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Abstract.  
Remote sensing (RS) and proximal soil sensing (PSS) technologies offer an advanced array of 
methods for obtaining soil property information and determining soil variability for precision 
agriculture. A large amount of data collected using these sensors may provide essential 
information for precision or site-specific management in a production field. In this paper, we 
introduced a new clustering technique was introduced and compared with existing clustering 
tools for determining relatively homogeneous parts of agricultural fields. A DUALEM-21S sensor 
was used, along with high-accuracy topography data, to characterize soil variability from three 
agricultural fields in Ontario, Canada. Sentinel-2 data were used for measuring bare soil and 
historical vegetation indices (VIs). The custom Neighborhood Search Analyst (NSA) data 
clustering tool was implemented using Python. In this NSA algorithm, part of the variance of 
each data layer is accounted for by subdividing the field into smaller relatively homogeneous 
areas. The algorithm was illustrated using field elevation, shallow and deep ECa, soil pH, and 
several VIs.  
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Introduction 
Management zone delineation using remote sensing (RS) and proximal soil sensing (PSS) data 
is becoming important for the assessment of soil property and characterizing variability in 
precision agriculture (Shatar & McBratney, 2001; Fridgen et al., 2004; Dhawale et al., 2014; 
Albornoz et al., 2018). In the delineation process, high-resolution data from these sensing 
technologies, together with quantitative methods, is used to infer the spatial pattern of soil 
heterogeneity (Deng et al., 2003; Adamchuk et al., 2004; Cohen et al., 2013; De Benedetto et 
al., 2013). To obtain information on the spatial pattern of soil and to produce the thematic soil 
maps of a field for understanding agronomic and yield-limiting factors, high density and 
multivariate data analysis were used to determine a solution by isolating homogeneous field 
areas and potential management zones (Vrindts et al., 2005; LI et al., 2007; Cressie & Kang, 
2010; Adamchuk et al., 2011, Dhawale et al., 2016).  
Multivariate data clustering techniques are imperative to achieve significant benefits from 
identifying and understanding soil variability within a production field (Burrough et al., 1997; Ruß 
& Brenning, 2010). Among the multivariate data analysis techniques, clustering techniques are 
most commonly used. Various indices in the non-hierarchical cluster analysis from fuzzy c-
means (FCM) and from K-means are among the common clustering methods used for data 
mining (Gui-Fen et al., 2007; Panda et al., 2012). Due to the fuzziness of C-means and K-
means, and several other limitations (i.e., create boundary pixels and each cluster object 
belongs in one or more groups) in the isolation process (Albornoz et al., 2018), this study 
attempts to provide a multivariate clustering tool to represent unique thematic maps and zonal 
boundaries based on the homogeneity of the agricultural field. Most of the clustering algorithms 
used in zone delineation do not handle high-density data files with multiple variables (Viscarra 
Rossel et al., 2011; Córdoba et al., 2016). The agricultural scientist and farmers often face 
various challenges for variable rate operations due to fragmented management zones, which 
are commonly produced by a clustering technique (Albornoz et al., 2018). The objective of this 
study was to present the process for developing a new and enhanced clustering technique to 
better understand soil variability in an agricultural field and compare them with commonly used 
ones.  

Material and methods 

Experimental sites and data description 
Three agricultural fields of varied sizes from Woodrill Farms in Ontario, Canada were mapped 
using both RS and PSS sensors (Table 1 & Fig 1). Elevation data was collected by Real-Time 
Kinematic (RTK) Global Navigation Satellite Systems (GNSS) from the agricultural fields (Table 
2). Slope, aspect (sin), and topographic wetness index (TWI) variables were derived from a 
digital elevation model (DEM) of the study sites. Dualem 21s was used to collect apparent 
electrical conductivity (ECa) of four different depths: HCP1 – 0-1.6 m, PRP1 – 0-0.5 m, HCP2 – 
0-3 m, and PRP2 – 0-1 m (Table 3). Potential outliers and null values of the PSS measurements 
were removed in the preprocessing steps, and about 15% of the PSS data was removed. 
Ordinary Kriging interpolated maps were generated from the PSS measurements in ESRI 
ArcGIS software. Various geospatial (e.g., rectification, point data extraction etc.) and digital 
remote sensing data processing (e.g., radiometric correction, stitching, stack bands etc.) steps 
were followed, and these enhanced the data quality for further analysis. Finally, the text data file 
was generated to store the sensor variables and sensor-derived variables for use in the 
clustering process.  
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Table 1. Three agricultural fields in Ontario, Canada. 
Field ID Area (ha) Target crops 

WH 39.55 Soybean/Wheat 

LD 21.00 Soybean 

RB 75.00 Soybean/Wheat 

 

 
 

  

Fig 1. (a) Three Woodrill farms in Ontario: WH field boundary with soil sample locations (b), LD field boundary with soil 
sample locations (c), and RB field boundary with soil sample locations (d). 

