministic polynomial-time 
(NP) hard problem and requires an exhaustive search over all possible locations of the nonzero 
entries in the corresponding sparse signal. For most real-life applications, this optimization 
translates into a very large-scale problem which takes substantial time and computing resources 
to solve. This is usually circumvented by instead using an approximation of the l0-norm.  
The l0-norm presents two challenges when incorporated into an optimization problem. It is both 
non-smooth and non-linear.  Smooth approximations of the zero norm exist in various linear and 
non-linear forms. The nature of each approximation makes it more apt for a different type of 
application (with respect to size of the problem, nonconvexity of the original problem, and the 
requisite computational speed). In this paper, some different approximations of the zero norm are 
compared to determine which type is more suited to soil moisture application problems.  
The data set that is used for numerical experiments is described. It is extracted from the simulation 
of a simple field using the state-of-the-art TIN-based Real-time Integrate Basin Simulator (tRIBS). 
The problem is then solved for different approximations of l0-norm and a detailed comparative 
study is presented. 
Keywords. Moisture monitoring, Precision agriculture, Compressive sensing, l0-norm 
optimization.   



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 2 

  

The authors are solely responsible for the content of this paper, which is not a refereed publication.. Citation of this work should state that it 
is from the Proceedings of the 14th International Conference on Precision Agriculture. EXAMPLE: Lastname, A. B. & Coauthor, C. D. (2018). 
Title of paper. In Proceedings of the 14th International Conference on Precision Agriculture (unpaginated, online). Monticello, IL: International 
Society of Precision Agriculture.  



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 3 

Introduction  
The Increasing population and demand on food sources on the one hand, and global water crisis 
on the other hand, create a strong motivation for governments, farmers, engineers, scientists and 
researchers to develop more efficient irrigation methods (Rogers, Llamas, & Martinez-Cortina, 
2006). In precision agriculture we seek to cut wasteful use of water by delivering the correct 
amount to the crop over its growth cycle and in response to varied environmental conditions 
(Zhang, 2015). This will improve yield, leading to an overall water saving.  
However, precise closed-loop control of irrigation, and analysis of moisture on a field is not 
possible without gathering sufficient and accurate information. Traditional moisture 
measurements method as those found in small controlled operations such as green houses 
(Hamouda & Elhabil, 2017) are not scalable to large operations due to cost and maintenance 
issues. Remote sensing methods are scalable to such large fields (Gruhier et al., 2010), however 
in-demand data at the correct resolution are expensive, or not available. 
In other engineering applications with similar challenges, a successful approach has been to 
combine direct measurements with estimation theorems such as compressive sensing (CS). CS 
theory is based on a l0-norm optimization problem which is NP-hard problem and requires an 
exhaustive search of all possible locations of the nonzero entries. The huge computational burden 
means that for large scale and real-time problems, it is nearly impossible to solve directly. The l1 
minimization yields similar (or even the same) result as the l0 minimization in many cases of 
practical interest (Patel & Chellappa, 2013). However, in some problems it is in fact an extremely 
poor approximation to use (Candes, Wakin, & Boyd, 2008).  
Compressive Sensing has been applied to the moisture estimation problem, but in a limited 
capacity (X. Wu, Wu, Liu, & Zheng, 2011).  Effective application of CS theory to the moisture 
problem would imply that direct sensor placement will be limited to only a few points in the field, 
and the recorded data shall be used to estimate the moisture value at all other field locations. The 
scarcity of CS theory application in the moisture estimation problem means that a good insight on 
the type of approximation which leads to least error in the moisture estimation problem, is lacking. 
Accordingly. the main purpose of this paper is to present a comparative study between several 
different methods for approximation of the l0-norm optimization when applied to the moisture 
estimation problem. We conclude the paper by giving a recommendation based on our findings.  
The remainder of this paper is organized as follows. At first, CS theory is explained briefly. Next, 
CS theory is formulated and applied to the moisture estimation problem. Subsequently, a section 
is dedicated to the discussion about data set that is utilized for numerical experiments. The 
optimization problem is then solved with simple l1-norm approximation and some more 
sophisticated approximations and the results are compared.  

