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Abstract.  
Digital Agriculture has led to new phenotyping methods that use artificial intelligence and machine learning 
solutions on image and video data collected from lab, greenhouse, and field environments.  The availability 
of accurately annotated image and video data remains a bottleneck for developing most machine learning 
and deep learning models. Typically, deep learning models require thousands of unique samples to 
accurately learn a given task.  However, manual annotation of a large dataset will either take a long time if 
done by a single annotator or drive-up costs significantly if done by many expert annotators.  To provide 
some relief to the data bottleneck, alternative approaches like automatic augmentation algorithms are 
needed, however, traditional techniques such as rotation, cropping, resampling, adjusting colors, white 
balance, and contrast are too simplistic and generic due to which they have significant limitations.  For 
example, if the orientation of the objects in the image is important, then augmentation by rotation would not 
be an option. Clearly a better approach for data augmentation is required to address these issues and 
maintain the original properties of the data. Generative Adversarial Network (GAN), a recent development 
in deep learning, offers a promising solution where two neural networks, one to generate data and the other 
to detect fake/synthetic data, compete against each other to improve the accuracy of both. A carefully 
trained GAN model can generate images with high fidelity that can be used as a tool for massive data 
augmentation. We propose a novel method for data augmentation leveraging NVIDIA’s GauGAN model 
and the Mask R-CNN model to generate unique, synthetic data that are indistinguishable from the real 
data.  A few hundred manually annotated samples are used to train a Mask R-CNN model to generate 
additional semantic segmentation masks. These generated masks and their corresponding real images are 
used to train the GauGAN model.  Once the GauGAN has been trained, a virtually unlimited quantity of 
diverse training samples and annotations can be generated. To improve the quality of the segmentation 
masks the Mask R-CNN model is retrained with the GAN-generated samples. In addition, we also present 
“Toodle”, a Python Dash web application integrated with the GauGAN model for interactive synthetic data 
generation on lab images collected to study insect damage to maize and soy leaf samples. 
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1 Introduction 
Advances in digital technologies have revolutionized many industries by transforming the product 
development and business processes while paving the way for disruptive innovations. Digital 
agriculture is the use of digital tools and technologies for gathering and analyzing spatial and 
temporal data of crops, soils, and the environment, and leveraging the insights towards 
implementing appropriate management practices. Such data- and insight-driven management 
measures are improving farm productivity and profitability. 
While the throughput of molecular technologies such as DNA sequencing and genotyping has 
advanced rapidly, plant phenotyping is the rate-limiting step in performing full-fledged analytics 
towards crop improvement decisions and for in-field interventions to improve productivity. Images, 
collected through diverse proximal and remote sensing platforms, and associated analytics are 
addressing this bottleneck and significantly increasing the spatial coverage and throughput of 
plant phenotyping (Fahlgren et al., 2015). Powerful tools such as Artificial Intelligence (AI), 
Machine Learning (ML), and Deep Learning (DL) are providing insights into crop growth and 
health, a prerequisite for site-specific management or precision farming (Benos et al., 2021; 
Chandra et al., 2020). Satellites, drones, mobile devices, LIDAR, microscopes, 
hyperspectral/fluorescence imagers are being used to collect images and videos in labs, 
greenhouses, and field. Computer vision methods are then used to analyze these data to perform 
image classification, multiple object detection, semantic segmentation. A critical requirement for 
improving the predictive power of DL models is the availability of a large amount of image data, 
in the absence of which they could overfit the training data. In situations where insufficient number 
of images are available, data augmentation is a promising technique to increase the volume of 
images either by creating slight variations of existing images using simple techniques such as 
rotating, cropping, flipping, color variations, and noise injection or by de novo creation of synthetic 
images (Shorten & Khoshgoftaar, 2019). 
Generative Adversarial Network (GAN), first developed by Ian Goodfellow (Goodfellow et al., 
2014), is a class of neural network architecture that performs generative modeling using 
Convolutional Neural Networks (CNNs). It works by training two competing networks, a generator 
and a discriminator, where the generator creates new data, and the discriminator classifies those 
data samples as real or fake. GANs have been used for several image and video applications 
such as image-to-image translation, photo colorization, generating new human poses, photo 
blending, super resolution, photo inpainting, video prediction, and 3D object generation 
(Brownlee, 2019). In addition to this, GANs have also become attractive options for generating 
synthetic images and, therefore, could be leveraged for data augmentation purposes (Perez & 
Wang, 2017). Since the images generated by GANs are realistic looking, they do not have the 
drawbacks of those generated by traditional techniques such as rotation and noise additions, 
therefore, can improve the generalization ability and predictive power of models like CNNs 
(Fountas et al., 2020; Marchesi, 2017). 
The remainder of this paper is organized as follows: background is presented in section 2, 
materials and methods are in section 3, results and discussion are presented in section 4, and 
the paper concludes in section 5 with a summary of the contributions and potential avenues of 
future research. 

