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Abstract. Improving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools should 
increase farmer’s profits and help mitigate N pollution. Weather and soil properties have 
repeatedly been shown to influence crop N need. The objective of this research was to improve 
publicly-available N recommendation tools by adjusting them with additional soil and weather 
information. Four N recommendation tools were evaluated across 49 N response trials conducted 
in eight U.S. states over three growing seasons. Tools were evaluated for split (planting+side-
dress) fertilizer applications. Using an elastic net algorithm the difference between each tool’s N 
recommendation and the economically optimum N rate (EONR) was regressed against soil and 
weather information, then the elastic net regression coefficients were used to adjust the tool’s N 
recommendation. The evenness of rainfall calculated from planting to the date of sidedness and 
soil pH (0-0.30 m) were the most frequently identified parameters for adjusting tools. All tools 
showed improvement with adjustment (+r2 ≥ 0.09). The greatest improvement in tool performance 
was with including soil and weather information with the Late-Spring Soil Nitrate Test (LSNT), 
canopy reflectance sensing, and MRTN. This analysis demonstrated that incorporating soil and 
weather information can help improve N recommendations. 

Keywords. Canopy Reflectance Sensing, Nitrogen Recommendation Tools, MRTN, Yield Goal  

 

The authors are solely responsible for the content of this paper, which is not a refereed publication. Citation of this work should state that it 
is from the Proceedings of the 14th International Conference on Precision Agriculture. EXAMPLE: Lastname, A. B. & Coauthor, C. D. (2018). 
Title of paper. In Proceedings of the 14th International Conference on Precision Agriculture (unpaginated, online). Monticello, IL: International 
Society of Precision Agriculture.  



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 2 
   
 

Introduction 
To maximize profits and minimize environmental issues associated with corn N management, N 
fertilizer at rates close to the EONR are needed (Hong et al. 2007; Kyveryga et al. 2009; Bandura 
2017). However, crop N need for any given growing season is not well known at the time of N 
application. Moreover, EONR has been shown to vary considerably within a field and from year-
to-year making EONR challenging to estimate (Kyveryga et al. 2009; Scharf et al. 2005; 
Shanahan et al. 2008). Both the spatial and temporal variability of EONR are driven by 
environmental, genetic, and management factors. More specifically rainfall distribution, soil 
texture, soil water-holding capacity, plant genetics, management practices, and grain and fertilizer 
prices have been shown to influence EONR (Dinnes et al. 2002; Kay et al. 2006; Morris et al. 
2018; Schmidt et al. 2009; Tremblay et al. 2012; Zhu et al. 2009). Many of the current methods 
used to determine how much N fertilizer to apply do not account for many of these factors. 
Some publically-available N recommendation tools have been developed that incorporate aspects 
of management, soil, and weather factors. A few examples include the yield goal (YG) method 
which when adjusted with a soybean (Glycine max) credit if the previous crop was soybean 
(Stanford 1973). Other YG based methods have also included an estimate of N mineralized by 
organic matter or a measure of soil nitrate (NO3–N) before N fertilizer application (Brown et al. 
2004; Shapiro et al. 2008). The Pre-Sidedress Nitrate Test or LSNT indirectly measures in-season 
mineralization and a sufficient N threshold is adjusted based on spring precipitation (Blackmer et 
al. 1997). The MRTN incorporates multiple yield response studies grouped on geographical 
boundaries, soil texture, and climatic conditions to better account for spatial and temporal 
variability (Sawyer et al. 2006). Canopy reflectance sensing assesses the color and biomass of 
corn plants at a very short spatial scale to integrate the plant and soil N status into an N 
recommendation (Kitchen et al. 2010). Even though these tools indirectly or directly incorporate 
some aspect of management, soil, and weather into their N recommendation process, these tools 
have often been found to be poorly related with EONR when examined across the U.S. Corn Belt 
(Ransom 2018), and therefore may not be reliable for making N fertilizer recommendations over 
the whole region.  
Incorporating additional soil and weather factors could improve N recommendation tools. 
Previously the incorporation of various weather and soil variables and their interactions improved 
the relationship of a canopy reflectance sensing derived N recommendation to EONR from an r2 
of 0.14 to 0.43 (Bean et al. 2018). Others showed that including soil-specific information with a 
pre-plant soil test significantly improved the predictability of optimal N rate (r2 = 0.92; Vanotti and 
Bundy 1999).  
The objective of this research was to determine if site-specific soil and weather information could 
improve N recommendation tools.  

