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Abstract.  

The concentration of heavy metals that needs to be maintained in aquaponic environments for 
habitable growth of plants has been a cause of concern for many decades now as it is not possible 
to eliminate them completely in a commercial set-up. Our goal is to design a cost-effective real-
time smart sensing and actuation system to control the concentration of heavy metals in 
aquaponic solutions. Our solution consists of sensing the nutrient concentrations in the aquaponic 
solution, namely calcium, sulfate and phosphate and providing them to the Machine Learning 
model hosted on an Android application. The application outputs the appropriate iron and copper 
concentrations that can be tolerated for optimal growth of plants in an aquaponic set-up and 
controls the dispensing systems to maintain these desired heavy metal concentrations.   

The Machine Learning algorithm used in this case is pre-trained on the top three nutrient 
predictors selected from a dataset containing the nutrient profiling of samples recorded from three 
aquaponic farms over the course of a year in South-East Texas based on the output of a pipeline 
of Feature Selection models like the pairwise correlation matrix, ExtraTreesClassifier and Xgboost 
classifier. This pre-trained ML classification model, which in our case is a Radial Support Vector 
Machine, is hosted on a cloud platform and would output the recommended levels of iron and 
copper in real time through an Android application considering the concentrations of phosphorus, 
calcium and sulfur as inputs. These recommended values were maintained with the help of an 
array of dispensing and sensing units, thus monitoring these parameters in a closed loop system. 
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Introduction: 

Over the last few decades, hydroponics and aquaponics-based systems have been used as a 
promising alternative to traditional agricultural techniques as they use 50 to 70% less water owing 
to the recyclability of the system [1][2][3]. Adding to it, they have shown great efficiency as they 
require less pest control and are less affected by the harsh climatic weather conditions, leading 
to an increase in the yield of the produce. As we are moving towards an era of digital agriculture, 
efforts are being made to design smart IoT based hydroponic systems to be implemented on a 
commercial scale.  

There have been some recent studies using predictive approaches in the field of alternate 
agriculture to increase the yield of produce in a sustainable manner. Some of the studies have 
been stated as follows. In [4], the sensor values in the greenhouse were recorded in an aquaponic 
system and the fish count extracted using R-CNN algorithm were given as inputs to the AutoML 
algorithm to trigger the actuators needed to control the environmental parameters. In [5], Dhal et 
al. designed a Machine Learning based smart IoT system for sensing and controlling the 
concentrations of ammonium and calcium depending on the season using a feedback loop to 
have sustainable growth of fish and plants in a single set-up. In [6], a comparative study of 
Machine learning based approaches were conducted on images of lettuce to study what diseases 
can be incurred in the growth process. Similar studies have been conducted by Hiram Ponce et 
al. in [7] and Yadav et al. in [8] using Deep Convolutional Neural Networks for feature extraction 
on the images of leaves to detect nutrient deficiency in tomatoes and foliar disease in apple plants 
respectively. Having stated the above, very few studies have been conducted on the effect of 
heavy metals on the growth of crops in a hydroponic set-up which is the main purpose of our 
research. 

In [9], the effect of biodegradable chelating agents SS-EDDS was studied on the uptake of heavy 
metals while growing sunflowers in hydroponic solution and it was concluded that it enhanced the 
uptake of non-essential metals from the solution. On a similar note, Mahanta et al. [10] conducted 
a study for growing soybeans in hydroponic solution and concluded that the seeds treated with 
plasma activated water had a significant lower uptake of heavy metals compared to the ones that 
were just treated with tap water. In [11], Michalska et al. conducted a study on the effect of lead 
and cadmium on the growth of three variants of lettuce in hydroponic culture and how it affected 
the absorption of macro and micronutrients in their root and shoot system. Furthermore, in [12], 
Peralta-Videa et al. did a study on the uptake of environmental heavy metal uptake by plants and 
the detrimental effects of arsenic, cadmium, and chromium on human body. Having stated that, 
the main goal of our project is to design a Machine-Learning based IoT system to output the heavy 
metal concentrations that can be tolerated in a commercial hydroponic system for optimal growth 
of lettuce depending on the concentration of nutrients measured in real time. The basic 
functionality of the prototype is to sense and regulate the nutrient parameters using a closed-loop 
system so that the heavy metal concentration in the hydroponic solution stay within permissible 
limits. 

System Description: 

While laboratory set-ups are able to measure the nutrient profiles of water samples for specified 
concentrations, the processing time takes between several hours to a couple of weeks depending 
on the queue size. Our prescribed design would serve as a convenient tool to access the 
concentration of the observed hydroponic environment in a timely manner. When activated, the 
Nutrient Monitoring System (NMS) would monitor the concentration of calcium, phosphate and 
sulfate when powered on. Each sample would accurately measure and output a signal directly 
proportional to the chemical’s concentration. The main control unit i.e. the microcontroller unit 
would receive the spectrophotometer’s calculations and create a signal which is then converted 
into human-readable data points and then the values are stored on to the database. A pre-trained 
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Machine Learning (ML) model hosted on the database is then run on this set of data which then 
displays the maximum tolerable heavy metal concentrations based on the output of the ML model 
through an Android User Interface. A full functional block diagram of the entire working prototype 
is as stated in Figure 1.  

