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Abstract.  
Real-time plant nitrogen (N) status at field scale is essential to enable the most efficient N fertilizer 
management system. The objective of this study was to ascertain if mobile fluorescence sensor 
measurements can accurately quantify variability in maize canopy early in the crop growing 
season using machine learning (ML) techniques. Multiplex®3, fluorescence sensor (Force-A, 
France) was used to collect plant N status measurements corresponding to the V6 and V9 maize 
growth stages. Conventionally, several fluorescence channels and derived indices have been 
employed as predictors in a multiple linear regression analysis strategy to estimate plant nitrogen. 
These predictors are often cross-correlated among each other, which makes the regression 
analysis challenging. Hence, the new generation of experiments often leans towards ML 
strategies. In this current study, fluorescence indices measured at V6 and V9 stages of maize 
were utilized for recommendations of selecting machine learning strategies among: (1) Partial 
least-square regression (PLSR), (2) Support Vector Regression (SVR), (3) Gaussian Process 
Regression (GPR), (4) Random Forest Regression (RFR), and (5) Artificial Neural Network (ANN) 
Multi-layer perceptron. The preliminary results indicated that ML techniques outperform traditional 
workflow. The comparative analysis indicated a promising accuracy in estimation of plant N 
content, above-ground biomass, and N uptake at V6 stages of maize with the moderate range of 
correlation coefficient (r = 0.72±0.03) and Root Mean Square Error (RMSE). Indeed, the V9 stage 
results in better retrieval accuracies than V6. Among ML techniques, the Support Vector 
Regression (SVR) performed best over the test site with a reasonable ranges of error estimates 
and yielding the lowest RMSE (0.36 and 0.23 (%N); 3.82 and 12.37g (biomass); 8.29 and 32.63g 
(N uptake) for V6 and V9, respectively) for all three crop growth indicators. 
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Introduction 
In-season assessment of crop nitrogen (N) status is the prerequisite for optimizing crop N fertilizer 
management. Instead of destructive plant sampling, indirect methods with the help of remote or 
proximal sensors have been developed to assess N status (Lemaire et al., 2008). Among these 
sensors, chlorophyll fluorescence sensing has shown a strong relationship with plant N status 
(Tremblay et al., 2012). Two N-sensitive indicator compounds are chlorophyll and flavonols. The 
leaf chlorophyll content is strongly influenced by leaf N (Schepers et al., 1996). In recent years, 
proximal sensors (e.g., Dualex, Multiplex) were used to identify nitrogen variability in crops 
(Cerovic et al., 2012; Dong et al., 2020; Siqueira et al., 2020). 
In most studies, a correlation between fluorescence measurement and the N status indicator was 
established, and subsequent parametric regression allowed prediction of plant N (Yang et al., 
2016). From a practical perspective, developing such regression models has the advantage that 
it facilitates the use of fluorescence measurements as an indirect estimation of crop N status 
indicators at different crop growth stages. Nevertheless, these fluorescence measurements 
(predictors in the regression analysis) are often cross-correlated among each other, which makes 
the regression analysis challenging. In recent years, multivariate regression algorithms have been 
widely applied in the quantitative estimation of the bio-geophysical parameter from remote and 
proximal sensing using machine learning (ML) strategies (Verrelst et al., 2015; Mandal et al., 
2019; Berger et al., 2020). 
Considering the complexity of multi-channel fluorescence measurements taken at canopy scale 
with motion, the ML based regression algorithms can extract major characteristic and can be used 
to analyze the intricate and complex correlation between fluorescence measurements and crop 
N indicators (Chlingaryan et al., 2018; Dong et al., 2021). Among several ML models, partial least 
square regression (PLSR), stepwise multiple linear regression (SMLR), support vector regression 
(SVR), artificial neural network (ANN) are often used to estimate crop N concentration. In this 
study, Multiplex®3, fluorescence sensor was used to collect plant N status measurements 
corresponding to the V6 and V9 maize growth stages. The objective of this study was to ascertain 
if mobile fluorescence sensor measurements can accurately quantify variability in maize canopy 
early in the crop growing season using machine learning (ML) techniques.  
 