Compressive Sensing (CS) Theory 
CS (Donoho, 2006) is a concept in information theory and signal processing that is useful for 
reconstructing sparse signals from measurements at rates below the Nyquist rate (Patel & 
Chellappa, 2013). 

Let x be a discrete time signal which can be considered as a N×1 column vector in ℝ!. x is K-
sparse if it has only K nonzero elements. A signal is considered as a sparse signal if K<<N.  
The lp – norm of a vector is defined as, 

  ‖𝑥‖" = (∑ |𝑥#|")#

!
", (1) 

and the l0-norm is defined as the limit p→0 of the lp-norm, 

  ‖𝑥‖$ = lim
"→$

‖𝑥‖"
" =	 lim

"→$
∑ |𝑥#|"# . (2) 

The l0-norm of a signal counts the number of nonzero elements in the signal. Thus, if x is K-
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sparse, ‖𝑥‖$ = 𝐾.  
In practice many real signals are not exactly sparse, instead they are compressible. A signal is 
compressible if the magnitude of the coefficients (when sorted in a decreasing order) decays 
according to a power law (Patel & Chellappa, 2013). CS theory can be applied to compressible 
signals as well. In this paper, the phrase “sparse signal” is used to refer to both exactly sparse, 
as well as compressible signals.  

Let x be a sparse signal of size N. It is possible to reconstruct it from M samples where 𝑦&×( =
𝛷𝑥.  𝜱	is usually referred to as the measurement matrix in CS theory. The problem of finding the 
sparsest solution can be formulated as the following optimization problem (Patel & Chellappa, 
2013), 

  𝑥1 = argmin
)
‖𝑥‖$	subject	to	 	𝑦 = 𝛷𝑥. (3) 

where 𝜱 and M must satisfy sets of constraints, some of which shall be discussed in the next 
section (Patel & Chellappa, 2013). Evidently, this is a NP-hard problem and solving it for large 
scale problems is impractical. In practice we seek to solve a reasonable approximation of this 
problem, where a small degree of inaccuracy is traded for large reductions in computational loads. 
In the next sections, some of these approximations are introduced and applied to the problem. 

Application of CS Theory to the Moisture Estimation Problem 
As discussed previously CS theory is only applicable for estimation of sparse/compressible 
signals. Obviously, moisture data over a field is not a sparse signal. Thus CS theory cannot be 
directly applied to the moisture estimation problem. It is however possible to apply CS theory to 
a modified form of the problem as shall be demonstrated next. 
Important factors that mostly effect moisture content are precipitation, topography, soil properties, 
soil depth and vegetation (Gwak & Kim, 2016). Most of these factors do not change rapidly and 
can be considered almost constant over reasonable periods of time. This stationary feature 
means that while the absolute value of the soil moisture changes in time, the relative moisture 
between two points is predictable and changes much more slowly. In other words, soil moisture 
data is spatially correlated (X. Wu et al., 2011). Therefore, although moisture data is not a sparse 
signal itself, it can be transformed into the frequency domain using linear transformation such as 
DCT (Discrete Cosine Transformation) or DFT (Discrete Fourier Transformation) and in that 
domain, it will represent a sparse signal. 
Let x be the moisture data vector at N locations that should be estimated using only M 
measurements. Since the problem of optimal sensor placement (optimal selection of M 
measurements from N points) is out of scope of this paper, simply assume that M measurements 
are randomly selected from the N points.  Suppose that 𝜱	is the measurement matrix with M rows 
and N columns such that entries of each row contains N-1 zeros and 1 one. Hence, the 
measurement vector y is achieved by, 
	 	 𝑦 = 𝛷𝑥.	 (4) 
Since x is not sparse, the DCT transformation is used to transform x to frequency domain. Let Ψ 
be the IDCT (Inverse Discrete Cosine Transformation) matrix. Accordingly, the new vector α can 
be defined such that, 
  𝑥 = 𝛹α. (5) 
Indeed, α is the transformed moisture data in the Fourier domain and therefore, it is a sparse 
signal. Thus Eq. 3 can be reformed as, 
  𝛼1 = argmin

*
‖𝛼‖$	subject	to	 	𝑦 = 𝛷𝛹α, (6) 

where, 

  𝑥1 = 𝛹𝛼1. (7) 
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As mentioned previously, M and 𝜱 must satisfy some constraints in CS theory. In approximation 
of the problem with the l1-norm, M should be,  

  𝑀 ≥ 𝐶𝐾𝜇+(𝛷, 𝜓) log𝑁, (8)  

where C is a small constant, K is the number of nonzero elements of α and 𝜇(Φ,ψ) is defined as, 

  𝜇(𝛷,𝛹) = √𝑁 max
(,#,.,!