Materials and Methods 

Experimental Design 
This research was conducted as a part of a public-private collaboration between DuPont Pioneer 
and eight U.S. Midwest universities (Iowa State University, University of Illinois Urbana-
Champaign, University of Minnesota, University of Missouri, North Dakota State University, 
Purdue University, University of Nebraska-Lincoln, and University of Wisconsin-Madison). Each 
state conducted research at two sites each year during 2014 to 2016, with a third site in Missouri 
in 2016, totaling 49 site-years. About half the sites were on farmers’ fields and the other half on 
University research stations. All states followed a similar protocol for plot research implementation 
including site selection, weather data collection, soil sample timing and collection methodology, 
N application timing, N source, and N rates. Specific details are described in Kitchen et al. (2017). 
Treatments included N fertilizer rates between 0 and 315 kg N ha-1 applied either all at-planting 
or split where 45 kg N ha-1 was applied at-planting with the remaining fertilizer N applied at the 
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V9 corn developmental stage.  

Determining the Economically Optimal Nitrogen Rate 
Grain yield in response to N fertilizer rate was used to calculate the EONR on a site-year basis 
as described in Kitchen et al. (2017), using proven quadratic or quadratic-plateau modeling 
methods (Cerrato and Blackmer 1990; Scharf et al. 2005). For this paper, EONR values were 
used for N fertilizer split applied between planting and a single side-dress application. The cost of 
N was $0.88 kg N-1, and the price of corn was $0.158 kg grain-1 (equivalent to $0.40 lb N-1 and 
$4.00 bu-1). The EONR was set to not exceed the maximum N rate (315 kg N ha-1). The EONR 
results were used as the standard for evaluating all N recommendation tools and adjustments to 
the tools.  

Nitrogen Recommendation Tools Evaluated 
State-Specific Yield Goal 

Though currently most states in this study now discourage using yield-goal based N fertilizer 
recommendations, however such was considered here using each state’s guidelines from several 
decades ago. A State-Specific YG tool was evaluated where sites within each state only used 
their respective state’s YG method, but the overall performance of each YG recommendation was 
evaluated as a single tool. All states except Wisconsin (WI) at one point in time utilized a YG, as 
such all but the WI sites are included in the State-Specific YG analysis (n =43). All YG methods 
followed a similar mass balance approach established by Stanford (1973), but each has been 
uniquely modified by adjusting coefficients within the calculation and incorporating additional soil 
and management information. For example, the Nebraska YG was changed by incorporating pre-
plant soil nitrate to a depth of 1.20 m. 
Each state-specific YG required an expected yield. The previous five-year corn yield average of 
the county for each site was used to determine expected yield for individual sites. The five-yr 
average was then adjusted based on the soil productivity of the predominantly-mapped soil of 
each site, similar to that done by Laboski et al. (2012). This procedure classifies soil productivity 
as either low, medium, or high using soil texture, irrigation, depth to bedrock, drainage class, 
temperature regime, and available water content information. The yield of a site was then 
calculated by increasing the five-yr average yield for low, medium, and high soil productivity by 
10, 20, or 30%, respectively. This estimated yield value was used to calculate the State-Specific 
YG (Table 1).  
MRTN 

The MRTN recommendation values for all sites were determined by using N rate obtained in 
2016, as only a few states had updated the MRTN database during the three years of this project. 
The MRTN values for IA, IL, IN, MN, and WI were obtained from the online Iowa State Extension 
N rate calculator (cnrc.agron.iastate.edu). The MRTN values for North Dakota were obtained from 
the North Dakota Corn Nitrogen Calculator (www.ndsu.edu/pubweb/soils/corn). The price of corn 
to N fertilizer ratio used was 10:1 (using $/bu and $/lb N). Since neither Missouri nor Nebraska 
currently have the compiled database and online tool for an MRTN recommendation, sites from 
these states were excluded from this tool’s evaluation (n=36).  
Late-Spring Nitrate Test 