Materials and Methods 

Test site and agricultural management  
The present experiment was performed over a test site located at Agricultural Research 
Development and Education Center (ARDEC) of Colorado State University, Colorado, USA 
(40°39'57.4"N, 104°59'53.1"W). This site will be referred to as ARDEC in the following sections. 
The experiment at this site was performed over 2012 crop growing season within a field under 
pivot irrigation system and maize cultivation. Different N rate treatments were applied in a 
completely randomized design. UAN 32% (urea and ammonium nitrate; 32-0-0) was applied as 
nitrogen sources at rates of 0, 56, 112, 168, and 224 kg ha-1. Each of these 5 treatments were 
laid out according to three management zone (high, medium, and low), with each plot had 6 rows 
(4.57 m wide and 6 m long). For each N treatment and management zone, 4 repetitions were 
considered. The plant sampling was conducted at V6 and V9 growth stages of maize. It included 
determination of above-ground biomass and plant N through destructive sampling. The harvested 
plant components were sent to laboratory for the analysis of total plant N content (%) and N 
uptake (g). 
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Fluorescence data acquisition    
The Multiplex®3 (FORCE-A) was used in the present study to acquire fluorescence response 
from maize canopy. Multiplex®3 has induction light emitting diodes (LED) at four different 
emission channels (UV-A: 375nm, blue: 470nm, green: 516nm, red: 625 nm). The induce plant 
fluorescence is detected by three photodiodes (yellow (YF), red (RF) and far-red (FRF)). The 
fluorescence measurements were carried out with the hand-held Multiplex®3 at the V6 and V9 
growth stages of maize. The fluorescence measurements were collected in motion at 10 cm 
above the plant canopy (Fig. 1). From each plot, ten plants were selected along the third row 
(center row) for fluorescence data acquisitions. A filtering was performed over fluorescence data 
acquired on the canopy to compensate noises using wavelet transformation based denoising. 
These data filtering steps were performed using Python libraries (Code availability: Github1). 

 

 

Fig. 1. Mobile acquisition mode of Multiplex®3 fluorescence sensor over maize canopy in field. 

 
Instead of individual fluorescence channel, several vegetation indices were used. In total, seven 
indices were selected for this research: Four N balance indices (NBI_R, NBI_B, NBI_B and NBI1), 
two chlorophyll indices (CHL and CHL1) and one flavonoid index (FLAV) (Agati et al., 2013; 
Longchamps and Khosla, 2014). The sensitivity of each vegetation indices to different N 
application rate was subjected to analysis of variance (ANOVA) (significance level α = 0.01, and 
0.05) at V6 and V9 growth stages of maize. In the case of significant difference, a Tukey’s HSD 
test was used to compare mean values of individual vegetation indices across N treatments at 
the p < 0.05 significance level.  

Estimation of crop growth indicators  
The fluorescence-based vegetation indices were used as predictors for estimation of crop N 
indicators, i.e., aboveground biomass, N content (%), and N uptake with the machine learning 
regression technique. Multivariate predictors were used in ML algorithms during the training 
phase for each target parameter. The comparison of these ML regression techniques i.e., PLSR, 
Random Forest (RFR), SVR, ANN, Gaussian Process Regression (GPR), were conducted to 
elucidate their capabilities under the same agronomic condition and acquisition modes of 
fluorescence sensor. For comparison of different machine learning techniques in estimation of 
crop growth indicators, the repeated K fold cross validation score were used (Fig. 2). The test 
accuracies of ML techniques were compared for %N, biomass, and N uptake at the V6 and V9 
growth stages independently.  

 

 
1 Codes: https://github.com/PrecisionAgLab-KSU/ICPA2022_Abstract8761 
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Fig. 2. Schematic workflow for ML model training and validation. 

 

Results and discussions 

Sensitivity of fluorescence measurements with different N rate application 
The sensitivity of fluorescence indices is presented with different N application rates over 
experimental plots of the ARDEC site in Fig. 3 and 4 for V6 and V9 growth stages of maize. For 
statistical analysis, the treatments were split based on three management zones (low, medium, 
and high).  

 

Fig. 3. Response of fluorescence indices to different N application rate at V6 growth stage of maize. Responses are 
grouped according to the three manazement zones (i.e., low, medium, and high). Different letters (a, b, c, d: Low MZ; A, B, 
C, D: Medium MZ; α, β, γ, δ: High MZ) indicate significant differences according to the Tukey’s HSD test at p < 0.05 
significance level.  
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Irrespective of management zones, the NBI measured from red and green induction (NBI_R and 
NBI_G) showed better distinction among the N treatments (significantly different with α = 0.05) at 
the V6 stage. The other two N balance indices (NBI_B, and NBI1) indicated lower differences in 
mean values along with different N treatments.  
 

