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Abstract.  
Agricultural lands can be a sink for carbon and play an important role in offsetting carbon 
emissions. Current methods of measuring carbon sequestration—through repeated temporal 
soil samples—are costly and laborious. A promising alternative is using visible and near-infrared 
(VNIR) diffuse reflectance spectroscopy. However, VNIR data are complex, which requires 
several data processing steps and often yields inconsistent results, especially when 
measurements are taken in situ. Using a convolutional neural network (CNN) could bypass 
these steps and incorporate measurements from multiple sensors to predict three-dimensional 
carbon stocks. Using data previously collected (n = 1,069; from 2014 to 2020), a CNN modeling 
framework was developed to predict soil carbon by incorporating information from profile VNIR, 
soil apparent electrical conductivity (ECa), penetration resistance, and soil moisture. The 
developed CNN framework demonstrated moderate accuracy for predicting soil carbon (R2 
=0.68) but was not as accurate as the partial least squares regression model (PLSR) used as a 
benchmark (R2 =0.70). Additional improvements to the CNN results could occur with further 
attempts to optimize the parameters.  
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Introduction 
Visible and near-infrared (VNIR) diffuse reflectance spectroscopy is a promising method to 
measure soil organic carbon in situ and on-the-go. However, there are several challenges with 
VNIR data that hinder its utility. The spectra, by nature, exhibit high multi-collinearity in reflectance 
among the many (typically 100s to 2000+) wavelengths present. Especially when collecting data 
in-field, variation in external factors (e.g., soil moisture, structure, and sensor movement) can 
mask the response from the soil property of interest (i.e., carbon; Sudduth & Hummel, 1993), 
requiring sophisticated preprocessing (Veum et al., 2018).  
One promising alternative is to use deep learning algorithms, such as the convolutional neural 
network (CNN), which are less affected by nonlinearity, collinearity, and high dimensionality in the 
data. Some success was reported using CNN to predict soil properties from raw soil spectra, 
which avoided the preprocessing and wavelength filtering process (Padarian et al., 2019). 
Furthermore, CNN modeling could incorporate data from multiple sensors (Ng et al., 2019), 
estimate soil properties at multiple depths, and incorporate spatial covariates (Wadoux et al., 
2019). The aim of this research is to develop a CNN modeling framework that will use data from 
mobile in-field VNIR spectroscopy and auxiliary sensors to quantify soil carbon concentrations. 

Materials and Methods 
A total of 271 sites were characterized using a Veris P4000 unit (Veris, Technologies, Inc., Salina, 
KS, USA) following methods detailed in Veum et al. (2018). In summary, the P4000 unit uses a 
soil probe that collects VNIR absorbance readings, bulk soil electrical conductivity (ECa), and 
penetration resistance measurements. At each site, 3 to 5 probes were collected to a target depth 
of 0.90 m. In addition, a soil core was taken to a similar depth, separated by diagnostic horizon, 
air-dried, and passed through a 2-mm sieve for a total of 1,069 samples. Soil samples were 
analyzed for total organic carbon (Leco TruMac C/N combustion analyzer; LECO Corp., St. 
Jospeh, MI, USA), texture (pipette method), and gravimetric moisture.  
Data was averaged for each horizon to provide mean values for absorbance at each wavelength, 
ECa, and penetrometer force (i.e., penetration resistance). A standard normal variate transform 
(SNV) preprocessing method was performed on the absorbance data. The data was then 
separated randomly using an 80/20% split into a training and a testing dataset. A partial least 
squares regression (PLSR) model was built with a 10-fold cross-validation to determine the 
optimum number of components. Meanwhile, a CNN model (a simplified diagram shown in Figure 
1) was built using the same structure as an optimal 1D-CNN developed by Shen et al. (2022) 
using data obtained in the USA. The dropout layer was used to prevent overfitting and the flatten 
layer was included to convert the learned features into a long vector. The number of epochs and 
batch size used were 1000 and 1500, respectively. Four different models (each for PLSR and 
CNN) were developed using different dependent variables (see Table 1) and were tested using 
the testing dataset. Accuracy based on R2 was computed to evaluate the models. Model training 
and testing were performed using Python (version 3.9).   

 
Figure 1: Diagram of the 1D-CNN model framework used to predict soil organic carbon.  
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Results and Discussion 
Figure 1 and Table 1 compare results with the CNN framework to those using PLSR for 
predicting soil organic carbon with VNIR. The initial CNN performance was not any better than 
the PLSR. While adding additional auxiliary measurements improved both methods, albeit 
slightly, CNN still underperformed compared to the PLSR.  

 
Figure 1: Testing model results of predicting soil organic carbon using VNIR with a PLSR and 1D-CNN.   

 

Table 1: Four different models using PLSR or CNN for predicting soil organic carbon with VNIR, soil moisture, bulk 
electrical conductivity, and penetrometer force as the independent variables. Model accuracy is reported as R2 values.   

 PLSR CNN 
Independent Variables Training Testing Training Testing 
f(VNIR) 0.71  0.69 0.68 0.66 
f(VNIR + moisture) 0.74 0.70 0.71 0.68 
f(VNIR + moisture + ECa) 0.74 0.70 0.78 0.59 
f(VNIR+ moisture + ECa + Force) 0.74 0.70 0.62 0.54 

Conclusion 
Expectations for the CNN model to better predict soil carbon concentrations compared with the 
traditional PLSR method were not realized. However, CNN models could still be improved by 
optimizing the hyper-parameters or changing the structure. Achieving a high-performance CNN 
model will help minimize many of the computational steps required in PLSR and provide a more 
robust method for predicting soil carbon. As part of this effort, concurrent research is underway 
to determine the spatial scale at which VNIR measurements are needed to accurately estimate 
soil carbon at the field scale. Overall, this framework will contribute to multiple stakeholder goals, 
including monitoring changes in soil carbon over time and quantifying the effects of varying 
management practices on soil carbon for enhanced agronomic sustainability.  
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