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Abstract. This paper presents the results of the investigation on the effectiveness of UAV-based 
remote sensing data in determining lettuce nitrogen and water stresses. Multispectral images of 
the experimental lettuce plot at Cal Poly Pomona’s Spadra farm were collected from a UAV. 
Different rows of the lettuce plot were subject to different level of water and nitrogen applications. 
The UAV data were used in the determination of various vegetation indices. Proximal sensors 
used for ground-truthing included: handheld spectroradiometer, chlorophyll meter, and water 
potential meter. Relationship between the aerial and proximal sensor data are shown and 
discussed. Also shown is the relationship between the sensor data and plant height and leaf 
numbers.   
Keywords. Remote Sensing, Multispectral Data, Hyperspectral Data, NDVI, GNDVI, EVI, 
MCARI, WBI, Plant Stress, Ground-Truthing, Precision Agriculture.  

 

1. Introduction 
Recently, unmanned aerial vehicles (UAVs) have seen increased use for agricultural applications 
such as crop stress detection, crop monitoring, and yield prediction using remote sensing 
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techniques. The main advantage of UAV-based remote sensing is the immediate availability of 
high resolution data. Near infrared (NIR) images obtained using UAV-based remote sensing 
techniques help determine the crop performances and stresses due to water and fertilizer 
deficiencies as well as from diseases (Jones et al., 2004; Daughtry et al., 2000; Franke et al., 
2008) of a large area in a short amount of time for precision agriculture, which aims to optimize 
the amount of water, fertilizers, and pesticides using site-specific management of crops (Brrico et 
al., 1998). Conventional methods of remote sensing use satellites and manned aircraft (Blakeman 
et al., 2000; Han et al., 2001). However, the satellite images have low resolutions, and have large 
revisit periods. Also, satellite images are adversely affected by cloud cover. Manned aircraft have 
been used for aerial imagery and can provide images with better spectral and spatial resolutions. 
They can also operate under cloud covers and have shorter revisit periods. However, associated 
cost is very high and turnaround time is long.  

UAVs offer several advantages for precision agriculture over satellites and manned aircraft. UAVs 
are significantly cheaper and simpler than manned aircraft and satellites. They provide high 
resolution data due to the low altitudes that they can operate at. Also, UAVs can fly during weather 
conditions that manned aircraft cannot fly at, and thus are able to provide the remote sensing data 
throughout the crop season (Swain et al., 2007; Hunt et al., 2010).  

Despite these potentials, UAVs have not seen widespread use for precision agriculture. At one 
point, it was estimated that 80% of domestic UAV use in the U. S. would be for precision 
agriculture. However, though the UAV-based remote sensing technology has made significant 
progress in recent years, more work is still required to validate the accuracy of the data and using 
the data for the optimization of irrigation and fertilizer. The remote sensing data are generally able 
to differentiate the healthy and unhealthy crops. However, the extent to which the crops are 
stressed has not yet been fully investigated, thereby making it difficult to determine the exact 
amount of fertilizer and water required for the crop production and increased yield. This has 
prevented the adoption of the technology by the agriculture industry and farmers. For the effective 
use by the farmers and service providers on a routine basis, the process of using the remote 
sensing data for the optimization of water and fertilizer application must be sufficiently validated, 
and associated cost must be reduced. To be useful in a meaningful way for precision agriculture, 
the remote sensing data must provide the crop fertilizer and water stresses fairly accurately. This 
helps reduce the use of water and fertilizer, thereby reducing the cost, conserving water, and 
reducing the environmental impacts of over-fertilization.  

This paper presents the results of the investigation on the effectiveness of UAV-based remote 
sensing data in determining lettuce nitrogen and water stresses. UAVs equipped with 
multispectral sensors were flown over the lettuce plot at Cal Poly Pomona’s Spadra farm. The 
paper shows the correlation between remote sensing data, proximal sensor data, and agronomic 
measurements (leaf numbers and plant height). Our research focus is validating the accuracy of 
the remote sensing data so that the data can readily be used for precision agriculture. The 
proximal sensors used for ground-truthing include handheld spectroradiometer, chlorophyll 
content meter, and water potential meter.  

Experimental Design 
Figure 1 shows the experimental lettuce plot design. The test plot has total of three replicate rows 
(R1, R2, R3), with a 4 meter gap between them. The design is a strip-plot design with four nitrogen 
treatments forming main plots and four irrigation treatments forming subplots. There are three 
replications and a total of 48 subplots. 
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 Fig 1. Lettuce plot design. 