M< 𝛷# , 𝛹. >M. (9) 

Eq. 8 states that the minimum number of sensors for fine approximation of N points depends on 
the sparsity of the signal and the incoherency between Ψ and 𝜱.	Fortunately, it can be shown that 
random selection of the measurement matrix	𝜱,	makes it wholly incoherent with the Fourier basis 
matrix	Ψ (Candes & Wakin, 2008). That it, 

  𝜇(𝛷,𝛹) = 1. (10) 
Thus, the minimum number of sensors that are required for fine approximation depend on the 
sparsity of the signal. 
Provided the above are satisfied, the moisture estimation problem becomes completely 
compatible with CS theory. In the next sections, various methods for approximation and solving 
the optimization problem will be introduced and applied.  

Data Sets for Numerical Experiments 
To solve the moisture estimation problem, a data set with sufficiently good resolution is required. 
Unfortunately, most real moisture data recordings that exist, are not at the required resolution or 
do not correspond to large fields. For this reason, data that is used in this paper is generated by 
state-of-the-art TIN-based Real-time Integrate Basin Simulator (tRIBS). This simulator performs 
distributed hydrogeomorphic simulations over complex basins using Triangulated Irregular 
Networks (TIN) to form the basis for multiple-resolution representations (Vivoni, Teles, Ivanov, 
Bras, & Entekhabi, 2005).  
Data that is used in this paper is a simulation of the Peacheater Creek Watershed. Peacheater 
Creek watershed covers an area of 64 km2 and is located in the northeastern corner of Oklahoma.   
A simple map of this location is shown in Fig 1 (S. Wu, Li, & Huang, 2007). Data is related to the 
conditions of summer 1991 and contains soil moisture values at the depth 100 mm at 6095 points 
of the field at 80 hours after start of the simulation. 
In compressive sensing it is always desirable to have signals with higher degrees of sparsity. A 
simple way to increase sparsity in the frequency domain is to increase the correlation of data in 
the time domain by sorting them in an ascending order. The assumption of exactly sorting the 
moisture values is not practical, since if all moisture values are known a priori, estimation of 
moisture is no longer required. In practice, we derive a sorting index based on existing measured 
data, and use this index to sort all future values. This means data will not be exactly sorted, 
instead they will be approximately sorted in ascending order. The variations will show as high 
frequency low power harmonics which are negligible. A more detailed discussion on methods for 
robust sorting of field data is out of scope of this paper. For instant, coarse-grained monotonic 
ordering is a good method (X. Wu et al., 2011).  
Another source of data variations are the measurement noises which corrupt true moisture values. 
If the levels of such noises exceed a certain amount when compared to the signal levels, the 
solution requires a robust compressive sensing approach. Basis Pursuit DeNoising (BPDN) 
formulation (Chen, Donoho, & Saunders, 1998) and solving it with iterative thresholding 
algorithms (Blumensath & Davies, 2008) is also a good approach for such situations. 
The entire data set that containing sorted values at 6095 points is shown in Fig 2. 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 6 

 
Fig 1. Peacheater Creek Watershed 

 
Fig 2. Whole data set at 6095 points sorted in increasing order. 

Solving Optimization Problem Using Various Approximations 
In this chapter, various approximations for solving the optimization problem in Eq. 6 are 
introduced. 

