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Abstract. Yield monitoring systems are widely used commercially in grain crops to map yields at 
a scale of a few meters. However, such high-resolution yield monitoring and mapping for hay and 
forage crops has not been commercialized. Most commercial hay yield monitoring systems only 
obtain the weight of individual bales, making it difficult to map and understand the spatial variability 
in hay yield. This study investigated the feasibility of an unmanned aerial vehicle (UAV)-based 
remote sensing system for the estimation and mapping of hay yield by machine learning models. 
Data were obtained during harvest of a 35-ha hay field with mixture of red clover and timothy 
grass in June of 2021. A RGB camera consisting of three bands (red, blue, and green) attached 
to a UAV was used to acquire images at a flight height of 20 m For calibration, 110 ground truth 
hay yield measurements were collected from 1 m2 quadrats. Image features, such as color space 
components, vegetation indices and texture features, the proportion of grass in samples, and 
moisture content of samples were extracted from the images or ground truth samples, and were 
used to estimate the hay mass yield. For yield estimation, a simple random forest machine 
learning model was trained and tested with the stratified random sampling method using a split 
ratio of 70:30. Using the recursive feature elimination algorithm, we selected explanatory features 
for use in the random forest regression model. The most accurate model estimated hay wet mass 
with r2 = 0.79, RMSE = 251.05 g/m2, and MAE = 187.59 g/m2). The results of this research provide 
information to aid in selection of an appropriate analysis method for hay estimation using UAV 
imagery. In future research, the models developed here will be applied to whole-field imagery for 
creating hay yield maps.  
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Introduction  
Forage and hay production is essential to provide feed to animals such as cattle and horses. 
Commercial systems to monitor and estimate hay yield are based on the weight of bales, using 
load cells or scales (Maguire et al., 2003). Different types of sensors such as mass-flow sensors 
have been considered to improve yield estimation accuracy. Previous studies have tried to find 
appropriate yield monitoring solutions to be installed on hay balers. Maughan et al. (2012) 
summarized research and development of sensors and systems designed to collect mass flow 
and yield data of forage and hay. Various hay yield estimation systems have been developed and 
tested in field conditions, including: 1) feedroll displacement, 2) crop impact force, 3) torque 
sensor, and 4) others (e.g., load cell and strain gauges). The accuracy of these yield estimation 
systems could be as high as R2 > 0.8 under ideal conditions. However, several factors, such as 
crop toughness and low plant density could decrease the prediction accuracies, and Maughan et 
al. (2012)  suggested that additional sensing technologies should be considered in the future. 
Despite high accuracy, those systems are not able to monitor crops temporally and spatially 
because the data are only collected on the day of harvest.  
Remote sensing technology detects and provides information about crops by equipping satellites, 
manned aircraft, or unmanned aerial vehicles (UAV) with a variety of sensors (Rueda-Ayala et 
al., 2019). In the agriculture field, remote sensing can temporally and spatially monitor crops (e.g., 
biomass and nitrogen content; Näsi et al., 2018). For example, temporal parameters from crop 
images can help improve vegetation models that estimate plant growth, disease, and status (Senf 
et al., 2017; Rueda-Ayala et al., 2019). Although satellite images can be useful in monitoring and 
detecting vegetation at a regional scale efficiently, the collected data are low in resolution, are 
costly, and may have irregular and infrequent acquisitions (e.g., weekly or bi-weekly), which limit 
their use for within-field management. With advances in UAVs and emerging image processing 
and analysis technologies, UAV-based remote sensing systems have become popular due to high 
resolution, ability to control acquisitions, and relatively low cost.  
Agricultural remote sensing technology results in big data, primarily through the spatial 
component facilitated by global positioning (GPS) and geographic information systems (GIS; 
Huang et al., 2018). For this reason, successful precision agriculture applications depend on 
managing, processing, and analyzing big data. Machine learning through a deep architecture can 
analyze both labeled and unlabeled data, so it is suitable to be applied to big data analysis (Liu, 
2015). For instance, random forest (RF) and support vector machine (SVM) algorithms have been 
widely used for classification and regression in remote sensing technology (Abdulridha et al., 2019; 
Feng et al., 2019; Osco et al., 2020). Notably, the deep learning technique, which can extract 
features automatically, has been specialized to analyze and model data through deeper neural 
networks (Ghamisi et al., 2017).  
In previous research estimating biomass, models based on convolutional neural networks (CNNs) 
were used. According to LeCun et al. (2015), CNNs use multiple layer neural networks equipped 
with convolutional and pooling layers, and they have a strong ability to recognize complicated 
features. To predict forage yield of different genotypes, Castro et al. (2020) used two CNN models 
(AlexNet with 8 layers and ResNet18 with 18 layers) and compared them with the VGCNet model 
(11 layers), which they used in previous research. In another case, AlexNet (8 layers), ResNeXt50 
(50 layers), DarkNet53 (53 layers), MaCNN (5 layers), and LF-CNN (10 layers) architectures were 
used with RGB images to estimate guineagrass dry matter yield (de Oliveira et al., 2021). 
In previous research estimating biomass by remote sensing, multiple image acquisitions obtained 
over the growing season were often used. For example, Kattenborn et al. (2021) used weekly or 
bi-weekly data collection over 200 plots that were 45 m2 in size for creating training and test 
datasets. Although this may be needed for best results, the amount of effort needed could be 
more than would be feasible in commercial yield mapping. An alternative approach using a single 
imaging date near harvest and requiring less ground truth data collection would be more attractive 
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to producers.  Therefore, the goal of this study was to evaluate the performance of a UAV-based 
remote sensing system in predicting hay yield with a single harvest-time image collection. Specific 
objectives included 1) applying a random forest machine learning model to quantify hay yield 
based on RGB images and ground truth data obtained for 1m x 1m quadrats, 2) and evaluating 
the usefulness of a range of image features, texture features, and vegetation indices in the model.  