Each row is 68 meters (223 feet) long, and is divided into four 14 m x 5 m (46 ft x 16.5 ft) plots, 
with a gap of 4 m between the plots. The large gap between the rows and plots is to avoid the 
error in data due to nitrogen leaching and water seepage. Each plot is further divided into four 1.8 
m x 5 m subplots with a gap of 2 meters between the subplots. The plots are treated with different 
levels of water application, while keeping the level of nitrogen application the same. For example, 
the first plot (upper left plot in Figure 1) is treated with 100% nitrogen (N100), while each subplot 
was treated with a different level of irrigation, i.e., 0% irrigation (IR0), 25% (IR25), 50% (IR50), 
and 100% irrigation (IR100). The soil nitrogen level was determined prior to beginning the study 
by sending the samples of the soil to a soil testing lab. The plots were drip irrigated at 0%, 25%, 
50%, and 100% of irrigation level that is estimated by the evapotranspiration calculations. 
Similarly, the nitrogen treatment was slow release nitrogen at 0%, 25%, 50%, and 100% of the 
nitrogen recommended for lettuce growth after taking into account the existing nitrogen in the soil.   
The actual water requirement for the lettuce production was determined using the crop 
evapotranspiration (ETc), estimated from the potential evapotranspiration (ETo), as given below: 

            𝐸𝑇# = 𝐸𝑇% × 𝐾#      (1) 
where ETo (in inches) is calculated by the Penman equation with a wind function (CIMIS ETo)  
(Allen et al., 1998) using the daily data provided by the California Irrigation Management 
Information System (CIMIS) weather station at Cal Poly Pomona. Studies have shown there is no 
significant difference between CIMIS ETo and Penman–Monteith ETo. The coefficient Kc is the 
crop coefficient and is defined is the ratio of the crop evapotranspiration rate to the reference 
evapotranspiration rate. The localized step-wise Kc of Southern California is used in this study. 
The amount of water to be applied is then calculated by the following formula: 

            𝐼𝑛 = *.,-.×/×01×234
52

     (2) 

where In is the volume of irrigation water in gallon, 0.623 is the constant, A is the canopy covered 
area of the experimental plot surface in  sq. ft., and IE is the irrigation efficiency, which is estimated 
at 95%. The plot was irrigated on a weekly basis. Prior to irrigation, the soil moisture level was 
determined using the TDR soil moisture sensor (Al-Jabri et al., 2006), which is shown in Figure 
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2. This was done to ensure that soil moisture in the different segments of the plot was in 
agreement with the irrigation level.    

 
Fig 2. TDR soil moisture sensor. 

Figure 3 shows the lettuce being grown using the above design. Markers were placed to 
distinguish the regions of different irrigation and nitrogen application levels. As can be seen in the 
figure, some plants are more stressed than others.  

 
Fig 3. Lettuce being grown at Cal Poly Pomona’s Spadra Farm for the study.  

UAV and Airborne Sensors 
The UAV being used for this study is the Lancaster 5 fixed-wing UAV from PrecisionHawk.  The 
UAV, shown in Figure 4, has the empty weight of 5.3 pounds with the maximum takeoff weight of 
7.8 pounds. It has a wing span of 4.9 feet and flies at a cruise speed of 40 to 52 feet/sec.  
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Fig 4.  Lancaster UAV from PrecisionHawk flying over the lettuce plot. 

The UAV can be equipped with different plug-n-play sensors such as a hyperspectral sensor, 
multispectral sensor, or an RGB camera.  The sensors can easily be swapped in the field without 
reconfiguration. The sensors that are used for this project are a RedEdge multispectral sensor 
from MicaSense, a BGNIR (Blue-Green-NIR) sensor, Nikon digital camera, and Nano Hyperspec 
sensor from Headwall Photonics, Inc.   
Figure 5 shows the RedEdge sensor. It is a 5-band multispectral sensor. It can capture 5-band 
spectral data on different wavelengths: blue (475 nm), green (560 nm), red (668 nm), near infrared 
(840 nm), and red edge (717 nm). 

 
Fig 5.  RedEdge multispectral sensor from MicaSense. 