The LSNT was developed out of IA and evaluated under conditions where no or minimal N was 
applied at-planting. For this calculation a site average of measured NO3–N from plots that 
received 0 kg N ha-1 at-planting was used. Soil samples were taken at the V5 ± 1 corn 
development stage and to a depth of 0.30 m. The measured concentration of NO3–N was then 
used as described in Table 1 for determining an N recommendation.    
Canopy Reflectance Sensing 

Canopy reflectance measurements were obtained using the RapidSCAN CS-45 (Holland 
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Scientific, Lincoln NE, USA) the same day or just prior to the split N application. For the majority 
of sites, this was done at the V9 ±1 corn development stage. Measurement details are described 
in Kitchen et al. (2017). The Holland and Schepers algorithm [HS; Holland and Schepers (2010)] 
was used to calculate an N fertilizer recommendation derived from these reflectance 
measurements. This algorithm is based on a sufficiency index calculated using measurements 
from both well-fertilized corn (“N-Rich”) and minimally-fertilized corn that was referred to here as 
the “target” corn:  

𝑆𝐼 =
$%&'()*+
$%,-./01

  [1] 

where SI is the sufficiency index; VITarget is the NDRE vegetative index obtained from averaging 
measurements from all plots that received 45 kg N ha-1 at-planting and where a top-dress fertilizer 
was to be applied, and VIN-Rich is the vegetative index obtained by averaging all plots for two of 
the high N treatments (225 and 270 kg N ha-1 applied all at-planting). The NDRE vegetative index 
was calculated using the red-edge (730 nm; RE) and near-infrared (780 nm; NIR) wavelengths 
as shown: 

𝑁𝐷𝑅𝐸 = 6%7879
6%7:79

  [2] 

Fertilizer N recommendations were then calculated as described in Holland and Schepers (2010). 
 

Table 1. Methods associated with corn N recommendation tools included in this investigation. Variables used in 
calculations are Pop as plant population, OM as organic matter, and CEC as cation exchange capacity.  

Tools Approach & Calculation Reference 
Iowa YG Calculation using an expected yield and a soybean credit equal to 

the previous year yield up to 56 kg N ha-1.  

 
IA YG = 1.12 × [1.22 × YG] or 1.12† × [0.9 × YG] for fine-silty 

Hapludolls – up to 56 kg N ha-1 soybean credit 

Voss and 
Killorn 1998 

Illinois YG Calculation using an expected yield and a soybean credit of 45 kg 
N ha-1.  

Nrec = 1.12† × [1.2 × YG – Ncredit] 

Hoeft and 
Peck 1999 

Indiana YG Calculation using an expected yield and a soybean credit of 34 kg 
N ha-1.  

Nrec = 1.12† × [–27 + 1.36 × YG – Ncredit] 

Vitosh et al. 
1995 

Minnesota YG Calculation using an expected yield, organic matter content, and 
soybean credit of 22 to 45 kg N ha-1. Soils are grouped into either 
low or high organic matter content with 30 g OM kg-1 soil being the 
threshold (Table 1 of publication). 

Schmitt et al. 
2002 

Minnesota YG Calculation using an expected yield, plant population, and N 
supplying power of the soil based on organic matter and cation 
exchange capacity, and a soybean credit of 34 kg N ha-1.  

Nrec = 1.12† × [0.9 × YG + 4 × Pop – NOM-credit – Ncredit] 

Brown et al. 
2004 

Nebraska YG Calculation using an expected yield, measured or estimated 
inorganic soil NO3–N(0–1.20 m), measured or estimated N supplied 
from organic matter, and a soybean credit of 39 or 50 kg N ha-1, 
for sandy and non-sandy soils, respectively. An estimated amount 
of N applied through irrigation is also credited. The N 
recommendation rate is adjusted for soil texture classification and 
time of N fertilizer application.  

Nrec = 1.12† × [35 + (1.2 × YG) – (8 × NO3–N(0–1.20 m)) – 0.14 × YG 
× OM – NCredit] × Timeadj × Priceadj 

Shapiro et al. 
2008 
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North Dakota 
YG 

The calculation is the measured soil NO3–N(0–0.60 m) concentration 
(converted to mass) subtracted from the ND YG calculation and 
using a soybean credit of 45 kg N ha-1.  