 
Table 2. Summary statistics of elevation data from RTK sensor in the three agricultural fields 

Field ID # of measurements  Elevation (m) 
Min Median Max Range STD Mean 

WH 28493 372.06 378.07 384.54 12.48 2.33 378.21 

LD 7110 332.70 344.86 354.17 21.47 5.76 343.95 

RB 20813 358.41 367.67 372.16 13.75 3.63 366.64 
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Table 3. Summary statistics of DUALEM 21s sensor variables from the three agricultural fields 

Field ID # of measurements Sensor configuration 
Apparent soil electrical conductivity (ECa), mS/m 

Min Median Max Range STD Mean 
WH 20129 

HCP1 
4.00 12.28 25.28 21.28 1.69 12.51 

LD 6931 2.58 6.90 16.08 13.50 1.55 6.96 
RB 18524 1.70 9.00 17.98 16.28 2.81 9.13 

         
WH 20129 

PRP1 
4.68 7.92 22.24 17.56 1.60 8.15 

LD 6931 0.72 4.44 14.12 13.40 1.38 4.55 
RB 18524 0.00 3.53 16.80 16.80 2.86 4.40 

         
WH 20129 

HCP2 
7.42 10.46 24.42 17.00 1.79 10.83 

LD 6931 0.50 4.44 14.44 13.94 1.85 4.61 
RB 18524 2.50 8.45 14.99 12.49 2.65 8.22 

         
WH 20129 

PRP2 

5.42 9.10 23.92 18.50 1.75 9.37 
LD 6931 1.08 4.68 14.60 13.52 1.50 4.75 

RB 18524 0.14 5.10 15.00 14.86 2.96 5.64 

 
High spatial and spectral resolution images were used for analyzing bare soil and historical 
vegetation characteristics (Table 4). Among the vegetation indices (VIs), NDVI maps from 
Sentinel-2 data were found to be more suitable and were used for the clustering process 
(Roberts et al., 2011; Viña et al., 2011). Orthophoto and Sentinel-2 four red-edge bands were 
used for visual interpretation with zonal thematic maps.  

Table 4. Remote sensing data characteristics and its sources 
Satellite sensor Spectral bands Pixel (m) Central Wavelength(nm) Imaging date Source 

OrthoPhoto B, G, R, NIR 0.2 - May 23, 2015 OMAFRA/OMNRF⃰ 
Sentinel-2 2(B), 3(G), 4(R), 8(NIR) 10.0 494, 560, 665, 834 July 21, 2017 Planet Labs 

 5,6,7 (Red-edge 1,2 &3) 20.0 704, 740, 781 July 21, 2017 Planet Labs 

⃰Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) & Ontario Ministry of Natural Resources and Forestry (OMNRF) 

Data clustering algorithms 
Fuzzy C-means in the management zone analyst (MZA) (USDA, 2000) were used for 
generating the normalized classification entropy (NCE) and fuzziness performance index (FPI) 
of the maximum five zones. The K-means algorithm in Python data library also was used to 
generate 5, 15, and 25 clusters, and to find cluster centers using the sum of square distances of 
all data points and the number of cases in each cluster.  
The proposed data clustering method, called neighborhood search analyst (NSA), resulted in 
the algorithms shown in Fig 2. The processing steps and formula are adopted from NSA written 
in MatLab code (Dhawale et al., 2014). To construct an objective function to be optimized 
through the data grouping process, the mean squared error (MSE) was calculated for each 
individual data layer k according to: 

      (1) 

where, Xij is a sensor value for the ith grid cells within the jth group;  
is the mean of jth group;  

N is the total number of grid cells;  
m is the number of groups;  
nj is the number of grid cells within the jth group. 
It should be noted that the difference between the total number of grid cells and the number of 
groups can be determined: 
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      (2) 

Since the algorithm initially assumes that all data elements belong to the same group number 1 
was, named "the rest of the field". MSEk(m=1) represents the variance of kth data layer across 
the entire field. Considering that the area of the field is substantially greater than the area of a 
grid cell, MSEk(m=1) can be called Farthest Distance Variance (FDVk). In such a situation, the 
portion of data variance accounted for by distributing N grid cells among m groups can be 
calculated according to: 