Materials and Methods 

Data collection based on UAV system 
The field research was conducted at the Central Mississippi River Basin (CMRB) site of the 
USDA’s Long-Term Agroecosystem Research (LTAR) network (39˚13 N, 92˚07 W), near 
Centralia, Missouri (Sadler et al., 2016). A 35-ha research field in a corn-soybean-wheat-hay 
rotation, was seeded with a mixture of red clover (Trifolium pratense L) and timothy grass (Phleum 
pratense) in March 2020, in conjunction with an early-spring nitrogen fertilization. The hay was 
managed according to standard management protocols in a rainfed production system. At the 
time of harvest in June 2021, some portions of the field were dominated by timothy, while others 
were predominantly red clover (Fig. 1). 
 

 
Fig 1. The hay crop in the experimental field was a mixture of timothy grass and red clover. 

 
Data collection included ground-truth biomass data at selected sample locations and UAV-based 
remote sensing data across the field (Fig 2). All field data were collected at the maturity stage 
(e.g., reproductive and flowering) of hay on June 4th and 9th 2021, within one day of harvest. 
Sampling sites, each containing a variable mixture of timothy and red clover were established in 
two areas – along the west (roadside) edge of the field (June 4th data collection) and on an east-
west transect in the northern part of the field (June 9th data collection). Sixty sampling sites were 
identified at the west edge, and fifty at the northern area. On the west edge, data collection was 
divided into two parts due to flight time limitations of the UAV: the northern (11:00 am to 12:00 
pm) and southern (12:00 pm to 13:00 pm) part.  
Each sampling site was identified using a 1 m × 1 m quadrat made of 2 cm diameter PVC pipe. 
The location of each quadrat was measured using an RTK GPS system (Reach RS+, Emlid, Saint 
Petersburg, Russia) at the center of the quadrats. The height of the vegetation mixture was 
measured at ten locations inside each quadrat using a stick ruler with 1 cm precision. Then, all 
the vegetation within the quadrat was cut at approximately 2 cm above the ground using a 
handheld grass cutter (STIHL FS 90R, STIHL Corporation, Waiblingen, Germany) after the 
sensing data were collected. All vegetation from each quadrat was collected into a bag that was 
sealed to reduce the moisture loss and labeled properly. 
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Fig 2. Information of experiment (left: location of data collection in the field – “Roadside” and “Northern” area, right: quadrat, 
sampling and ground control points (GCPs) images). 