 

 

 

 

 

 

 

 

Figure 1. Fully Functional Diagram of the Nutrient Monitoring System  

The details of each of the subsystems are stated as follows: 

Spectrophotometer system: 
The spectrophotometer system consists of a light source that passes through a monochromator 
i.e. the device that split lights into individual wavelengths and through an aperture. The aperture 
changes the resolution of the light passing through. The light then goes through and is absorbed 
by the source in the sample. The light that reaches the detector is the light that did not get 
absorbed. 

 
 

Figure 2. (a) Set-up of the spectrophotometer (b) Internal Design of Spectrophotometer showing individual wavelengths 
passing through aperture 

From Figure 2(b), it is evident that the light’s path starts at the source and goes through the 
monochromator where it is split up into individual wavelengths. It then passes through the slit 
(increasing resolution) through the cuvette and reaches the photoresistor. The photoresistor is 
attached to a voltage divider whose output is dependent on the quantity of light that reaches the 
photoresistor. This output is finally read by the ESP32 microcontroller and is stored into the 
database. 
To measure the concentration of an unknown sample, a calibration curve has to be made. The 
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calibration curve requires samples with predetermined concentration values to build a line of best 
fit. Using a preset wavelength (Table 1 uses 610 nm), the device reads the respective absorbance 
values of each concentrated sample. This creates a set of data points which can be plotted with 
a line of best fit to create a linear equation. The y value represents absorbance, and the x value 
represents concentration. Solving the equation for x gives the associated concentration values 
based on the measured absorbance. Finally, placing a test sample with unknown concentration 
and measuring the absorbance value from the device, plugging this value into the new equation 
will give the absorbance of the sample.  
The concentration data for the nutrients taken for the experimentation, i.e. Calcium, Phosphate 
and Sulfate have been shown in a tabular form below. 

Table 1: Concentration Data for Calcium, Phosphate and Sulfate 

SAMPLE ID STD0 STD1 STD2 STD3 STD4 STD5 UNKNOWN 
TYPE Standard Standard Standard Standard Standard Standard Standard 

CALCIUM 

CONCENTRATION 0.000 28.800 57.600 86.400 115.200 144.000  
WL610.0 0.000 0.210 0.266 0.306 0.358 0.493  

WEIGHT FACTOR 1.000 1.000 1.000 1.000 1.000 1.000  
PHOSPHATE 

CONCENTRATION 0.000 0.516 1.032 1.550 2.060 2.580  
WL610.0 0.000 0.226 0.359 0.478 0.583 0.847  

WEIGHT FACTOR 1.000 1.000 1.000 1.000 1.000 1.000  
SULFATE 

CONCENTRATION 0.000 4.800 9.640 14.460 19.280 24.100 10.000 

WL450.0 0.000 0.429 0.753 1.091 1.086 1.432 0.638 
WEIGHT FACTOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

The concentration of Calcium, Phosphate and Sulfate is shown in standard curves below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Standard Calibration Curve for (a) Calcium (b) Phosphate (c) Sulfate 
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Positioning and Dispensing System: 
The positioning and dispensing system is an integral part of the Nutrient Monitoring System, 
allowing for the automation of water filling, reagent filling, and positioning of cuvettes in a 
spectrophotometer, thereby reducing the amount of necessary hands-on work. The details of the 
system used to build up the entire unit have been stated below in Figure 4.  

 
 
 
 
 
 
 
 
 
 
 

Figure 4: Control Flow diagram of the nutrient Dispensing and Positioning system 

In this system, one Nema 17 bipolar stepper motor, two valve solenoids, one A4988 motor driver 
and one ESP32 microcontroller were utilized to perform each stage of the sequence.  For the 
conveyor system, a stepper motor was used to rotate an arm with a cuvette across the several 
stages. The dispensing system utilized the water pump to supply both water and a reagent 
through a tube with a volume of 2mL. Once filled, the upstream valve solenoid closes, trapping 
the water and reagent mixture in the tube. Then, the downstream valve solenoid opens releasing 
the water and reagents into the cuvette. To power the stepper motor, a motor driver received 5V 
from an ESP32 microcontroller and 12V from the power management system. For the motor 
driver, two digital pins were used to set the stepping type and direction of each motor. For the 
water pump, the circuit required a PN2222 transistor, 1N4001 diode, and a 250Ω resistor. Using 
the Arduino integrated development environment (IDE), a sequence of instructions was coded 
onto the ESP32 microcontroller to perform tasks assigned to the positioning and dispensing 
system. 
The power management system required to supply the required DC voltages to the 
abovementioned system from a 120 V AC supply has been explained in detail in Figure 8. This 
system primarily consists of two main steps: an AC-DC conversion system which steps down the 
voltage from 120 V AC supply to a 24 V DC supply, and a buck converter which takes an input of 
24 V from the AC-DC converter and gives two stable output voltages of 12 V and 5 V respectively. 
The entire schematic of the power management system has been depicted in Figure 5. 
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Figure 5: Power Management circuit for the Dispensing and Positioning system 