 

Fig. 4. Response of fluorescence indices to different N application rate at V9 growth stage of maize. Responses are grouped 
according to the three manazement zones (i.e., low, medium, and high). Different letters (a, b, c, d: Low MZ; A, B, C, D: 
Medium MZ; α, β, γ, δ: High MZ) indicate significant differences according to the Tukey’s HSD test at p < 0.05 significance 
level. 

 
According to the ANOVA results of fluorescence indices, the effect of N treatment on most of 
the indices was significant. The NBI_R, NBI_G, NBI_B, NBI1, CHL, and CHL1 increased with 
the increase of applied N, while decreasing trends were found for FLAV (Fig. 3). However, all 
the tested fluorescence indices were not sensitive to N rates ranging from 168 to 224 kg ha−1 N 
at the V6 growth stage. Interestingly, these indices were unsuccessful to distinguish the high N 
rates (>=112 kg ha−1) during the V9 growth stage (Fig. 3). Compared to all indices, FLAV 
changed inversely with the N rate irrespective of growth stages and management zones. It is 
possibly due to polyphenols accumulation in leaf epidermis under low N availability, which was 
opposite to the increasing trend of CHL and CHL1 related to chlorophyll content (Liu et al., 
2010).  

Comparison of machine learning techniques  
For comparison of different machine learning techniques in estimation of crop growth indicators, 
the repeated k-fold cross validation score was used. The test accuracies for five state of the art 
machine learning techniques were compared for %N, biomass, and N uptake at V6 and V9 growth 
stages independently. The error estimates in terms of r and RMSE are presented in Table 1. 
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Table 1. Test accuracies of maize N status indicator (%N, biomass (g), N uptake (g)) estimation using fluorescence indices 
at V6 and V9 stages of maize for different machine learning models. 

Crop 
parameter 

Model 
 V6   V9 

r RMSE   r RMSE 

%N 

PLSR  0.7 0.65   0.68 0.46 

SVR  0.81 0.36   0.83 0.23 

GPR  0.79 0.4   0.82 0.28 

RFR  0.75 0.54   0.76 0.35 

ANN  0.78 0.46   0.8 0.26 

Biomass 

PLSR  0.73 4.98   0.75 16.58 

SVR  0.83 3.82   0.91 12.37 

GPR  0.84 3.96   0.86 12.98 

RFR  0.79 4.09   0.83 13.68 

ANN  0.8 4.01   0.85 12.87 

N uptake 

PLSR  0.62 12.05   0.75 40.57 

SVR  0.79 8.29   0.92 32.63 

GPR  0.76 9.06   0.86 33.89 

RFR  0.68 9.85   0.8 36.52 

ANN  0.75 9.02   0.87 33.02 

 

Except the PLSR, marginal differences among other techniques for all three plant N indicator 
were observed. In the case of %N, the lowest r and higher RMSE values for both the V6 (r = 0.7, 
RMSE = 0.65) and V9 (r = 0.68, RMSE = 0.46) growth stages were observed for PLSR. The 
lowest accuracies were obtained for biomass and N uptake. As compared to the machine learning 
models, PLSR could not handle the multicollinearity between predictors, which affected the 
training process.  
Amongst the other four techniques, the highest accuracy was obtained with the SVR, also yielding 
the lowest RMSE (0.36 and 0.23 (%N); 3.82 and 12.37 (biomass); 8.29 and 32.63 (N uptake) for 
V6 and V9, respectively) for all three crop growth parameters within desirable limits. These results 
supported the conclusion that the SVR is an efficient and robust technique for fluorescence-based 
crop growth parameter estimation. The performances were inferior at the V6 growth stage. Dong 
et al. (2020) also reported higher variations in plant nitrogen content estimates at V6 than at V8 
stages of maize using fluorescence indices (NBI, FLAV, and CHL).  