Simple l1-norm Approximation 
Many CS problems can be solved properly with simple l1-norm approximation (Donoho, 2006). 
The formulation of the problem is similar to Eq. 6 as follows, 

  𝛼1 = argmin
*
‖𝛼‖(	subject	to	 	𝑦 = 𝛷𝛹α. (11) 

Eq. 11 is a convex linear problem and easy to solve.  
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Weighted l1-norm Approximation 
While in many cases, accurate results can be achieved by using simple l1-norm approximation, in 
some instances, the l1-norm optimization will produce totally false results when compared to the 
true l0-norm solution. For example, consider x=[0 1 0]T, the measurement matrix, 

  𝛷 = Q2 1 1
1 1 2S,

   

and the measurement vector y=𝜱x=[1	1]T.	Solving the problem using l1-norm approximation gives 
𝐱1=[1/3 0 1/3]T which is evidently a bad estimation (Candes et al., 2008). This simple example 
serves to illustrate that always using the l1-norm is not a good approach for the relaxation of 
original problem. 
The main difference between l1-norm and l0-norm is that in the l1-norm, the magnitude of the 
nonzero elements is considered, but the l0-norm only accounts for the number of nonzero 
elements. One appropriate approach to make l1-norm a more accurate approximation for l0-norm 
is to add weights such that the gap between the two norms may be arbitrarily reduced.  With 
weights, Eq. 3 becomes, 

  𝑥1 = argmin
)
‖𝑊𝑥‖(	subject	to	 	𝑦 = 𝛷𝑥, (12) 

where, 

  𝑤# = Y
(
|)0#|
, 𝑥1# ≠ 0

∞, 𝑥1# = 0
. (13) 

If the above example is solved using Eq. 13 with W=diag([3 1 3]T), then the result will be 𝐱1=[0 1 
0]T which is precisely correct. The large entries in wi allow the solution x to take up larger values 
coinciding with the indices where wi is small. Thus, the weighted l1-norm approximation behaves 
like a l0-norm. It is of course impossible to construct W accurately because it depends on the 
solution of the problem which is not known a periori. This means, solving the Eq. 12 directly 
without knowing true values for x is not possible (i.e. the solution is needed to formulate the 
problem). To overcome this, iterative methods are used to solve the problem via weighted l1-norm 
approximation (Candes et al., 2008). A popular iterative algorithm which is implemented in this 
paper for comparison is the following (Candes et al., 2008): 

1. Set wi
(0)=1, for i=1,…,n. 

2. Solve the weighted l1 minimization problem: 
𝑥(2) = argmin

)
]𝑊(2)𝑥](	subject	to	 	𝑦 = 𝛷𝑥. (14) 

3. Update the weights: 

  𝑤#
(24() = (

5)#
(%)546

. (15) 

4. Terminate on convergence or if l reach to specific number. Otherwise, increment l and go 
to step 2. 

The value of ϵ in step 3 should be chosen to be slightly smaller than the expected nonzero 
magnitudes of 𝐱1. Generally, the recovery process tends to be reasonably robust to the choice of 
ϵ. The moisture estimation problem in this paper is solved using this approximation with ϵ=5. The 
results will be shown in the next section.  

FOCUSS Algorithm 
One traditional method for reconstructing signals from some known values according to linear 
equation Eq. 4 is to solve l2-norm minimization problem, 
  𝑥1 = argmin

)
‖𝑥‖+	subject	to	 	𝑦 = 𝛷𝑥. (16) 
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The solution of Eq. 16 is unique and is computed as, 
  𝑥1 = 𝛷4𝑦, (17) 

where 𝛷4 denotes the Moore-Penrose inverse (Campbell & Meyer, 2008). Although the solution 
has some computational advantages (the it has a closed for solution), but it does not provide 
sparse solutions. Indeed, it has a tendency to spread the energy over a large number of entries 
of x instead of putting all the energy into a few entries. Thus, it cannot be a good solution in 
reconstruction of sparse signal with low measurements. One modified algorithm of this simple 
solution, is FOcal Underdetermined System Solver (FOCUSS) (Gorodnitsky & Rao, 1997). 
FOCUSS algorithm is based on a weighted minimum norm solution as follows, 

  𝑥1 = W	argmin
7
‖𝑞‖+	subject	to	 	𝑦 = 𝛷𝑊𝑞. (18) 

By changing W all possible solutions of the problem can be generated. If W is chosen properly, 
Eq. 18 can be used for sparse signal reconstruction. Similar to weighted l1-norm algorithm, 
FOCUSS algorithm proposes an iterative procedure for finding a suitable W and the recovery of 
the sparse signals.  
The basic form of the FOCUSS algorithm is as follows, 