Nrec = 1.12† × [1.2 × YG – NO3–N(0– 0.60 m) – Ncredit] 

Franzen 2010 

LSNT Calculated using measured soil NO3–N(0– 0.30 m) concentration and 
a critical limit of 25 mg kg-. To determine the N recommendation 
when NO3–N(0– 0.30 m) is below the critical threshold, the difference 
between the critical threshold and the measured NO3–N(0–0.30 m) 
concentration is multiplied by 8. The critical limit is reduced by 3 to 
5 mg kg-1 when spring precipitation is 20% above normal 
amounts.  

Nrec= 1.12† ×[(25 mg kg-1 – NO3–N(0– 0.30 m) mg kg-1) × 8] 

Blackmer et al. 
1997; Sawyer 
and Mallarino 
2017 

MRTN Nitrogen rate response trials spanning multiple years. From each 
trial, yield response is modeled as a function of N fertilizer rate 
and the N recommendation is determined by grouping trials and 
adjusting the price of corn and N. Nitrogen recommendations are 
specific for geographical locations or soil property.  

Sawyer et al. 
2006 

Canopy 
Reflectance 
Sensing 

Nitrogen recommendations are based on reflectance wavelengths 
measured with proximal sensors.  

Holland and 
Schepers 
2010 

Incorporating Soil and Weather Information 
First, linear regression was used to find significant (p < 0.05) one-way relationships between soil 
and weather properties and delta yield (yield at EONR - yield with no N) and relative yield or 
response index (yield at EONR/yield with no N) were examined using the PROC REG function in 
SAS 9.2. The top four most significant variables were then used in a stepwise PROC 
GLMSELECT model (p < 0.05). This modeling approach is a “leave one out” method to minimize 
model bias when a site is dissimilar from the rest. Final model results for both the delta yield and 
relative yield analyses were then used for the remainder of this paper. 
Second, to determine what soil and weather information was to be incorporated for tool 
adjustment, an elastic net regression (Zou and Hastie 2005) was used with soil and weather 
variables as the explanatory variables. The response variable of this regression was the 
difference between each tool’s N recommendation and the EONR for each site as follows:  

𝑇𝑜𝑜𝑙>?@@ = 𝑇𝑜𝑜𝑙6	7BC 	− 𝐸𝑂𝑁𝑅   [3] 

where EONR was calculated using split N treatments. The EONR values calculated from split N 
treatments were compared to MRTN, State-Specific YG, LSNT, and canopy reflectance sensing. 
Explanatory variables included measured physical and chemical soil properties and measured 
weather information. Soil properties were collected by sampling 1.20 m-depth soil cores from 
each of the sites and analyzing by pedological soil horizon for texture, bulk density, pH salt, pH 
water, CEC, total N, total carbon, inorganic carbon, organic carbon, and organic matter as 
described in Kitchen et al. (2017). Soil properties were then depth weighted to obtain values for 
0-0.30, 0-0.60, and 0-0.90 m depth increments. Weather data were collected using on-site 
weather stations (HOBO U30 Automatic Weather Station; Onset Computer Corporation, Bourne, 
MA). Daily values were calculated for the maximum and minimum temperature and precipitation. 
These values were then used to calculate a cumulative precipitation, growing degree days, corn 
heat units, Shanon’s diversity index of precipitation (evenness of rainfall), and abundantly and 
well-distributed rainfall as described by Tremblay et al. (2012), for two time periods, 30 days 
before planting up to planting and from planting to the time of sidedress (Table 2).  
Many of these variables were highly correlated (|r| > 0.85). To minimize multicollinearity, the 
explanatory variables with the highest mean absolute pair-wise correlation value were removed 
from the model (remaining variables used in models are shown in Table 2). This procedure was 
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automated by using the findCorrelation function from the R ‘caret’ package (Kuhn 2017). Using 
the reduced number of variables, two models were created with and without two-way interaction 
terms for each N recommendation tool. All explanatory variables were normalized before running 
the model by subtracting the mean and dividing by the standard deviation.  
The elastic net was fit with the ‘caret’ package using R Statistical Software (R Core Team 2016). 
The elastic net was optimized by tuning the alpha and lambda parameters using a tenfold cross-
validation repeated five times, where for each fold of the cross-validation the data was split 
randomly into ten folds. Nine of the folds were selected as a training dataset to fit a model for 
each combination of alpha and lambda tuning parameters and the 10th fold was used as the 
testing dataset to calculate the accuracy of the predicted model. This was repeated a total of 50 
times and the accuracy for each combination of tuning parameters was determined using the 
average root-mean-square error (RMSE) across these 50 folds.  
Table 2. Variables inputs used in the elastic net algorithm modeling.  