Vegetation samples were processed on the day of data collection. First, the overall sample wet 
mass was measured and then a subsample was obtained and its wet mass measured. The 
subsamples were dried at 105 ℃ for 24 hours using a laboratory oven (SHEL LAB SMO28-2, 
Sheldon Manufacturing Inc., Cornelius, OR, USA) to determine subsample dry mass. Then, the 
moisture content of the samples and dry sample mass were calculated by Eqs. 1 and 2. The 
proportion of grass and clover in the hay varied across the field. A visual rating of that proportion 
was obtained at each sampling location using a 1-5 rating as shown in Table 1.   
 

Mositure	content	(dry	basis,%) = ("#$%&'()*	,*-	'&%%.%#$%&'()*	/01	'&%%)
("#$%&'()*	/01	,*345-)

× 100   (1) 

 

Dry	mass	(g) = 	 "#$%&'()*	/01	'&%%
"#$%&'()*	,*-	'&%%

	× 𝑆𝑎𝑚𝑝𝑙𝑒	𝑤𝑒𝑡	𝑚𝑎𝑠𝑠	  (2) 

 
Table 1. The proportion of grass in samples 

Group number Proportion 

1 Mostly timothy grass 

2 Approximately 2:1 timothy to red 
clover 

3 Equal 

4 Approximately 1:2 timothy to red 
clover 

5 Mostly red clover 

 

Fig 3 shows the workflow of the study. The left column of Fig 3 shows the division of the procedure 
into five parts, and the specific tasks for each part are shown to the right. 
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Fig 3. Workflow of the study divided into five parts: data collection, data processing, model training, comparison, and 
selecting the best model among the results 

 

UAV system 
A UAV remote imaging system (DJI Phantom 4 Advanced, DJI, Shengzhen, Guangdong, China) 
equipped with a RGB camera was used to acquire images at 20 m above ground level (AGL) 
resulting in a ground sampling distance (GSD) of 5mm/pixel. The RGB camera was configured to 
take time-lapse images at 0.5 frame per second (fps) using a UAV control software (Auto Pilot, 
Hangar Technology, Austin, TX, USA) installed on an iPad mini 4 (Apple Inc., Cupertino, CA, US). 
The UAV platform was controlled using the flight control app Litchi (VC Technology Ltd, London, 
UK) for RGB image sensing. Images were acquired at 10 am to 1 pm Central Daylight Time on 
June 4th, 2021 for the roadside, and during the same time interval on June 9th, 2021 for the 
northern area. Both days had a clear sky with occasional strong wind. Images were taken at 20 
m AGL, at a flight speed of 7 km/h, following a zigzag path to cover the field with forward overlap 
≥ 70% and side overlap ≥ 65%. 

Image processing 
Fig 4 shows the specific image processing procedures used in the study. First, we stitched RGB 
images using the UAV image processing software Agisoft Metashape (Agisoft LLC, St. 
Petersburg, Russia) to create orthomosaic images and digital elevation models (DEM) for further 
processing. However, unexpected weather factors (e.g., strong wind) affected the UAV and RGB 
camera on June 4th around 11 am to 12 pm, causing rapid UAV elevation changes that resulted 
in poor quality of the stitched image. Therefore, to obtain higher quality data, the raw images were 
used to extract imagery information and train machine learning models. The raw images 
corresponding to the quadrats were located, rotated to align with the quadrat, and then cropped 
to the area enclosed by the qudrat. Then, Otsu’s segmentation method (Otsu, 1979) was applied 
to the cropped images for segmentation of hay from images to reduce the effects of soil 
background. The cropped and segmented images were used to calculate pixel values of 
vegetation indices based on RGB channels for each quadrat using Matlab (R2019b, MathWorks, 
Natick, MA, US).  
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Fig 4. Image processing procedure from image collection to extraction of features. 

 
Summary statistics of the individual pixel values from each quadrat were calculated to condense 
the information for modeling. Ten different statistics were calculated for each vegetation index 
and color feature, and models using the different statistics were created and compared. The 
statistics calculated were: maximum, minimum, mean, median, and six different quantile values: 
10%, 20%, 30%, 70%, 80%, and 90%. As a result, ten statistical values were obtained for each 
vegetation index and color feature within each quadrat.  