The BGNIR sensor collects data in the blue, green, and NIR bands. The sensor uses a standard 
digital camera with a special filter placed inside the camera.  
The UAV can also be equipped with a Nano Hyperspec sensor, which is shown in Figure 6. It 
captures data in 400-1000 nm spectral range, and has 640 spatial bands, 270 spectral bands, 
and frame rate of 300 Hz. It thus provides much better and detailed measurements than the 
multispectral sensor. The higher spectral sensitivity of hyperspectral imaging helps detect the 
stresses at an earlier stage of development (Govendor et al., 2009).  
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Fig 6. Nano-Hyperspec hyperspectral sensor. 

Proximal Sensors 
The proximal sensors used for the validation of the remote sensing data are a handheld 
spectroradiometer, chlorophyll content meter, and water potential meter (Govender et al., 2018), 
and are described below. 

Handheld 2 Spectroradiometer 
The Handheld 2 Spectroradiometer from ASD is a visible-near infrared (VNIR) hyperspectral 
sensor, which is shown in Figure 7. It can provide spectral data in 325-1070 nm spectral range, 
and provides data with an accuracy of ±1 nm and a resolution of <3 nm at 700 nm. The 
spectroradiometer data is used to calculate various vegetation indices including normalized 
difference vegetation index (NDVI).  

 
Fig 7. Fieldspec Handheld 2 spectroradiometer. 

SPAD 502DL Plus Chlorophyll Meter  
The SPAD 502DL Plus chlorophyll meter from Spectrum Technology, shown in Figure 8, 
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measures chlorophyll content, and can provide information on leaf nitrogen content ((Lindsey et 
al., 2016; Fox et al., 2008).  

 
Fig 8. SPAD 502D chlorophyll meter. 

The chlorophyll meter data for lettuce was compared with the chlorophyll-a and chlorophyll-b 
contents measured in the lab (Hunt et al., 2014). Figures 9 and 10 show the chlorophyll meter 
data and actual chlorophyll present in the lettuce leaves. It can be seen that there is a good 
agreement between the chlorophyll meter data and actual chlorophyll content.   

  
Fig 9. Relationship between SPAD 502 data and chlorophyll-a. 

 

Fig 10. Relationship between SPAD 502 data and chlorophyll-b. 
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WPC4 Water Potential Meter 
WPC4 water potential meter measures the water potential by determining the relative humidity of 
the air above a sample in a closed chamber.  

 
Fig 11. WPC4 water potential meter from Decagon. 

Data Collection 
The airborne and proximal sensor data were collected on a weekly basis. The remote sensing 
data from the UAV were collected at close to noon time. The solar noon provides an optimal 
condition for the remote sensing data as the sunlight is more direct. Handheld spectroradiometer 
and chlorophyll data were collected and either before or after the data collection from the UAVs 
were completed. For water potential, leaves were collected from the plants and taken to the Lab 
in a sealed plastic bag to measure the water potential. It takes several hours to measure the 
water potential using the water potential meter.  

The UAV data were collected from the entire plot each week the data were collected. However, 
for the proximal sensor data, only a sample of plants were chosen. Each week, two plants from 
each of the 48 subplots, for a total of 96 plants, were selected. The spectroradiometer data were 
collected either at the canopy level or the leaf level using the contact probe with the leaf clip. For 
the chlorophyll, a total of five readings were taken from the five different locations of each leaf 
and averaged. For the water potential, only one leaf per subplot was chosen.  

Data Processing 
The UAV data was processed using the PrecisionMapper software. The cloud based software 
automatically processes the UAV data into 2D or 3D products as requested by the user. The 
collected images are orthomosaicked by the software, i.e., the individual raw images are 
orthorectified and then mosaicked to produce a single image.  
The processed images were then converted to a GeoTIFF format, which is an image embedded 
with geo-referencing information. Quantum GIS (QGIS) software was used to open the GeoTIFF 
files and create a shapefile, which allows cropping the region containing the plot. After cropping 
the GeoTIFF file, all of the channels from the GeoTIFF were converted to a 3-D array and saved 
in a binary format while only the RGB channels were saved into a PNG file. The PNG file allowed 
for the use of more standard image processing tools. Figure 12 on the left shows the processed 
raw image of a portion of the lettuce plot from the RedEdge sensor, and the figure on the right 
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shows the image in the GoeTIFF format. 

  
Fig 12. Raw image of the RedEdge sensor data (left) and georeferenced image in GeoTIFF format (right).  