Parameter Calculation 
Weather  

PPT (Side-dress†) Sum of daily rainfall, mm. 

Corn Heat Units (Side-dress) Σ(Ymax + Ymin)/2; Ymax and Ymin are the daily maximum and 
minimum temperatures, oC. 

GDD (Planting‡) 
Σ((Ymax + Ymin)/2)-Tbase; Ymax, Ymin, Tbase are the daily 
maximum, minimum, and base temperatures, respectively. Tbase = 
10oC. 

SDI (Planting) [-Σpi ln(pi)]/ln(n); where pi = Rain/PPT (daily rainfall relative to total 
rainfall in a given time; n = total number of days. SDI (Side-dress) 

AWDR (Planting) Side-dress SDI × PPT 

Soil  

Clay Clay depth weighted between 0 and 0.90 m 

Silt Silt depth weighted between 0 and 0.60 m 

Total carbon (TC)  Total C depth weighted between 0 and 0.60 m 

Total inorganic C (TIC) Inorganic C depth weighted between 0 and 0.30 m 

Organic matter (OM) Organic matter depth weighted between 0 and 0.90 m  

pH (Water) Soil pH depth weighted between 0 and 0.30 m 

Bulk Density (BD) Bulk density depth weighted between 0 and 0.30 m 
† SIDE-DRESS indicates data used from the date of planting up to the date of sidedress  
‡Planting indicates data used 30 days prior to planting up to the date of planting

Statistics Analysis 
Final models with all the essential variables and corresponding coefficients were used to adjust 
each N recommendation tool as follows:  

𝑇𝑜𝑜𝑙FGH = 	𝑇𝑜𝑜𝑙 −Model	P𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠   [5] 

Each adjusted tool was then compared to EONR as described in Eq. 5 to determine if performance 
of the tools was improved. This was accomplished by calculating 1) a coefficient of determination, 
2) an RMSE for each adjusted tool using the difference between each tool’s adjusted N 
recommendation and EONR, and 3) the percentage of sites within ± 30 kg N ha-1 of EONR, or 
reasonably close to EONR (RC-EONR). 
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Results 

Which Soil and Weather Variables Were Found to be Important?  
Yield increase with N (Fig. 1) and a yield response index to N (Fig. 2) were examined as a function 
of soil properties and weather. While a number of soil and weather parameters helped explain 
corn response to N (not shown), those included in these two graphs were some of the most 
meaningful. Yield increase with N was greatest as canopy reflectance SI (Eq. 1) decreased, with 
soils with less clay in the top 0-0.60 m, and with soils with lower PMN (Fig. 1). As a yield response 
index to added N (Fig. 2), response was greatest with lower red-edge canopy reflectance SI, when 
the ratio of shallow to deep Veris 3100 apparent soil electrical conductivity (ECa) readings were 
lower, and when rainfall from planting to side-dress SDI was more even. The trends in these 
figures follow well-known agronomic science: 1) relative to well N fertilized plants, plants with less 
biomass and/or greenness are more N deficient and require more N and produce a greater yield 
response (SI); 2) less clay means sandier soils and a greater propensity for N leaching or natively 
have less OM and therefore less N is mineralized, resulting in a greater need for N; 3) soils that 
provide more N through mineralization need less N fertilizer; 4) layered soils with lighter textured 
horizons over heavier textured horizons (soil ECa shallow:deep  < 1.0) respond less to N; and 5) 
more evenly distributed rainfall (higher SDI) results in greater response to N fertilizer. These 
results demonstrate how soil properties, weather, and plant condition (as measured with canopy 
reflectance) collectively help describe corn N response over a wide range of environmental 
conditions. As such, N recommendation tools that don’t include these factors will more likely fail.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Yield increase to N fertilizer was impacted by canopy reflectance chlorophyll 
sufficiency index (red band), clay content, and potential mineralizable N (PMN) (model R2=0.31).  