2 Background 
Artificial intelligence has been used to solve a vast number of problems in diverse domains 
(LeCun et al., 2015), especially computer vision techniques such as image classification 
(Simonyan & Zisserman, 2014; Szegedy et al., 2015; He et al., 2016), image segmentation (Chen 
et al., 2014; Long et al., 2015), and object detection (Girshick et al., 2014; Ren et al., 2015; W. 
Liu et al., 2016; Redmon et al., 2016) have been used to analyze images and videos.  DL models 
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have been shown to perform significantly better than traditional computer vision and machine 
learning algorithms (Krizhevsky et al., 2012). Due to their accuracy and efficiency, these models 
found applications in several key areas including agriculture and were even shown to surpass 
certain aspects of human vision (He et al., 2015; Russakovsky et al., 2015). 
In agriculture, DL models are trained on image and video data from satellites, UAVs, farm rovers, 
smartphones, and microscopes, to identify objects of interest at different scales. Example 
applications include land cover classification (Rebetez et al., 2016; Kussul et al., 2017; Lu et al., 
2017), crop phenology (Khaki et al., 2022; Z. Lin & Guo, 2020; Zendler et al., 2021), crop or plant 
detection (Sa et al., 2016; Bargoti & Underwood, 2017), weed detection (Milioto et al., 2017; 
Potena et al., 2016), and disease identification (Mohanty et al., 2016; B. Liu et al., 2017; 
Ferentinos, 2018). Among DL models, Mask R-CNN (He et al., 2017) is extensively used to detect 
and count objects in images and videos. It has been used in agriculture for plant or stock counting 
(Machefer et al., 2020; Xu et al., 2020), crop detection (S. Wang et al., 2021), fruit detection ((Yu 
et al., 2019)), etc. 
Although DL models can achieve outstanding performance, they still require voluminous data and 
ground-truth to learn key features and generalize better on unseen images. While abundant raw 
image data are available for several cases in agriculture, the cost and time required to annotate 
these data is a major challenge. This is due to the shortage in the number of domain experts 
needed, or due to the cumbersome nature of capturing ground-truth information. Hence there is 
a need for a preprocessing step to augment data and corresponding annotations to train DL 
models with high performance and with reasonable cost and time. GANs have been explored to 
solve this issue by training a model that can automatically generate synthetic data and associated 
annotations. 
GAN networks were first developed by Ian Goodfellow (Goodfellow et al., 2014). Since the 
development of original algorithm by Goodfellow et al. several GAN networks have come into 
existence such as pix2pix (Isola et al., 2017), CycleGAN (Zhu et al., 2017), StyleGAN (Karras et 
al., 2019), and GauGAN (Park et al., 2019). More recently, data augmentation via synthetic data 
generation has seen numerous approaches with GAN-based architectures. These techniques 
range from generation of novel samples from the learned distribution implied by data (DCGAN; 
(Radford et al., 2016), image-to-image translation (pix2pix), and hybrid methods such as SimGAN 
which combine 3D rendering with GAN (Shrivastava et al., 2017). The hybrid technique SimGAN 
by Apple applies realistic textures to 3D rendered eyes for training the iPhone X face unlock. 
Using this approach, they were able to generate realistic training data with perfect annotations. 
Since annotation is typically a large expense in both time and money, the ability to automatically 
generate annotations is crucial for any data augmentation task. Data augmentation with only 
synthetic data (Jahanian et al., 2022) is a very recent development by MIT.  In this paper, we 
employ both real and synthetic data for training our downstream model. 
In this paper, we used the GauGAN model to generate synthetic images for data augmentation. 
These data were used to train a Mask R-CNN model to accurately generate segmentation maps. 
The main contribution of the paper is the development of a GAN-based method combined with a 
procedural algorithm to generate high fidelity synthetic image data for augmentation. The next 
section discusses in detail the materials and methods used in the project. 