      (3)  

where MSEk(m=1) can be called Farthest Distance Variance (FDVk). 
The maximum value of R2

k can be obtained when MSEk is as small as possible and it is 
approaching 1 when the number of groups increases. Since the result can be considered less 
favorable if at least one data layer k is not adequately accounted for, it is reasonable to employ 
the integration operator OR instead of the more common AND. This excludes the need to 
assign a weight factor to each individual data layer when adding corresponding MSEk estimates. 
In mathematical terms, this would mean that the product of all R2

k should be maximized. 
Therefore, the objective function (OF) was defined as: 

       (4) 

where K is the number of PSS data layers. 
In this research, the smallest number of data elements that could be grouped was assigned to 
be a nine (3 x 3) grid cell square window. Therefore, the maximum accountable variance is the 
variance of PSS measurements between immediate neighbors. The Shortest Distance 
Variances (SDVk) can be found using: 

      (5) 

where w is the total number of 3x3 square windows of grid cells. 
Since SDVk represents the smallest MSEk value, the maximum value of R2

k is calculated as: 

      (6)  

This R2
k max parameter can range between 0 and 1. It is equal to 0 when data layer k is either 

uniform, or highly variable so that SDVk = FDVk. In such a case, the data layer should not be 
able to affect changes in the OF. Alternatively, when R2

k max is close to 1, the data layer has a 
strong spatial structure (SDVk << FDVk) and OF must be sensitive to the change of MSEk 
corresponding to that particular data layer.  
In mathematical terms, this goal can be achieved by multiplying all R2

k values raised to R2
k max 

power: 

     (7) 

The resultant OF indicates the overall quality of grid cell groupings. It varies from 0 to 1 and 
approaches high values when every spatially structured layer of PSS measurements is 
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separated among spatially continuous groups of grid cells with minimum internal group 
variance. Such groups represent different combinations of average PSS measurements 
obtained with different sensors that diverge from average field conditions. To facilitate the 
formation of grid cell groups that would maximize the OF, the NSA algorithm was implemented 
in this study using Python v3.6 (created by Guido van Rossum and managed by Python 
Software Foundation, Delaware, USA). 

 
Fig 2. The flowchart of the NSA algorithm process steps. 

Interpolated maps of selected sensor variables 
Kriged maps (spatial resolution of 5m) of RTK elevation (DEM), derived variables (TWI and 
slope), and Dualem sensor variables (HCP1, HCP2, PRP1, and PRP2) were produced and 
extracted in a data file for an input into the NSA tool. NDVI maps (spatial resolution of 10 m) 
were produced from Sentinel-2 images of 2017. Those continuous maps represented significant 
variations in different parts of each field (Figs. 3, 4, and 5).  

OFextended group > 
OF? 

Calculate OFnew group = max(OF) for m = m + 1 

Start 

Compute OF for m = 1 

OFnew group > 
OF? 

No 

Calculate OFextended group = max(OF) for nj = nj + 1  

OFextended group - OF > 9·(OFnew group - 
OF)? 

Yes 

Start a new 
group 

OF = OFnew group 
m = m + 1 

No No 

End 

Extend jth group 
OF = OFextended 

group 
nj = nj + 1 

Yes Yes 
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Fig 3. Interpolated maps (Kriged) of DEM, TWI, HCP1, PRP2 and NDVI maps in WH field. 
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Fig 4. Interpolated maps (Kriged) of DEM, TWI, HCP1, PRP2 and NDVI maps in LD field. 
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Fig 5. Interpolated maps (Kriged) of DEM, TWI, HCP1, PRP2 and NDVI maps in RB field. 
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Results and Discussion 

FCM clustering 
Based on the seven input variables (i.e., elevation, TWI, slope, HCP1, HCP2, PRP1, and PRP2) 
of the WH field, NCE and FPI indices in FCM clustering were assessed for their performance in 
creating the optimum number of zones. The NCE index was compared to FPI which showed 
that the maximum value was reached only in zones 4 and 5 (Fig 6). This clustering method 
presents a flaw when it comes to obtaining the optimum number of zones (Albornoz et al., 
2018). The FCM clusters produced pixels with isolated boundaries in various parts of the field 
(Nazeer & Sebastian, 2009). Many studies have reported this representation problem regarding 
the clustering of data due to the fuzzy boundary (Bragato, 2004; LI et al., 2007; Panda et al., 
2012). In this method, user-defined numbers of clusters were produced without considering the 
geospatial locations of the dataset or their distances. 

Fig 6. NCE and FPI of the WH field data with seven variables.  