Since the rows of lettuce are not oriented in an East to West or North to South fashion, the images 
were rotated so that bounding boxes around each plant could be more easily drawn. Sloth, a tool 
for annotating images, was used to create the bounding boxes on the images. The annotations 
for the bounding boxes were stored in a JavaScript Object Notation (JSON) file format, which was 
used to crop each individual plant into its own image. It is important to ensure that the order of 
creating the bounding boxes match with the order of cropping. Otherwise, the cropped image will 
correspond to the wrong plant (Bhandari et al, 2018). 
Using the rotation and annotation information from the JSON file, the same operations were 
applied to the array so that there was an individual array for each plant. With each of these arrays, 
the channels were averaged spatially so that there was a single value for each channel.  

Results and Discussion 
Using the processed data, several vegetation indices were calculated including normalized 
difference vegetation index (NDVI), Green NDVI (GNDVI), enhanced NDVI (ENDVI), enhanced 
vegetation index (EVI), red edge ratio, modified chlorophyll absorption ratio index (MCARI), and 
dark green color index (DGCI) (Bhandari et al., 2018). For example, the NDVI values are 
calculated using the following formula: 

NDVI = :;<=<>?
:;<@<>?

                                                                       (1)  

where NIR and RED are reflectances in the NIR and red spectrums. NDVI ratio ranges from -1 to 
1. Higher positive NDVI values indicate healthy plants whereas lower values indicate unhealthy 
plants and negative values indicate unhealthy plants or no vegetation.  
Figure 13 shows reflectance plots of two different lettuce plants using the spectroradiometer data.  
Based on the formula above, the NDVI value for the left plot is 0.92, indicating a very healthy plant 
whereas the NDVI for the right is 0.56, indicating a less healthy plant. 
Similarly, other vegetation indices were calculated (Bhandari et al., 2018). These vegetation 
indices were compared with chlorophyll meter data, water potential, vegetation indices calculated 
using the spectroradiometer, and the agronomic measurements that included plant height and 
leaf numbers. The results shown and discussed below are the best correlations that we could 
obtain for the various vegetation indices with the proximal sensor data. Some of the best 
correlations were obtained for a particular day of data collection, while others were obtained for 
several weeks of data collection. 
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Figure 13. Reflectance plot of a healthy lettuce plant (left) and less healthy plant (right). 

Figure 14 shows the relationship between the NDVI obtained using the airborne data from 
RedEdge sensor and the NDVI obtained using the spectroradiometer data with the Pearson 
correlation coefficient of 0.55 (r = 0.55).  

 
Fig 14. Relationship between UAV NDVI and spectroradiometer NDVI (r = 0.55).  

Figure 15 shows the UAV NDVI compared with the chlorophyll meter data. A correlation of 0.28 
was obtained. The Red Edge ratio had similar correlation with the chlorophyll meter data. 
However, enhanced vegetation index (EVI) had a lower correlation with the SPAD readings (r = 
0.2).  

 
Fig 15. Relationship between SPAD 502 data and UAV NDVI (r = 0.28).   

However, the modified chlorophyll absorption ratio index (MCARI) showed better correlation with the SPAD 
readings as shown in Figure 16 with a correlation coefficient of 0.36 (r = 0.36). 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 11 

 
Fig 16. Relationship between MCARI and SPAD readings (r = 0.36).   

Also, the correlation between Green NDVI (GNDVI) and SPAD readings was better than that between the 
NDVI and SPAD readings (r = 0.35) as seen in Figure 17.   

 
Fig 17. Relationship between GNDVI and SPAD readings (r = 0.35).   

We also compared the various vegetation indices obtained using the remote sensing and 
spectroradiometer data with the agronomic measurements (plant height in centimeters and leaf 
numbers) and total biomass. Figure 18 shows the lettuce height and leaf numbers for different 
levels of nitrogen application and irrigation. It is seen that both the plant height and leaf numbers 
are maximum for the 100% irrigation and nitrogen applications. However, it is also worth noting 
that the plant height for the 100% irrigation and 25% nitrogen levels is same as the height for the 
50% irrigation and 50% nitrogen levels. This is helpful in determining the cost-effective application 
of nitrogen and irrigation for lettuce production using the remote sensing data while also 
optimizing the yield.    