3 Materials and Methods 
In this paper, we propose a novel framework (see Figure 1) for high fidelity synthetic data 
augmentation using generative adversarial networks. This framework consists of a Mask R-CNN 
(He et al., 2017) segmentation model trained on exceedingly small, annotated leaf tissue dataset. 
A GauGAN model is trained with Mask R-CNN data to generate photo-realistic leaf disc images. 
The images generated by the GAN model were then used to re-train the Mask R-CNN model and 
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improve its accuracy compared to traditional or no augmentation. Section 3.1 provides information 
on the image and ground-truth datasets, Section 3.2 explains the Mask R-CNN segmentation 
model, Section 3.3 describes the GauGAN training process, Section 3.4 describes the retraining 
of Mask R-CNN with augmentation, and finally Section 3.5 presents the “Toodle”, a Python web 
application that converts doodles into realistic leaf disc images. 
 

 
Figure 1. Overall workflow for a GAN-based method for high fidelity synthetic data augmentation. Panel (A) 
shows sample soy and corn images and the corresponding human-annotated masks. The experts 
annotated 300 images (150 each for soy and corn) to identify leaf tissue, insect, and frass at a pixel level. 
These data were used to train an image segmentation model such as Mask R-CNN as shown in panel (B). 
The Mask R-CNN was used to generate masks for an additional 17700 images. The 18000 images were 
then trained using NVIDIA GauGAN as shown in panel (C). The GauGAN model was evaluated with a 
random mask generator that procedurally created masks that resembled the ground-truth annotations (D). 
The GAN generated images for a given mask are shown in panel (E). We also developed “Toodle” a python 
dash web app tool to draw custom user generated masks as shown in panel, however the app was not 
used for training as shown in panel (F). 

3.1 Datasets 
Plants containing insect resistant traits or crop protection insecticides are evaluated using high-
throughput insect feeding assays in labs. Multiple corn and soy circular leaf tissues are infested 
with fall armyworm, corn earworm, European corn borer, soybean looper, and velvet bean 
caterpillar larvae using plate-based assays. These plates are later imaged to evaluate the 
effectiveness of the corresponding trait or insecticide compared to controls. We used computer 
vision and deep learning models to automatically quantify damage from these images. To 
accurately estimate damage, a Mask R-CNN model was trained to identify pixels that are leaf, 
insect, frass, and background. Figure 2 below shows a sample image of corn and soy leaf tissue. 
The segmentation model must accurately assess the tissue damage for estimating the impact of 
the trait or insecticide.  
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Figure 2 – Sample leaf tissue images used to train the Mask-RCNN and GauGAN model. Image on left 
contains corn leaf tissue infested with European corn borer larvae. Image on right contains soy leaf tissue 
infested with corn earworm. 

 

We used 200 soy and corn images each with varied amounts of tissue damage in them. Experts 
manually annotated the images to obtain pixel-level ground-truth information. The 300 annotated 
images were used to train the Mask R-CNN segmentation model and 100 images were set aside 
as test dataset. We then extracted some statistics from the annotated images that were used to 
procedurally generate random mask images for the GauGAN model. Tables 1 and 2 below show 
the image statistics extracted from these masks. 
 