Image feature extraction 
Models were developed with either the dry or wet mass of the quadrat samples as the dependent 
variable. Independent variables used for training the models consisted of five groups: color 
features, vegetation indices, texture features, proportion of grass and clover in each sample and 
moisture content of each sample. Twelve color features were included to train the model: HSV for 
color space (hue, saturation, value), L*a*b for CIE Lab color space (L: lightness, a: green-red 
component, b: blue-yellow component), and YCbCr for YCbCr color space (Y: lima component, 
Cb: Blue-difference chroma component, Cr: Red-difference chroma component). Additionally, 
thirty vegetation indices based on RGB channels were included. Six texture features (contrast, 
correlation, energy, entropy, homogeneity, and variance) were calculated from a gray-level co-
occurrence matrix (GLCM). These texture features were used to quantify the spatial relationship 
between adjacent or neighboring pixels within the quadrats (Haralick et al., 1973). Finally, to 
predict more specific hay dry mass, in a model using dry mass as a dependent variable we added 
moisture contents of samples as an independent variable. The color features, texture features, 
and vegetation indices are detailed in Table 2. 
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Table 2. Potential independent variables (color features, texture features, and vegetation indices) 

Index Equation Feature type & reference 

H (Hue) 𝐻 =

⎩
⎪⎪
⎨

⎪⎪
⎧

60 × (𝐺 − 𝐵)
𝑉 − min	(𝑅, 𝐺, 𝐵) 													𝑖𝑓	𝑉 = 𝑅

120 +
60 × (𝐵 − 𝑅)

𝑉 − min	(𝑅, 𝐺, 𝐵) 	𝑖𝑓	𝑉 = 𝐺

240 +
60 × (𝑅 − 𝐺)

𝑉 − min	(𝑅, 𝐺, 𝐵) 	𝑖𝑓	𝑉 = 𝑏

 Color space feature (HSV) 

S (Saturation) 𝑆 = P
𝑉 − min(𝑅, 𝐺, 𝐵)

𝑉 	𝑖𝑓	𝑉 ≠ 0

0																																𝑖𝑓	𝑉	 = 0
 Color space feature (HSV) 

V (Value) 𝑉 = max	(𝑅, 𝐺, 𝐵) Color space feature (HSV) 

L (Lightness) No single equation Color space feature (CIE 
L*a*b) 

a (Green-Red 
component) No single equation Color space feature (CIE 

L*a*b) 
b (Blue-Yellow 
component) No single equation Color space feature (CIE 

L*a*b) 

Y 𝑌 = 16 +
65.738 × 𝑅

256 +
129.057 × 𝐺

256 +
25.064 × 𝐵

256  Color space feature 
(YCrCb) 

Cr 𝐶! = 128 −
112.439 × 𝑅

256 −
94.154 × 𝐺

256 −
18.285 × 𝐵

256  
Color space feature 

(YCrCb) 

Cb 𝐶" = 128 −
37.945 × 𝑅

256 −
74.494 × 𝐺

256 +
112.439 × 𝐵

256  
Color space feature 

(YCrCb) 

Contrast \ \(𝑖 − 𝑗)# ∙ 𝑔#(𝑖, 𝑗)

$!"#

%&'

$!"#

(&'

 Texture feature 

Correlation \ \(𝑖 − 𝜇) ∙ (𝑗 − 𝜇) ∙ 𝑔(𝑖, 𝑗)/𝜎#
$!"#

%&'

$!"#

(&'

 Texture feature 

Energy c\ \ 𝑔#(𝑖, 𝑗)

$!"#

%&'

$!"#

(&'

 Texture feature 

Entropy \ \ 𝑔#(𝑖, 𝑗) ∙ log(𝑔(𝑖, 𝑗))

$!"#

%&'

$!"#

(&'

 Texture feature 

Homogeneity \ \
1

1 + (𝑖 − 𝑗)# ∙ 𝑔(𝑖, 𝑗)

$!"#

%&'

$!"#

(&'