Summary 
Applications of mobile fluorescence sensing for maize under field conditions has proven to be a 
promising sensing technology for monitoring crop growth. The results of Multiplex fluorescence 
indices measured over maize canopy treated with different N rates indicated that fluorescence 
measurements were able to discriminate variances between N rates both at V6 and V9 stages in 
all management zones. Mobile crop sensors have the potential to provide a real-time estimate of 
crop N status indicators. While evaluating ML techniques, the cross-validation scores indicated 
high correlation coefficients and low estimation errors for SVR at V6 and V9 growth stages. These 
results support a conclusion that the SVR could be an efficient and robust technique for 
fluorescence-based estimates of crop N status indicators. Nonetheless, a comparison among ML 
models is necessary on the basis of the time-memory complexity which indicates their robustness, 
uncertainty, and computation costs for retrieving crop N indicators.  
 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

7 

References 
Agati, G., Foschi, L., Grossi, N., Guglielminetti, L., Cerovic, Z.G. and Volterrani, M., 2013. 
Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum 
vaginatum and Zoysia matrella turfgrasses. European journal of agronomy, 45, pp.39-51.  
Berger, K., Verrelst, J., Féret, J.B., Hank, T., Wocher, M., Mauser, W. and Camps-Valls, G., 2020. 
Retrieval of aboveground crop nitrogen content with a hybrid machine learning 
method. International Journal of Applied Earth Observation and Geoinformation, 92, p.102174. 

Cerovic, Z.G., Masdoumier, G., Ghozlen, N.B. and Latouche, G., 2012. A new optical leaf-clip 
meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal 
flavonoids. Physiologia plantarum, 146(3), pp.251-260. 
Chlingaryan, A., Sukkarieh, S. and Whelan, B., 2018. Machine learning approaches for crop yield 
prediction and nitrogen status estimation in precision agriculture: A review. Computers and 
electronics in agriculture, 151, pp.61-69. 
Dong, R., Miao, Y., Wang, X., Chen, Z., Yuan, F., Zhang, W. and Li, H., 2020. Estimating plant 
nitrogen concentration of maize using a leaf fluorescence sensor across growth stages. Remote 
Sensing, 12(7), p.1139. 
Dong, R., Miao, Y., Wang, X., Yuan, F. and Kusnierek, K., 2021. Canopy Fluorescence Sensing 
for In-Season Maize Nitrogen Status Diagnosis. Remote Sensing, 13(24), p.5141. 
Lemaire, G., Jeuffroy, M.H. and Gastal, F., 2008. Diagnosis tool for plant and crop N status in 
vegetative stage: Theory and practices for crop N management. European Journal of 
agronomy, 28(4), pp.614-624. 
Liu, W., Zhu, D.W., Liu, D.H., Geng, M.J., Zhou, W.B., Mi, W.J., Yang, T.W. and Hamilton, D., 
2010. Influence of nitrogen on the primary and secondary metabolism and synthesis of flavonoids 
in Chrysanthemum morifolium Ramat. Journal of Plant Nutrition, 33(2), pp.240-254. 
Longchamps, L., & Khosla, R. 2014. Early Detection of Nitrogen Variability in Maize Using 
Fluorescence. Agronomy Journal, 106(2), 511-518. 
Mandal, D., Hosseini, M., McNairn, H., Kumar, V., Bhattacharya, A., Rao, Y.S., Mitchell, S., 
Robertson, L.D., Davidson, A. and Dabrowska-Zielinska, K., 2019. An investigation of inversion 
methodologies to retrieve the leaf area index of corn from C-band SAR data. International Journal 
of Applied Earth Observation and Geoinformation, 82, p.101893. 
Schepers, J. S., Blackmer, T. M., Wilhelm, W. W., & Resende, M. 1996. Transmittance and 
Reflectance Measurements of CornLeaves from Plants with Different Nitrogen and Water 
Supply. Journal of Plant Physiology, 148(5), 523-529. 
Siqueira, R., Longchamps, L., Dahal, S. and Khosla, R., 2020. Use of fluorescence sensing to 
detect nitrogen and potassium variability in maize. Remote Sensing, 12(11), p.1752. 
Tremblay, N., Wang, Z. and Cerovic, Z.G., 2012. Sensing crop nitrogen status with fluorescence 
indicators. A review. Agronomy for sustainable development, 32(2), pp.451-464. 
Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J.P., Veroustraete, F., Clevers, J.G. and 
Moreno, J., 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-
geophysical properties–A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 
pp.273-290. 
Yang, J., Gong, W., Shi, S., Du, L., Sun, J., Song, S., Chen, B. and Zhang, Z., 2016. Analyzing 
the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy 
rice. Scientific reports, 6(1), pp.1-9. 
 

 