1. For initialization, find 𝐱𝟎 according to Eq. 17. 
2. Compute weighting matrix: 

  𝑊"9 = `𝑑𝑖𝑎𝑔(𝑥9:()e. (19) 

3. Compute 𝐱𝐤: 

  𝑥9 = 𝑊"9`𝛷𝑊"9e
4𝑦. (20) 

4. Increment k and repeat steps 2 and 3 until convergence occurs. 

Orthogonal Matching Pursuit (OMP) Algorithm 
Another set of algorithms used for sparse signals reconstructions are greedy algorithms. There 
are several greedy algorithms for sparse recovery such as matching pursuit (Mallat & Zhang, 
1993), orthogonal matching pursuit , gradient pursuits (Blumensath & Davies, 2009), regularized 
orthogonal matching pursuit (Needell & Vershynin, 2010) and stagewise orthogonal matching 
pursuit. The Orthogonal Matching Pursuit (OMP) algorithm (Tropp & Gilbert, 2007) is implemented 
in this paper for comparison purposes.  
To recover the sparse signal x, in Eq. 3 we need to determine which columns of 𝜱 participate in 
the measurement vector y. The main idea of the OMP algorithm is to pick columns in a greedy 
manner. At each iteration, the column of 𝜱 which most strongly correlates with the remaining part 
of y is selected. Then its contribution to y is subtracted and the process is repeated on the 
residual. If the main signal is K-sparse, after K iterations the algorithm will recover the signal 
properly.  
The OMP iterative algorithm is as follows, 

1. Initialize the residual 𝑟$ = 𝑦, the index set 𝛬$ = ∅, the matrix of chosen atoms Φ$ = ∅, and 
the iteration number t=1. 

2. Find the index 𝜆< by solving following simple optimization problem: 
𝜆< = arg max

.=(,…,?
M< 𝑟<:(, 𝜑. >M. (21) 

3. Augment the index set and the matrix of chosen atoms, 
𝛬< = 𝛬<:( 	∪ 	{𝜆<}. (22) 
Φ< = [Φ<:(	𝜑@']. (23) 

4. Solve a least squares problem to obtain a new signal estimate, 
𝑠< = argmin

A
‖𝑦 − Φ<𝑠‖+. (24) 

5. Calculate the new approximation of the data and the new residual, 
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𝛼< = Φ<s<. (25) 
𝑟< = 𝑦 − 𝛼<. (26) 

6. Increment t and return to step 2 if 𝑡 < 𝐾. 
7. The estimate 𝐱1 has nonzero indices at the components listed in 𝛬B. The value of the 

estimate 𝐱1 in component 𝜆. equals the jth component of 𝑠<. 

Note that the estimation problem in our case is solved for the transformed data in frequency 
domain, not the moisture values themselves. Regarding DCT coefficients of the moisture data, 
the number of coefficients that are necessary for reconstructing signal in our case, is about 40. 
Hence the problem is solved using K=40. 

Comparison of Different Algorithms 
To compare results of different algorithms, M=200 sensors are selected randomly and the same 
sensors are used for all methods. The estimated moisture values using the reviewed methods are 
presented in Fig 3. As it can be seen, the OMP algorithm delivers the best performance and the 
FOCUSS algorithm performs rather poorly. This was somewhat predictable since the unweighted 
l1-norm minimization encourages sparsity, while unweighted l2-norm discourages it to some 
extent. Clearly the added weights have not helped greatly in reducing the gap with the l0-norm, or 
even the l1-norm solution.  
To obtain more insight into the problem, the estimation problem is re-computed for varying 
number of sensors from 50 to 350 in 10 sensor increments. We introduce two key performance 
indicators (KPI) for comparison of the performance of the algorithms. These are the RMSE and 
recovery percent. 
The Root Mean Square Error (RMSE) is defined as follows, 

  𝑅𝑀𝑆𝐸 = ‖)0:)‖(
√!