 Texture feature 

Variance \ \(𝑖 − 𝜇)# ∙ 𝑔(𝑖, 𝑗)

$!"#

%&'

$!"#

(&'

 Texture feature 

BCC (Blue 
Chromatic 

Coordinate Index) 

𝐵
(𝑅 + 𝐺 + 𝐵) Woebbecke et al., 1995 

B-G (Blue-Green 
Difference) 𝐵 − 𝐺 De Swaef et al., 2021 

BRVI (Blue Red 
Vegetation Index) 

(𝐵 − 𝑅)
(𝐵 + 𝑅) De Swaef et al., 2021 

CI (Coloration 
Index) 

(𝑅 − 𝐵)
𝑅  Escadafal et al., 1994 

CIVE (Color Index 
of Vegetation) 0.441 × 𝑅 − 0.881 × 𝐺 + 0.385 × 𝐵 + 18.787 Lee et al., 2021 

ExG (Excess 
Green Index) 2 × 𝐺 − 𝐵 − 𝑅 Woebbecke et al., 1995 
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ExG2 (Excess 
Green Index 2) 

(2 × 𝐺 − 𝐵 − 𝑅)
(𝑅 + 𝐺 + 𝐵)  Woebbecke et al., 1995 

ExGR (Excess 
Green minus 

Excess Red Index) 

(2 × 𝐺 − 𝐵 − 𝑅)
(𝑅 + 𝐺 + 𝐵) −

(1.4 × 𝑅 − 𝐺)
(𝑅 + 𝐺 + 𝐵)  Meyer et al., 2004 

ExR (Excess Red 
Index) 

(2 × 𝐺 − 𝐵 − 𝑅)
(𝑅 + 𝐺 + 𝐵) −

(1.4 × 𝑅 − 𝐺)
(𝑅 + 𝐺 + 𝐵)  Meyer et al., 1999 

G/R (Green Red 
Ratio) 

𝐺
𝑅 Steele et al., 2009 

GBVI (Green Blue 
Vegetation Index) 

(𝐺 − 𝐵)
(𝐺 + 𝐵) De Swaef et al., 2021 

GCC (Green 
Chromatic 

Coordinate Index) 

𝐺
(𝑅 + 𝐺 + 𝐵) Gitelson et al., 2002 

GLI (Green Leaf 
Index) 

(2 × 𝐺 − 𝑅 − 𝐵)
(2 × 𝐺 + 𝑅 + 𝐵) 

Baroni et al., 2004 

G-R (Green Red 
Difference) 𝐺 − 𝑅 De Swaef et al., 2021 

GRVI (Green Red 
Vegetation Index) 

(𝐺 − 𝑅)
(𝐺 + 𝑅) 

Gitelson et al., 2002 

I (Intensity) (𝑅 + 𝐺 + 𝐵)
30.5  Escadafal et al., 1994 

IF (Shape Index) 
(2𝑅 − 𝐺 − 𝐵)
(𝐺 − 𝐵)  Escadafal et al., 1994 

IO (Simple Ratio 
Red/Blue Iron 

Oxide) 

𝑅
𝐵 Hewson et al., 2001 

IRG (Red Green 
Ratio Index) 𝑅 − 𝐺 Jacobsen et al., 1995 

MGRVI (Modified 
Green Red 
Vegetation ) 

(𝐺# − 𝑅#)
(𝐺# + 𝑅#) 

Bendig et al., 2015 

NGRDI 
(Normalized Green 

Red Difference 
Index) 

(𝐺 − 𝑅)
(𝐺 + 𝑅) 

Gitelson et al., 2002 

RCC (Red 
Chromatic 

Coordinate Index) 

𝑅
(𝑅 + 𝐺 + 𝐵) Woebbecke et al., 1995 

RGR (Simple Ratio 
Red/Green Red-

Green Ratio) 

𝑅
𝐺 Gamon and Surfus, 1999 

RGBVI (Red Green 
Blue Vegetation 

Index) 

(𝐺# − 𝐵 × 𝑅)
(𝐺# + 𝐵 × 𝑅) 

Bendig et al., 2015 

RI (Redness Index) 
(𝑅 − 𝐺)
(𝑅 + 𝐺) 