  

 Fig 18. Leaf numbers and plant height vs. irrigation and nitrogen application levels. 
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Figure 19 shows the total leaf biomass for the different levels of nitrogen application and irrigation. 
For the total biomass, the leaves were collected from the plants and dried in an oven for 48 hours. 
The total biomass plot provides the information similar to the information provided by the leaf 
number plot.  

 
Fig 19. Total leaf biomass for different irrigation and nitrogen application levels.  

The relationship between the UAV NDVI and total biomass is shown in Figure 20. A correlation 
of 0.52 was obtained. EVI had a correlation of 0.45 with the total biomass. All other vegetation 
indices had lower correlations.  

 
Fig 20. Relationship between total leaf biomass and UAV NDVI (r = 0.52).  

Figure 21 shows the relationship between the NDVI and average plant height (in centimeters) 
with a correlation coefficient of 0.46 (r = 0.46). 

 
Fig 21. Relationship between NDVI and average plant height (r = 0.46). 

The Red Edge ratio and EVI had slightly lower correlations (r = 0.45) with the plant height whereas 
the DGCI and GNDVI had about the same correlations of 0.33. For the average leaf count, Red 
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Edge ratio had the highest correlation (r = 0.46) followed by the DGCI (r = 0.36) and EVI (r = 
0.28). The NDVI had the lowest correlation (r = 0.24).  

 
Fig 22. Relationship between Red Edge ratio and average leaf count (r = 0.46). 

Figure 23 shows the relationship between the EVI and water potential with a correlation coefficient 
of 0.38. The NDVI and Red Edge ratio had similar correlations with the water potential (r = 0.36, 
and r = 0.35, respectively). However, it should be mentioned that these indices are more indicative 
of nitrogen content than water.  

 
Fig 23. Relationship between EVI and water potential (r = 0.38). 

The water band index (WBI) was calculated using the spectroradiomenter data only. The 
RedEdge multispectral sensor data cannot be used to calculate the WBI, which is a ratio of the 
reflectance at 970 nm to the reflectance at 900 nm. The higher the water content in the vegetation 
canopies, the stronger the absorption at 970 nm relative to the absorption at 900 nm. Figure 24 
shows the relationship between the WBI and average leaf count (r = 0.62). The average height 
had similar correlation with the WBI (r = 0.59).  

 
Fig 24. Relationship between WBI and average leaf count (r = 0.62). 
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Figure 25 shows the relationship between the WBI and water potential (r = 0.32). The low 
correlation is probably due to the error in processing the leaves for water potential. This needs to 
be further investigated.  

 
Fig 25. Relationship between WBI and water potential (r = 0.32). 

The higher correlation between the vegetation indices, leaf count, and plant height indicates that 
the agronomic measurements may be better indicative of plant health than the information 
provided by the chlorophyll meter and water potential meter. This also needs to be further 
investigated.  

Conclusion and Future Work  
This paper showed the relationship between the airborne multispectral data and proximal sensor 
data as well as the agronomic measurements for lettuce plants. Several vegetation indices were 
calculated using the airborne data and compared with the chlorophyll meter, water potential 
meter, and handheld spectroradiometer data. The indices were also compared with the plant 
height and leaf numbers. With the data collected so far, varying degrees of correlations were 
obtained. The relationship between the UAV NDVI and the spectroradiometer NDVI was the best 
fit, followed by the relationship between the NDVI and plant height and Red Edge ratio and leaf 
numbers. Other indices had lower correlation with the ground-truth data. The correlations between 
the vegetation indices and the chlorophyll was lower than expected. This may be attributed to the 
fact that the total chlorophyll content depends on both water and nitrogen. The correlations 
between the water potential and vegetation indices were also less than expected. However, the 
WBI calculated using the spectroradiometer data had the highest correlations with the plant height 
and leaf numbers.  
From the results obtained so far, it can be concluded that the remote sensing data is generally 
able to differentiate the healthy and unhealthy plant. However, the remote sensing data is not yet 
ready to be used for the precision agriculture.  The accuracy of the remote sensing data for lettuce 
needs further validation and investigation.  
Future work will involve collecting more airborne and proximal sensor data including hyperspectral 
data for the different growing seasons of lettuce. The data collection methods will be revisited and 
improved. This will include determining the best altitude from which to collect the airborne data. 
Pressure chamber will be used for water potential. We will also measure the leaf area index using 
a plant canopy analyzer. Since the UAV measures canopy level data, leaf area index is expected 
to have better correlation with the vegetation indices calculated using the UAV data.  
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