Figure 2: Yield response index to N fertilizer was impacted by canopy reflectance chlorophyll 
sufficiency index (red-edge band), the ratio of Veris 3100 apparent soil electrical conductivity (ECa) 
shallow readings to deep readings, and rainfall SDA (planting to side-dress) (model R2=0.43).  
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Integrating Weather and Soil into N recommendation Tools  
Using elastic net regression, the variables found to be important for explaining the difference 
between each N recommendation tool and EONR varied by tool (Table 3). Of the weather 
variables, the SDI was found to be an essential variable for adjusting all four tools.  
Table 3. Coefficients of weather and soil parameters used to adjust N recommendation tools that were determined 
important using the elastic net regression. (See Table 2 for explanation of variable names.) 

Tool Parameter Adjustments 

MRTNadj= MRTN + 90.7 + 162.9 Side-dress SDI - 31.6 pH30 

State-Specific YG adj = State-Specific YG - 203.5 + 287.5 Side-dress SDI 

LSNTadj = LSNT - 5.2 + 22.7 Planting SDI + 157.5 Side-dress SDI - 2.0 OM30 
- 12.1 pH30 + 19.8 BD30 - 0.2 Silt60 - 11.2 TC90 

Canopy Reflectanceadj = Canopy Reflectance - 58.0 + 70.0 Planting SDI + 144.9 Side-dress 
SDI - 20.9 TIC30 - 10.9 pH30 + 57.8 BD30 - 0.1 Silt60 - 0.8 Clay90 
- 5.8 TC90  

Not surprisingly, SDI was one of the most important variables as precipitation-based 
measurements often have a bigger impact on N fertilizer response and EONR calculations than 
soil parameters (Sogbedji et al. 2001; Tremblay et al. 2012; Sela et al. 2017). Precipitation is a 
major driving factor for soil organic matter mineralization, yield potential, NO3–N leaching losses, 
and N uptake (Cassman and Munns 1980; Schröder et al. 2000; Wilhelm and Wortmann 2004; 
Melkonian et al. 2007). The SDI helped explain 22% of the variation (P < 0.001) in the observed 
EONR values. This is similar to what Xie et al. (2013) reported, that SDI of precipitation and not 
precipitation alone better-explained corn response to sidedressed N fertilizer. This relationship 
could be explained by an increased N loss, decreased plant N uptake, or a reduced soil N supply. 
With increased SDI, the soil moisture would be maintained at a higher level over an extended 
period leading to possible soil surface runoff, N leaching, or denitrification (Maag and Vinther 
1996). The general trend observed among the sites of this study showed the smallest SDI values 
were from the northwestern locations (North Dakota) and generally increased to the southeast, 
similar to the long-term rainfall trend seen for the U.S. Midwest.  
Of all the soil parameters that were used in the final model, pH (0-0.30 m) was the most frequently 
identified as important (Table 3). The pH across all sites ranged from 5.5 to 7.8. As pH increased, 
the difference between a tool’s N recommendation and EONR increased. Soil pH affects soil 
fertility and drives many factors of the N cycle. The pH of a field was found to commonly be related 
to corn yield and protein factors across multiple growing conditions and hybrids (Miao et al. 2006). 
However, directly relating pH to EONR showed no significant relationship (P = 0.13). For this 
investigation, the pH was found to be greater for the northern sites, where soils were formed under 
drier and colder conditions, and therefore are less weathered soils with free calcium carbonates. 
Adjusting for pH was necessary for many of the northern sites such, as North Dakota and 
Wisconsin, where pH > 7.0. A few of these sites were non-responsive to added N fertilizer, 
suggesting the possible positive impact these pH values had on N mineralization when adequate 
organic matter was present. However, it is unlikely there is a direct causal relationship between 
EONR and pH, as the weather most likely drove the majority of N mineralization. This was 
observed with the 2016 ND sites that were both non-responsive to added N fertilizer. However, 
the ND sites in 2014 and 2015, conducted on the same or nearby fields with very similar soil pH, 
had EONR values that ranged between 100 and 180 kg N ha-1. 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 9 
   