K-means clustering 
In the K-means clustering (K=5), the data values were taken directly from the input table of WH 
field for generating cluster centers (Fig 7a). Data were standardized and normalized for the 
specific variable values. Among the five user-defined clusters, cluster 1, 2, 3, and 5 used the 
most data points. After several runs of each clustering process (K=5, K=15, and K=25), the R2 
were varied depending on how the K-means algorithm was initialized since there was a random 
component. The cluster map consisted of groups or pixels with isolated boundaries in various 
parts of the WH field (Fig 7b). Fig 7b, K-means cluster (K=25) map of WH field was produced for 
comparison with NSA zone map of approximately 25 clusters. 
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Fig 7(a). K-means cluster (K=5) centers with variable 

values of WH field. 
Fig 7(b). K-means cluster (K=25) map of WH field showing 

zones with various isolated pixels. 

NSA clustering 
In the NSA zone delineation process, providing the number of field partitioning clusters as 
compared to all other clustering algorithms is not obligatory. NSA produced groups of the grid 
cell (grid size of 20m) of seven input variables separately. This also could be delineated into 
user-defined zones. More importantly, this clustering tool efficiently delimited maps with the 
significant number of zones (Figs. 8a, 9a, and 10a). Results showed that WH, LD, and RB fields 
have 28, 20, and 27 georeferenced zones, respectively. 

 

 
 

 

Fig 8 (a). Zonal map included 28 well-defined clusters, (b). R2 for each 
data layers, and (c). Overall OF vs number of grid cells – WH. 

(a) (b) 

(c) 
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Fig 9 (a). Zonal map included 20 well-defined clusters, (b). R2 for 
each data layers, and (c). Overall OF vs number of grid cells – LD. 

 

 

 

 

Fig 10 (a). Zonal map included 27 well-defined clusters, (b). R2 for each 
data layers, and (c). Overall OF vs number of grid cells – RB. 

Zone delineation was performed by the individual R2 values of each variable (Figs. 8b, 9b, and 
10b) and overall OF (Figs. 8c, 9c, and 10c). Those graphs showed which part of variance of 
each data layer was accounted for by subdividing the field into smaller areas. In each graph, a 
higher number of R2 means that variability within individual zones was smaller than the 
difference between zones. Figs. 8b, 9b, and 10b showed that the R2 values increased when any 
new groups were formed or added to the existing groups. The NSA produced R2

max value was 
about 0.9 and the graph has a steeper slope in the beginning. This indicated that the data layer 
had a strong spatial structure and was dominated when the field was split. Also, x value, where 
most graphs level off, showed the smallest level of field partitioning that revealed majority of soil 

(a) 

(a) 
(b) 

(c) 

(c) 

(b) 
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heterogeneity. Results in LD and RB fields indicated that R2 for each data layer reached 
maximum height (0.5) around 400 classified grid cells, whereas the value reached at 0.65 near 
the 1000 grid cells in WH (Fig 11a). 50% (in LD and RB) and 65% (WH) of the field variance in 
both cases are accounted for by making the clusters.  

 

 

 

Fig 11. Comparison of R2 value between K-Means and NSA clustering, (a). R2 of NSA and (b). R2 of K-means (K=5, K=15, 
and K=25). 

R2 values of NSA algorithm were compared among the three different fields (Fig 11a). The 
overall OF showed that all the clusters were maximized by the R2 values closed to 0.5 and 
reached up to 0.65. In the three defined K-means clusters (K=5, K=15, and K=25), the R2 of LD 
fields were reported higher: 0.78, 0.81, and 0.82 respectively (Fig 11b). Also, R2 (K=5) was 
unexpectedly higher because of clumping pixels of each cluster throughout the field, and each 
cluster in various locations was not broken into parts. R2 of K-means cluster compared to NSA 
was higher in most of the fields and was approximately 0.80. The R2 values were comparable 
when the isolated/boundary pixels in each K-means cluster were disjointed from the main 
cluster. The K-means cluster map consisted of groups or pixels with isolated boundaries in 
various parts of the WH field (Fig 7b), whereas NSA algorithm counted these as different groups 
(Fig 8a).   

Conclusions 
The preprocessing and variable selection steps for all clustering techniques are imperative for 
providing a well-defined zonal boundary for developing management zones. Compared to other 
data clustering algorithms, NSA has a unique zone separation capability to produce a number of 
user-defined zones. Also, improved version of this sofware has been tested, which was handled 
a significant number of variables and data layers for delineating the optimum number of zones 
in a more robust way. The software was found reliable when integrating high-density field 
topography and PSS data files with the least amount of processing time, and it could be run on 
any platform with open source python modules. The robust zone delineation process and 
georeferenced thematic maps are useful for future applications of variable rate technologies and 
for other management purposes. In future, multisensor data fusion, advanced data filtering 
procedures, and the web application of the NSA could be implemented to help make 
appropriate site-specific agronomic and other environmental decisions in many regions. 
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