Table 1: Image statistics for leaf tissue, insect, and frass for corn assay 

 

Image Stats Leaf Insect Frass 

Mean Count 4 4 8 

(Min,Max) Count (1, 38) (1, 5) (1, 66) 

Mean Pixel Area (%) 24 0.24 0.11 

(Min, Max) Pixel Area (%) (22, 27) (0.01, 0.97) (0, 2.34) 

 
Table 2: Image statistics for leaf tissue, insect, and frass for soy assay 

 

Image Stats Leaf Insect Frass 

Mean Count 16 1 61 

(Min,Max) Count (1, 88) (1, 3) (1, 185) 

Mean Pixel Area (%) 38 0.82 0.05 

(Min, Max) Pixel Area (%) (20, 50) (0.01,3.14) (0, 0.5) 

 
In the tables above pixel area is defined as the ratio of total number of pixels for each class (leaf, 
insect, frass) to the total number of image pixels. Another 17,700 unannotated leaf disc images 
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were used to generate segmentation maps using the Mask R-CNN model. The GauGAN model 
was trained using these images and their corresponding masks. 

3.2 Mask R-CNN 
Mask R-CNN, a deep learning model for instance segmentation, aims to accurately detect objects 
in an image and simultaneously generate masks for each instance. It is basically an extension of 
Faster R-CNN where a mask predictor branch is added in parallel to a bounding box predictor. 
Mask R-CNN consists of two stages. Stage I is a Feature Pyramid Network (FPN) (T.-Y. Lin et 
al., 2017) along with Region Proposal Network (RPN) for identifying possible region of interest 
(RoI) or anchors in an image. FPN is built in conjunction with a backbone feature extractor model 
(ResNet-50). The hierarchical features at different scales from the intermediate layers of ResNet-
50 are fed to the FPN to improve the generic feature extraction. Stage II extracts small feature 
maps using RoIAlign, in contrast to RoIPool in Fast R-CNN, from each candidate RoI and 
performs classification, bounding box regression, and pixel-level segmentation for each RoI. The 
candidate RoIs generated by RPN are usually filtered by non-maximum suppression algorithm to 
eliminate any redundant anchors and find the coordinates of an optimum object detection 
bounding box.  
The ResNet-50 model in stage I is pre-loaded with ImageNet weights and then finetuned with the 
leaf disc dataset. Fine-tuning is considered as an efficient scheme while training deep CNNs with 
sparse dataset. The Mask R-CNN model was trained for 200 epochs. The initial learning rate was 
set to 0.01 and the learning rate decay was chosen to reduce by 0.1 for every 30 epochs. The 
loss for each sampled RoI is a summation of classification, bounding box regression, and mask 
losses. We used stochastic gradient descent with momentum parameter to minimize the loss 
function. The inference time per image was 0.21 seconds on a NVIDIA Tesla T4 GPU.  

3.3 GauGAN Training 
GauGAN (Park et al., 2019) is a model developed by NVIDIA which is named after post-
impressionist painter Paul Gauguin. The NVIDIA GauGAN model generates a photo-realistic 
image of a user drawn doodle. GauGAN is built on the NVIDIA’s pix2pixHD model (T.-C. Wang 
et al., 2018), which itself is an improvement on the original pix2pix model to enable higher 
resolution images. It improves on the efficiency of training a pix2pix model by incorporating a 
novel variant of normalization called SPADE layers. These layers maintain semantic information 
between convolutional layers and normalization operations. GauGAN is also designed to use an 
optional variational auto encoder (VAE) network in addition to the semantic mask as an input to 
the generator. We chose not to employ the VAE in our work because the number of classes is 
low and very specific to type of object we wished to render. 
The GauGAN model was trained on approx. 9000 annotated images generated by Mask R-CNN 
that were split evenly between corn and soy. We utilized the training script which came with the 
GauGAN repository without any modification. The model was initially trained for 50 epochs. Since 
the quality of the corn leaf texture was insufficient, we continued training for 25 more epochs with 
an additional 9000 images (split evenly between corn and soy). Further training improved the 
quality of the corn leaf texture rendered by the model. The first 50 epochs were trained for roughly 
48 hours on an NVIDIA A100 GPU.  The remaining 25 epochs were trained for roughly 48 hours 
on an NVIDIA V100 GPU. We assessed the quality of the model based solely on visual inspection 
of the generated output. 