 

Improving Performance of N Recommendation Tools  
Incorporating soil and weather information into the N recommendation tools helped improve the 
tools. For all tools, the average difference between each tool’s N recommendation and EONR all 
came closer to 0 (Fig. 3), and most RMSE values were decreased (mean overall tools of 75 vs. 
56 for unadjusted vs. adjusted, respectively). Additionally, MRTN when unadjusted was not 
significant and positively related to EONR but after adjusting with soil and weather information 
has a significant and positive linear relationship with EONR. 

 Fig. 3. Box and whisker plots showing the difference between each of the tools’ N recommendation and the economically 
optimal N rate (EONR) after adjusting with soil and weather information. The median is reported by the value in the middle 
of the box. Notches on the side of each the box indicate the 95% confidence interval around the median. Limits of the box 
indicate the first and third quartile, whiskers indicate 1.5 × IQR, and small circles indicate outliers. Improvement is 
assessed by the decrease in the box and whisker length, and the box is centered on the zero line (dashed line).  

The most critical metric for improvement was to have an increased linear relationship (r2) with 
EONR (mean for all tools from r2=0.12 to 0.29, unadjusted and adjusted respectively), followed 
by an increase in the percentage of sites RC-EONR (mean for all tools from 36 to 44% for 
unadjusted and adjusted, respectively; Table 4).  
Of the four tools evaluated, MRTN had the most notable improvement based on the adjusted tools 
improved linear relationship with (r2 increased 0.21; Table 4). When averaging across all sites, 
MRTN alone came close to EONR. However, because this tool unadjusted was unable to account 
for sites that were less responsive to N or sites which required high N rates (i.e., sites with 
excessive N loss), there was no significant linear relationship with EONR. Using weather and soil 
information helped to adjust for these extreme sites. Nitrogen recommendations for the MRTN 
where it overestimated EONR were decreased based on sites characterized by a higher pH and 
a lower side-dress SDI. Whereas sites where MRTN underestimated EONR, the recommendation 
increased. Sites where the adjustment increased the MRTN recommendation had lower soil pH 
and a higher side-dress SDI (Table 3). After adjusting for soil and weather information, MRTN 
showed a greater range of N rate recommendations of 80 to 240 kg N ha-1.  
Utilizing a yield goal approach often results in overestimating the amount of N required, one of 
the limitations of this method is farmers can often be over-optimistic (Vanotti and Bundy 1994). 
This was observed with the State-Specific YG tool, which was the only tool where the majority of 
sites overestimated EONR. After adjusting with side-dress SDI, 41 of the 43 sites resulted in a 
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decreased N recommendation. Side-dress SDI values ≥ 0.71 increased in the N recommendation, 
but with 41 of the 43 sites having side-dress SDI value ≤ 0.71 the majority of sites were reduced. 
Of these tools, the best-adjusted tool was the LSNT, where the adjusted tool’s r2 was 0.39, and 
the percentage of sites RC-EONR was 55% (Table 4). Unadjusted the LSNT had an r2 of 0.24, 
the highest of all the tools. Unlike MRTN, the LSNT was successful at identifying when some sites 
would be less responsive and thus were more successful without adjustment. With adjustment, 
the most improvement occurred with sites where the LSNT underestimated EONR, which after 
incorporating side-dress SDI into the recommendation increased N closer to EONR.  
Adjusting the Holland and Schepers canopy reflectance sensing algorithm with soil and weather 
information helped to improve the predictability of EONR, from an r2 of 0.13 up to 0.36 (Table 4). 
This method for determining an N recommendation is unique in that it quantifies the plant’s color 
and biomass using specific reflectance wavelengths to estimate a plant’s N status. The conclusion 
here is that soil and weather information provided an estimate of N that was lost, but that this loss 
was not evident in the reflectance properties of the crop at the time of sensing. The soil and 
weather adjustment resulted in a general increase in the recommendation over all EONR values. 
As such, sites with low EONR values without adjustment had even greater over-recommendation 
with adjustment.  
Table 4. The performance of each N recommendation tool unadjusted and adjusted with soil and weather information as 
presented in Table 3. The precision and accuracy were evaluated using the coefficient of determination measured from a 
simple linear relationship between each tool and the economically optimal N rate (EONR), RMSE of the difference between 
a tool’s N recommendation and EONR, and the percentage of sites with ±30 kg N ha-1 of EONR or “reasonably close to 
EONR” (RC-EONR). The number of sites (n) included in the evaluation differed for each tool based on the availability of 
information to test the tool. Tools used for a split N application recommendation included MRTN, State-Specific yield goal 
(YG), Late-Spring Soil Nitrate Test (LSNT), and canopy reflectance sensing using the Holland and Schepers algorithm.  