Escadafal et al., 1994 

TGI (Triangular 
Greeness Index) 

(−0.5) × {0.19 × (𝑅 − 𝐺) − 0.12 × (𝑅 − 𝐵)} Hunt et al., 2011 

VARI (Visible 
Atmosphercally 
Resistant Index) 

(𝐺 − 𝑅)
(𝐺 + 𝑅 − 𝐵) Gitelson et al., 2002 

VDVI (Visible-band 
Difference 

Vegetation Index) 

(2 × 𝐺 − 𝑅 − 𝐵)
(2 × 𝐺 + 𝑅 + 𝐵) 

Hu and Li, 2019 

VEG (Vegetative 
Index) 

𝐺
(𝑅'.**+ × 𝐵'.,,-) 

Torres-Sánchez et al., 
2014 

WI (Woebbecke 
Index) 

(𝐺 − 𝐵)
(𝑅 − 𝐺) 

Woebbecke et al., 1995 
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Pre-processing for modeling 
With the completion of the above image processing and feature calculation, pre-processing for 
training machine learning models was needed to avoid overfitted models. In this study, modeling 
and finding the optimal subset of the candidate predictor variables was done with recursive feature 
elimination (RFE). The RFE method is a feature selection technique that ranks features by 
importance and removes the least important or correlated variables from the models. The RFE 
uses a random forest or multiple linear regression algorithm to test combinations of features and 
ranks features by correlation and RMSE value. Finally, the algorithm removes the lower 
performing features and recommends those scored as having a high accuracy, from minimizing 
and optimizing a loss function (Huang et al., 2018).   
We used Rstudio (RStudio version 4.4, RStudio, Boston, MA, US) with the “caret” package 
(version 6.0-92) that includes the RFE algorithm based on the Gini criterion. For training the RFE 
models, we input the above independent variables (Table 2) and dry mass of the quadrat samples 
as the dependent variables. Then, the algorithm randomly selected variables to evaluate the 
relationship using a random forest algorithm to test combinations of features. This process was 
carried out nine more times (10-fold cross validation). Finally, based on the mean values of 
statistical results from the cross-validation, the RFE algorithm recommended the optimal number 
of variables and significant variables to use for modeling as output (Fig 5).  

Machine learning models 
Random forest regression was used to predict hay mass. The “Random Forest” package (version 
4.7-1) of RStudio was used in the process. To train and test models, the dataset was divided into 
70% training and 30% test samples using stratified random sampling. Then, we used the 
significant number of variables and the significant variables from the RFE recommendation. When 
setting parameters for the random forest models, mtry was dependent on the number of 
recommended variables, and ntree was set to 1000. 
 

Results and Discussion 

Grass:clover mixture 
Table 3 shows that all grass:clover mixture proportions were well-represented in the calibration 
samples, Red clover was more dominant in the samples from the western roadside area, while 
the proportions of grass and clover were similar in the northern calibration samples. The 
grass:clover proportion was related to the manually measured height of vegetation inside the 
quadrat (Fig. 6). Although there was considerable variation in height within a single classification, 
there was an obvious trend toward a lower median height with and increasing amount of clover.  
Table 3. Classification based on the proportion of grass vs. clover vegetation inside quadrats. 

Group number Proportion Roadside  
frequency 

Northern  
frequency 

1 Mostly timothy grass 10 17 

2 Approximately 2:1 timothy to red 
clover 5 8 

3 Equal 9 5 

4 Approximately 1:2 timothy to red 
clover 17 9 

5 Mostly red clover 19 11 

Total  60 50 
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Fig 5. The RFE algorithm process, which recommends significant variables for each statistical group (e.g., median or mean). 

 

 
Fig 6. The relationship between proportion of grass in samples and tallest (a) and median (b) plant height in each quadrat.   