. (27) 

The second criterion is considered as the ratio of the values that are recovered correctly to the 
number of all values. A value is assumed correctly recovered if the error between the estimated 
value and the real value is below %1. 
The results of using different algorithms with varying number of sensors are shown in Fig 4 and 
Fig 5. These plots confirm that the FOCUSS algorithm is not appropriate for the moisture 
estimation problem. Another important point that should be noticed is that the main difference 
between the algorithms is becomes apparent when using a few number of sensors. When 
permitted sensor allocations are large enough, the results of remaining three algorithms are nearly 
equivalent. For instance, if 500 sensors are allocated, there is no meaningful difference between 
the performance of the algorithms.  
It is indeed difficult to conclude that one method universally outperforms the others. The actual 
location of the sensors also seems to sometimes have an opposing effect on the performance of 
the algorithms. For example in the case of using 170 sensors, recovery percent with weighted l1-
norm is higher than OMP, while by using 180 sensors in the next step, the results are completely 
inverse (see  Fig 4). Note that in the case of using 180 sensors, the results of weighted l1-norm 
get worse than 170 sensors, while the results of OMP get better. Since sensor placement is 
allocated randomly, it is natural not to see a monotonic increase in performance, but the significant 
change in recovery percentages with a change in the locations was less expected, illustrating that 
the different estimation algorithms have different sensitivity to the location of the sensors. This 
also serves to illustrate the fact that in such estimations problems, the location, as well as the 
number of the sensors are both very important for successful estimation.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 3. Estimated moisture data using different approximation methods using 200 sensors with random placement. (a) l1-
norm. (b) Weighted l1-norm. (c) FOCUSS. (d) OMP. 

 
Fig 4. Comparison of different algorithms using different number of sensors with criterion recovery percent. 
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Fig 5. Comparison of different algorithms using different number of sensors with criterion RMSE. 

To verify the effect of the random sensor selection of the location of the sensors on the results, 
consider the cumulative performance of the algorithms over 4 runs, each of which has a random 
allocation. The problem is solved 4 times by each algorithm for sensors number M from 50 to 200 
in 10 sensor increments and the mean of results is shown in Fig 6 and Fig 7. As can be seen the 
cumulative performances converge to a monotonically increasing trend which is as expected. If 
the average of an infinite number of runs is computed, the results would become exactly 
monotonically increasing.  

 
Fig 6. Comparison of different algorithms using different number of sensors with criterion recovery percent. To show 

overall preference of OMP algorithm in a better way, the problem is solved four times by each method and mean of the 
results is shown. 
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Fig 7. Comparison of different algorithms using different number of sensors with criterion RMSE. To show overall 

preference of OMP algorithm in a better way, the problem is solved four times by each method and mean of the results is 
shown. 

Another criterion that can be considered in choosing the proper method is computational time. 
The computational effort will gain significance in very large estimation problems, or when 
estimation has to be performed in embedded or low computational power industrial processors. 
In online estimation and control problems this will also become a consideration.  We compare the 
time required to solve the problem by using M=200 sensors in Table 1. All computations are done 
using MATLAB R2016b by a PC with processor AMD E1-6010 APU with 4 GB RAM. All 
optimizations are solved using solver cvx. 
 

Table 1. Comparison of computational time of different methods. 

Method Computational time in seconds 

l1-norm 80.6 

Weighted l1-norm 787.8 

FOCUSS 36.4 

OMP 70.0 

 
When considering the performance and computational cost of the algorithms, it seems that for 
real life moisture estimation problems, the OMP algorithm offer a better overall package.  

Conclusion 
Compressive sensing theory was formulated for the moisture estimation problem. Since the main 
problem contains a l0-norm optimization that is not practical to solve, four approximations were 
reviewed and applied. The results of the recovered signals using different methods with different 
number of sensors were compared. As far as it appeared from the results of these comparisons, 
the OMP algorithm seems to be a better overall choice for the moisture estimation problem.  
The results of this paper are based on well sorted data and noiseless measurements with random 
sensor placement assumption. The effect of noisy and corrupt measurement needs to be 
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investigated further. It is also necessary to perform the study for fields with different topologies. It 
may be that for different geographical conditions, the results of the comparison would alter 
markedly.  
Finally, it should be investigated to see if it better to consider moisture values as a 1-D vector and 
try to sort them for enhancing sparsity or consider the field as a 2-D matrix like a picture and use 
natural geographically correlation of them and apply CS theory in 2-D. 
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