3.4 Mask R-CNN Retraining 
The Mask R-CNN model was initially trained with 150 images each for corn and soy. To evaluate 
the GauGAN model we re-trained the Mask R-CNN with the masks and GAN generated photo-
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realistic leaf disc images. We compared Mask R-CNN model trained only on the original data with 
Mask R-CNN model trained on traditional and GAN-based augmented images.  
3.4.1 Traditional Augmentation 

Traditional augmentation approaches are easy and cost less to generate transformed views of an 
image. These usually include flipping, rotating, cropping, and tuning images (Buslaev et al., 2020; 
Papakipos & Bitton, 2022). We generated 34 transformed views of each image to extrapolate the 
150 original images to generate almost 5000 new images per assay. The transformations were 
chosen such that the resulting image retains the key characteristics of the original image. 
The leaf disc dataset contains a leaf tissue cut in a disc shape and placed at center of the well in 
each plate. Insects are confined to this well to feed on the leaf, and they leave waste, also known 
as frass. The damage can be on any part of the leaf and of any shape. To account for this, the 
images were flipped along vertical and horizontal axes and cropped randomly with a given height 
and width. The images were rotated at various angles {45o, 60o, 90o, 135o, 180o, 225o, 270o, 315o} 
with zero padding and cropping. The images were randomly tuned for varied brightness with a 
factor ranging [0.5, 2] and varied contrast with factor [0.5, 0.7]. The image signal was processed 
with a high pass filter to induce noise mean of {12, 25, 50} and standard deviation of {8, 17, 35}, 
respectively; and with low pass filter to apply median and uniform blur with kernel sizes {5, 15}. 
Finally, Gaussian blur was also applied with sigma ranging [1, 15]. All the values were chosen 
randomly, and ranges were chosen to limit the variations. 
3.4.2 GAN-based Augmentation 

We utilized two methods to generate masks as input for GauGAN. We generated 5000 images 
per assay with each method. The first method augments labeled masks via procedural generation 
(see Figure 3). We used statistics calculated from the expert annotated mask images (see Table 
1 and Table 2) to parameterize the generation. We also used other features not listed in the tables 
such as orientation, location, and the length of objects. All these features are assumed to be of 
Gaussian distribution to generate shapes that closely resemble the objects in real masks. 
 

  

Figure 3. An example of procedurally simulated masks and corresponding GauGAN-generated soy (left) 
and corn (right) leaf disc images. 

 

The second method extracts objects from labeled data and randomly re-arrange them to simulate 
masks. This ensures that the statistical properties such as size, shape, and scale are not 
adversely altered. The only change to the labeled object is its location and/or orientation. To 
achieve this each labeled object is individually rotated in a random fashion about the center of the 
image by an angle between 0 and 359 degrees. A morphological operation such as dilation, 
erosion, opening, or closing is randomly applied to this object. This ensures we create minute 
variations of the object in each mask image. The leaf tissue object may contain disconnected 
regions; hence all regions are rotated by the same angle to preserve the shape of the tissue 
object. The tissue regions were then rendered to the semantic mask to ensure damage 
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consistency. The masks and their corresponding GAN generated leaf disc images are shown in 
Figure 4. 
 

  

Figure 4. An example of randomly re-arranged masks and corresponding GauGAN-generated soy (left) and 
corn (right) leaf disc images. 