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

11 

RFE results  
The RFE consisting of multiple linear and random forest regression models recommended a 
number of significant independent variables for training the machine learning models estimating 
either dry or wet mass based on the different summary statistics of the image data (Table 4). The 
linear regression RFE recommended fewer variables than the random forest type. On the other 
hand, the random forest RFE was more flexible than the linear type, so the average number of 
recommended variables for machine learning was four based on linear RFE and 36 based on 
random forest RFE types. Although the random forest RFE may offer a more accurate model, it 
can cause the model to be overfitted. Because the RFE algorithm considers not only correlation 
coefficient and RMSE, but also the coefficient of multiple correlation among independent 
variables, some model results that contain variables with weak correlation may be overfit. 
 
Table 4. Suggested number of independent variables based on RFE results for different RFE algorithm types, dependent 
variables, and independent variable summarization methods. 

Model type  
(RFE model type) Linear Random forest 

Dependent 
variable Dry mass Wet mass Dry mass Wet mass 

Independent 
variable 

summarization 
method 

Significant number  
of variables 

Significant number  
of variables 

Maximum 1 1 47 45 

Minimum 3 5 46 28 

Mean 15 6 48 47 

Median 2 3 5 11 

Quantile 10% 15 4 18 48 

Quantile 20% 1 4 45 47 

Quantile 30% 1 4 47 39 

Quantile 70% 1 11 46 48 

Quantile 80% 1 10 49 48 

Quantile 90% 1 1 11 6 

Average 4.1 4.9 36.2 36.7 

 
Based on the RFE analysis, we selected the “Mean” and “Quantile 90%” datasets from the random 
forest regression group for further examination. Pearson’s correlation coefficients (r) among the 
RFE-suggested independent variables are shown in Fig 7. The results showed that the direct 
relationship between each independent and dependent variables were not strong (i.e., | r | < 0.4), 
and higher correlations among independent variables were favorable for training machine learning 
models. 
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Fig 7. Heatmaps of Pearson’s correlation coefficient (r) for selected RFE results: (a) Mean – dry with 5 independent variables 
(IV); (b) Mean – wet with 11 IV; (c)  Quantile 90% – dry with 11 IV, and (d) Quantile 90% - wet with 6 IV (Variable abbreviations 
are defined in Table 2). 

Random forest model test 
Random forest regression was used to analyze the four candidate models with the independent 
variables suggested by the RFE (Table 5). The best-performing machine learning model (i.e., 
random forest regression) estimated wet mass based on the “Quantile 90%” statistical group of 
candidate variables from the random forest RFE (r2 = 0.79, RMSE = 251.0 g/m2, MAE = 187.6 
g/m2). Models predicting wet mass were more accurate than those for dry mass. This result might 
be due to the fact that the independent variables were extracted from images that were obtained 
in wet (fresh) condition. When comparing results from the two types of RFE (i.e., linear and 
random forest), models based on variables selected by the random forest RFE were more 
accurate. Therefore, additional analysis focused on the models using variables from the random 
forest RFE. 

Table 5. Results of random forest regression on candidate independent variables provided by the two RFE types (linear and 
random forest). 

  
Dependent variables Dry mass Wet mass 

Statistical group r2 RMSE 
(g/m2) 

MAE 
(g/m2) r2 RMSE 

(g/m2) 
MAE 
(g/m2) 

Random forest  
RFE model 

type 

Median 0.72 72.0 53.6 0.78 258.7 198.1 

Quantile 90% 0.75 71.6 51.9 0.79 251.1 187.6 

Linear 
RFE model 

type 

Median 0.59 90.5 66.9 0.66 312.9 233.9 

Quantile 10% 0.6 84.8 57.8 0.65 305.0 223.7 

 
Scatter plots of predicted vs. measured quadrat mass for each model are shown in Fig 8. Points 
in the graphs are identified by the location (northern vs. roadside (western) area) and the 
proportion of the grass in the samples as described in Table 3. Noticeable outliers, single points 
detached from the fit line and the main group of points, generally were from the roadside area. 
According to Table 3, the main composition of most (36 out of 60) samples in the roadside area 
was red clover. These images were generally somewhat non-uniform, including shade, soil, or 
dried weeds, which may have caused the poor fit. On the contrary, the images in the northern 
area were generally more uniform which may have caused them to be better estimated by the 
model.  
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Fig 8. Results of random forest machine learning model. a: “Mean” group (independent variable) vs. dry mass (dependent 
variable) model, b: “Mean” group vs. wet mass, c: “Quantile 90%” group vs. dry mass, d: “Quantile 90%” group vs. wet 
mass. Definition of “Proportion” can be found in Table 3. 