N Recommendation Tool n P-Value r2 RMSE RC-EONR 
Unadjusted Tools    -kg N ha-1- --- % --- 

MRTN 36 0.45 0.02 72 42 

State-Specific YG 43 0.04 0.10 74 37 

LSNT 49 <0.001 0.24 68 41 

Canopy Reflectance 49 0.01 0.13 85 22 

Adjusted Tools      

MRTN 36 <0.01 0.23 58 47 

State-Specific YG 43 <0.01 0.19 64 37 

LSNT 49 <0.001 0.39 56 55 

Canopy Reflectance 49 <0.001 0.36 58 35 

How Much Tool Improvement Is Possible? 
Improvement using soil and weather information was observed for many tools, but tested over 
this 8-state, 3-season dataset improvements did not match what others have reported for some 
N recommendation tools. The Pennsylvania PSNT tested against EONR was found to have an r2 
= 0.48 (Schmidt et al. 2009). Utilizing a dataset from New York, Sela et al. (2017) showed that 
the Adapt-N crop growth model had an r2 = 0.56. While Scharf et al. (2006) and Schmidt et al. 
(2009) in two separate investigations showed that chlorophyll meter derived N recommendations 
resulted in a strong linear relationship with EONR with r2 values that ranged between 0.53 to 0.76. 
Using the same dataset as the current investigation, Bean et al. (2018) showed slightly better 
results when improving the University of Missouri canopy reflectance sensing algorithm using soil 
and weather information (r2 = 0.43). One of the likely reasons for the more mediocre results in this 
analysis is that the tools and their adjustments were tested using a dataset that represented a 
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large range in weather conditions unlike what the previous studies had (Kitchen et al. 2017). Most 
of these tools tested were developed or tailored from field research within a given U.S. state. It is 
perhaps unreasonable to expect tools developed in specific states to perform well across a broad 
region. However, to do so shows whether existing tools are robust enough to fit a wide array of 
environmental extremes for growing corn. These results would suggest they are not. Additional 
improvements may be needed with different types, and intensity of information in order produce 
better performing corn N recommendations that could be used more universally.  

Conclusions 
Efforts to improve N recommendation tools utilizing soil and weather information was successful. 
Many of the improvements occurred at locations that overestimated EONR as any adjustment 
was based on soil information, while sites that underestimated EONR were improved with weather 
information. Tools overestimated EONR when they did not take into account the potential soil N 
supply of a site. Tools underestimated EONR when conditions lead to excessive N loss or greater 
N mineralization; accounting for this with an evenness of rainfall was shown to be an effective 
adjustment. Both of these N dynamics were better accounted for by incorporating soil and weather 
information into the N recommendation tools’ calculations.  
The best adjustments occurred with tools that prior to being adjusted were able to identify non-
responsive sites. This included the LSNT and the Holland and Schepers canopy reflectance 
sensing algorithm. After adjusting these tools, they had the highest linear relationship with EONR. 
In addition to these two tools, MRTN was greatly improved. 
With all of these adjustments, however, many of these tools still had a weak linear relationship 
with EONR. This means the majority of the variability in EONR was not captured with N 
recommendation tools. Additional improvements could occur by incorporating other soil, weather, 
or management variables not included in this analysis that might better delineate N response. 
However, even with all the information one might collect up to the point of a sidedress application, 
it would only account for about 1/3 of the growing season. Therefore, N recommendations will 
only be useful as “predictions” or “forecasts” that can be used to estimate corn N needs for the 
rest of the growing season.  
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