3.5 Toodle: Python-Dash Web Tool 
Finally, we developed a web application using Python Dash that can convert doodles created on 
a canvas into a photo-realistic leaf disc image. Figure 5 below shows “Toodle”, a Corteva doodle 
tool, that is inspired from NVIDIA GauGAN. Using this tool, the user can draw leaf, insect, and 
frass on the canvas by selecting the appropriate label and brush size. The user can then press 
the “Trigger GAN” button to generate photo-realistic leaf disc image that will be displayed on the 
right. The user can toggle between corn and soy leaf tissues by selecting the appropriate buttons 
in the middle. The tool also provides an option to generate random mask images procedurally 
and display their corresponding GAN generated leaf disc images. 
 

 
Figure 5 – Screenshot image of Toodle web application tool that can convert doodles into a photo-realistic 
leaf disc image. The user can draw leaf tissue, insect, and frass on the canvas (left), and the corresponding 
GauGAN generated photo-realistic image can be viewed (right). 

4 Results and Discussion 
We performed a detailed comparison among three Mask R-CNN models each trained on the 
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original images and their corresponding masks with no augmentation, traditional augmentation, 
and GAN-based augmentation. In this section, we report the results in standard metrics defined 
in COCO challenge (T.-Y. Lin et al., 2015) for evaluation of object detection and instance 
segmentation masks. These include mean Average Precision (mAP) and mean Average Recall 
(mAR). The mAP metrics are tabulated as average precision, with mean over ten 0.50:0.95 
Intersection-Over-Union (IoU) thresholds, AP50 (IoU=0.50), AP75 (IoU=0.75) and APS, APM, APL 
(mAP at different small, medium, and large scales). The mAR metrics have average recall, AR1, 
AR10, AR100 (based on number of detections per image) and ARS, ARM, ARL (mAR at different 
small, medium, and large scales). 
We evaluated these three models on two test datasets. First, we analyzed the Mask-RCNN 
models using 50 original unseen test images and then, we added an additional 50 unseen GAN-
generated images to the former test dataset (total of 100 unseen test images). The Mask R-CNN 
models are assay specific, that is, separate models are trained for Soy and Corn stable images 
because the leaf texture and the insects used are significantly different. 
The results from the first test dataset containing the fifty original images are shown in Tables 3-6. 
We observed that the Mask R-CNN from traditional augmentation performed better than the GAN-
based augmentation and no augmentation models. This is because the images represented by 
the traditional augmentation belong to the same distribution as the original training dataset. This 
indicates that the images generated by the GauGAN model are not photo-realistic enough as 
compared to the original images. 
 

Table 3. Soy assay bounding box AP and AR 

 

Augmentation 
Average Precision Average Recall 

𝐴𝑃 𝐴𝑃!" 𝐴𝑃#! 𝐴𝑃$ 𝐴𝑃% 𝐴𝑃& 𝐴𝑅' 𝐴𝑅'" 𝐴𝑅'"" 𝐴𝑅$ 𝐴𝑅% 𝐴𝑅& 

None  25.8 51.3 22.7 23.4 24.6 63.6 15.2 22.7 33.2 30.6 34.2 65.3 

Traditional  30.8 55.6 30.7 27.3 30.3 81.6 19.6 29.2 39.3 35.8 40.2 82.5 

GAN  28.5 53.3 26.0 25.3 26.6 72.4 18.6 28.1 37.2 34.9 37.6 72.9 

 

Table 4. Soy assay instance segmentation mask AP and AR  

 

Augmentation 
Average Precision Average Recall 

𝐴𝑃 𝐴𝑃!" 𝐴𝑃#! 𝐴𝑃$ 𝐴𝑃% 𝐴𝑃& 𝐴𝑅' 𝐴𝑅'" 𝐴𝑅'"" 𝐴𝑅$ 𝐴𝑅% 𝐴𝑅& 

None 22.2 49.5 18.0 17.2 30.7 45.0 13.1 20.0 29.2 25.8 33.2 45.4 

Traditional  25.7 54.1 22.4 19.6 33.8 65.4 16.2 25.0 34.0 30.2 36.7 66.0 

GAN  21.9 51.5 16.3 16.2 31.6 59.9 14.5 22.5 30.5 26.7 33.6 60.2 
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Table 5. Corn assay bounding box AP and AR  