Discussion  
The approach of using a single-frame imagery data acquisition to reduce data collection time and 
effort was quite successful (model r2 = 0.72 to 0.79) although only RGB images and a simple 
random forest machine learning technique were used. Prior to configuring the random forest 
model and the RFE algorithm, the moisture content of the growing hay, the proportion of grass in 
the ground truth data samples, and image texture features were considered to be independent 
variables having high potential. Since a large portion of fresh (wet) hay mass is water, the 
proportion of grass is related to the wet (fresh) mass of the samples, and texture features help 
classify objects, we expected that these variables could be important. However, Table 6 shows 
that these three components (texture features, proportion of grass, moisture content of samples) 
contributed little to model training. While this finding is somewhat contradictory to findings of 
previous research, it does provide important information for guiding future data analysis efforts. 
Of course, it would be important to verify that the unimportance of these variables was not just 
due to the specific conditions of this study and could be replicated in other fields and data 
acquisitions.  
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Table 3. Frequency of independent variables used in the models for “Mean” dry and wet datasets and “Quantile 90%” dry 
and wet weight datasets. 

  Independent variables that recommended by RFE  

  Color 
space 

Vegetation 
index 

Texture 
features 

Proportion of 
grass 

Moisture content  
(for dry weight 

group) 

Frequency 10 22 1 0 0 

The 
highest 

frequency  
variable 

a (from 
L*a*b) CIVE Variance   

 
Outliers are further examined in Fig 9 for the “Quantile 90%” - dry mass model. Quadrat images 
are provided for several identified outliers, showing that the outlier quadrats were mainly 
composed of a mixture of grass and clover, or clover alone. These same quadrats were also 
identified as outliers in the other groups of models. Pearson’s correlation coefficient (r) between 
the dry mass of samples and the proportion of the grass (i.e., group number in Table 3) in the 
roadside area, and the northern area were -0.10 and 0.48, respectively. This is the reason why 
the direct correlation (r) between dry or wet mass and independent variables was low (Fig 7). 
However, the high and robust correlation among independent variables (e.g., color features and 
vegetation indices) compensated for the low correlation to dependent variables. This implies that 
the uniform and evenly distributed northern area was more suitable for training the hay yield model. 
 

 
Fig 9. “Quantile 90%” - dry mass model results (left) and images of identified outliers (right). Definition of “Proportion” can 
be found in Table 3. 
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From the above results, the study showed that using a single image data collection and machine 
learning models based on RGB channels could predict hay yield while focusing on spatial 
accuracy and a rapid workflow. Moreover, this study provided information on which variables were 
more related to predicting wet (fresh) mass. In the future, applying multispectral imagery datasets 
in prediction models or using both RGB and multispectral imagery may lead to improved models. 
Also in future work, it will be important to focus on calibration sites with homogeneous vegetation 
to provide more accurate results.  

Conclusion  
Hay yield monitoring systems can provide farmers with spatial information in a field useful for site-
specific management. As compared with previous methods used to estimate hay yield, improving 
the spatial resolution of yield information was the primary goal of this research.  
This research investigated the use of remote sensing technologies for estimating hay yield. The 
specific objective was developing fast and spatially accurate models using a machine learning 
model (random forest) and testing suitable independent variables among five types of extracted 
variables from RGB images. The 110 calibration samples were collected in two areas (roadside 
and northern parts) within one day of harvest, immediately after imaging.  
Candidate variables for modeling included measured vegetation moisture content, the proportion 
of grass in samples, vegetation indices, and texture features. From these, significant independent 
variables selected by the RFE algorithm and were used to train random forest machine learning 
models. Results showed the potential of this approach, with the best model achieving r2 = 0.79, 
RMSE = 251.05 g/m2, and MAE = 187.59 g/m2.  
Future work to improve hay yield estimation might include running deep learning models, 
collecting calibration data from locations with homogeneous vegetation characteristics, collecting 
enough samples to run machine learning models, and application of multispectral images.   
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