 

Augmentation 
Average Precision Average Recall 

𝐴𝑃 𝐴𝑃!" 𝐴𝑃#! 𝐴𝑃$ 𝐴𝑃% 𝐴𝑃& 𝐴𝑅' 𝐴𝑅'" 𝐴𝑅'"" 𝐴𝑅$ 𝐴𝑅% 𝐴𝑅& 

None  36.5 59.8 38.4 29.6 24.4 74.5 17.2 41.1 43.1 37.1 27.2 80.9 

Traditional  39.3 66.2 41.5 30.9 37.3 80.7 16.9 43.1 47.9 41.2 41.1 83.4 

GAN  35.3 56.4 37.4 26.0 26.7 83.5 17.6 39.3 41.1 33.1 28.8 84.5 

 

Table 6. Corn assay instance segmentation mask AP and AR 

 

Augmentation 
Average Precision Average Recall 

𝐴𝑃 𝐴𝑃!" 𝐴𝑃#! 𝐴𝑃$ 𝐴𝑃% 𝐴𝑃& 𝐴𝑅' 𝐴𝑅'" 𝐴𝑅'"" 𝐴𝑅$ 𝐴𝑅% 𝐴𝑅& 

None  28.5 59.7 21.3 22.8 20.1 60.7 14.4 33.8 35.3 29.7 21.5 72.0 

Traditional  30.7 66.2 21.9 23.3 31.5 69.9 14.2 34.8 38.8 32.7 33.7 74.5 

GAN  29.2 57.1 24.0 21.7 20.6 70.8 15.0 33.5 35.2 28.9 22.2 72.0 

 
These results were later confirmed on the second test dataset containing fifty original and fifty 
GAN-generated images as shown in Tables 7-10. The Mask R-CNN model trained on GAN 
augmentation outperforms the traditional and no augmentation models. This indicates that the 
GAN augmentation model’s data distribution does not precisely resemble with that of the real 
data. A potential reason for this observation is that the GauGAN model was trained for a small 
number of epochs with weakly labelled noisy data.  This can be avoided by training GauGAN for 
more iterations on a larger dataset with accurate ground truth masks to generate more photo-
realistic leaf disc images. However, the GAN-generated images are visually better-looking and 
closely resemble the original corn and soy leaf tissue images. 
 

Table 7. Soy assay bounding box AP and AR  

 

Augmentation 
Average Precision Average Recall 

𝐴𝑃 𝐴𝑃!" 𝐴𝑃#! 𝐴𝑃$ 𝐴𝑃% 𝐴𝑃& 𝐴𝑅' 𝐴𝑅'" 𝐴𝑅'"" 𝐴𝑅$ 𝐴𝑅% 𝐴𝑅& 

None  20.9 43.6 16.9 18.4 23.4 53.9 11.4 20.5 30.2 26.3 37.0 58.9 

Traditional  24.1 47.2 21.4 19.8 30.9 69.3 15.5 24.4 33.2 27.8 41.9 73.9 

GAN  38.0 62.8 38.7 33.2 56.2 71.1 22.7 35.3 44.0 39.3 61.2 72.3 
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Table 8. Soy assay instance segmentation mask AP and AR 
 

Augmentation 
Average Precision Average Recall 

𝐴𝑃 𝐴𝑃!" 𝐴𝑃#! 𝐴𝑃$ 𝐴𝑃% 𝐴𝑃& 𝐴𝑅' 𝐴𝑅'" 𝐴𝑅'"" 𝐴𝑅$ 𝐴𝑅% 𝐴𝑅& 

None  18.2 42.0 14.0 14.4 29.0 35.6 10.1 18.3 27.0 23.5 36.5 37.7 

Traditional  20.9 45.5 17.7 15.2 34.7 56.7 13.8 21.9 29.8 25.2 40.3 59.2 

GAN  31.2 61.2 31.1 24.8 54.3 64.8 19.6 30.2 37.9 33.1 55.5 65.6 

 

Table 9. Corn assay bounding box AP and AR 

 

Augmentation 
Average Precision Average Recall 

𝐴𝑃 𝐴𝑃!" 𝐴𝑃#! 𝐴𝑃$ 𝐴𝑃% 𝐴𝑃& 𝐴𝑅' 𝐴𝑅'" 𝐴𝑅'"" 𝐴𝑅$ 𝐴𝑅% 𝐴𝑅& 

None  28.4 47.5 30.5 20.6 25.4 68.0 16.1 34.5 35.5 27.9 31.4 75.8 

Traditional  29.9 49.4 31.8 21.0 30.7 77.7 16.7 35.7 38.1 29.7 39.5 82.3 

GAN  44.8 68.0 48.0 34.1 48.7 88.5 21.4 48.0 49.2 39.5 51.8 89.5 

 

Table 10. Corn assay instance segmentation mask AP and AR 

 

Augmentation 
Average Precision Average Recall 

𝐴𝑃 𝐴𝑃!" 𝐴𝑃#! 𝐴𝑃$ 𝐴𝑃% 𝐴𝑃& 𝐴𝑅' 𝐴𝑅'" 𝐴𝑅'"" 𝐴𝑅$ 𝐴𝑅% 𝐴𝑅& 

None  21.8 46.8 16.3 16.6 21.9 44.9 13.0 28.8 29.4 23.6 26.2 57.3 

Traditional  22.7 48.9 17.0 16.2 27.5 54.0 13.5 29.1 31.1 24.5 34.2 63.3 

GAN  37.4 68.4 36.4 28.6 44.1 70.2 18.2 41.1 42.3 34.3 46.4 73.7 

 

Figures 6 and 7 show a sample leaf tissue image (left-right) that overlays the segmentation mask 
with expert annotations, a mask generated by the Mask R-CNN model trained on dataset without 
any augmentation, a mask generated by the Mask R-CNN model trained on dataset with 
traditional augmentation, and a mask generated by the Mask R-CNN model trained on dataset 
with GAN-based augmentation. The GAN-based and traditional augmentation models generate 
masks that look visually similar. The regions where they differ happen primarily around the pixels 
of damaged leaf tissue. This issue could be resolved by re-training the GAN model with more leaf 
tissue images with damage.  
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Figure 6. A sample soy leaf tissue image showing (left-right) the expert annotated ground-truth mask, mask 
generated by Mask-RCNN model trained with no augmentation, with traditional augmentation, with GAN-
augmentation 

 
Figure 7. A sample corn leaf tissue image showing (left-right) the expert annotated ground-truth mask, mask 
generated by Mask-RCNN model trained with no augmentation, with traditional augmentation, with GAN-
augmentation 

 
Our results indicate that it is possible to train a Mask R-CNN model with only 150 annotated 
images (per assay) and train a GauGAN model to generate new photo-realistic images. These 
data are then used to re-train the Mask R-CNN segmentation model using GAN-based 
augmentation to accurately assess leaf tissue damage.  

5 Conclusion and Future Work 
In this paper, we proposed a novel workflow to improve the performance of a Mask R-CNN 
segmentation model trained on a small, annotated leaf tissue dataset by performing data 
augmentation using a generative adversarial network (GauGAN). This is a four-fold approach. 
First, we train a Mask R-CNN with data as small as 150 images. Second, we predict segmentation 
masks using trained Mask R-CNN on 9000 unseen images. Third, we train a GauGAN model with 
these noisy predicted masks to generate photo-realistic leaf disc images. Fourth, we retrain the 
Mask R-CNN on new expanded dataset which contains the leaf disc dataset and generated leaf 
disc images. While our accuracy on our validation set didn’t show improvement, accuracy on the 
validation set plus unseen generated images showed improvement. This suggests with 
improvement to the GAN training, our method could substantially increase the accuracy and recall 
of downstream models by a significant margin. 
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