Database and Machine Learning system: 
The purpose of the system is to collect data from the spectrophotometer via Wi-Fi on the ESP32 
microcontroller, and then send and store that information within a database hosted on Google 
Firebase. The pre-trained Machine Learning model hosted on the Firebase is run on the calcium, 
phosphate and sulfate concentrations which are selected through a pipeline of feature selection 
techniques on a dataset recorded over the course of a year from three hydroponic farms in East-
Central Texas. 
The water samples were collected on a weekly basis from these farms and were sent to Soil, 
Forage and Water Testing Laboratory at Texas A&M University to have a nutrient profiling of 
these samples. The chemical concentrations of calcium, magnesium, sodium, potassium, boron, 
carbonate, bicarbonate, sulfate, chloride, nitrate, phosphate, iron, copper (all of these measured 
in ppm) were analyzed from each sample and were appended to the dataset. The final dataset 
which we used in our case to carry out the initial analysis had a total of 226 observations and 14 
predictors. 
The concentration of iron and copper were treated as the response variables and the rest 12 
predictors were used to carry out the analysis. Initially, we started with treating the entire dataset 
as an unsupervised approach and used K-Means clustering with the value of K set to 3. Out of 
the 226 observations in the analysis, 116 observations were classified into Class 0 and 113 
observations were classified into Class 1. As the dataset at hand was sparse and the 
dimensionality was high, a pipeline of Pairwise correlation matrix, XGBoost classifier and 
ExtraTreesClassifier were carried out on the dataset to find out the most relevant predictors in the 
analysis. From the pairwise correlation matrix generated, the predictors with more than 90% 
correlation among them were removed which led to the removal of bicarbonate and sodium 
concentrations from the dataset. After this, XGBoost classifier was used to generate the feature 
importance for each of the remaining 10 predictors.    
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Figure 6: F-scores of the predictors generated by XGBoost classifier 

From Figure 6, calcium, magnesium, sodium, phosphates, boron and sulfate were chosen as the 
top 6 predictors for analysis as they had feature importance over 200. The rest of the predictors 
were comparatively less important in our resulting analysis, due to which, we decided to eliminate 
them before proceeding with the application of ExtraTreesClassifier for selection of the top three 
predictors which were regulated at regular intervals using an IoT based set-up. 
 
  
  
 
 
 
 
 
 
 

Figure 7: Feature Importance (%) of the top six nutrient predictors 

From Figure 7, the feature importance of calcium, phosphate and sulfate were found out to be 
34%, 27% and 18% respectively, thereby making up for 79% of the total feature importance in 
the entire dataset. Therefore, the values of these abovementioned features served as the 
predictors to be used in the ML model for generating the heavy metal concentrations that can be 
tolerated in a hydroponic set-up based on the ML output. 
As stated before, the entire dataset was treated as a binary classification problem and based on 
the historical values of the dataset, a certain value of iron and copper that can be tolerated in a 
hydroponic set-up for optimal growth of lettuce were prescribed depending on the value of the 
output of the Machine Learning classifier. A 5-fold Cross-Validation with 15 repeats were 
performed on the dataset to generate the aggregate testing accuracy and selecting the most 
optimal classifier. The testing accuracy of each of the ML classifiers have been stated in Figure 
8. 
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Figure 8: Maximum, minimum, and overall testing accuracy of the ML classifiers on the historical dataset 

From Figure 8, it can be concluded that among the three classifiers were used on the dataset, 
Linear Support Vector Machine outperformed the other classifiers. The value of the highest 
aggregate testing accuracy was recorded to be 75% in the case of Linear SVM when the value of 
penalty parameter was set to 10. Therefore, it was decided to proceed with the above stated 
classifier in our analysis. 
Based on the output of the Linear SVM with the concentration of calcium, phosphate and sulfate 
as inputs to the ML model, a set of maximum tolerable values of iron and copper in the hydroponic 
set-up were prescribed. The median value of these heavy metal concentrations were computed 
per class from the training dataset. When the output of the ML model was class 0, the iron 
concentration and the copper concentration that can be tolerated in the hydroponic environment 
was 0.03 ppm and 0.006 ppm respectively. Similarly, when the output of the ML model was 1, the 
iron and copper concentrations that can be tolerated was 2.04 ppm and 0.172 ppm respectively. 
All these concentrations were displayed through an Android application which have been 
discussed in the next sub-section. 

Android Application system: 
The Android phone application serves as a portable display and allows the user to show the 
appropriate heavy metal concentration value, sorted by measurement date depending on the 
output of the Machine Learning model hosted on the Firebase. The data recorded through the 
spectrophotometer is sent to the Firebase (database) through a Wi-Fi connection on the ESP32 
module. 
 

 

 

 

Figure 9: Overall connection diagram of dataflow from the spectrophotometer to the Android application 

System Integration: 
The ideal concentration of calcium, sulfate and phosphate concentration to be maintained for 
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optimal growth of lettuce in a hydroponic set-up are 130 ppm, 125 ppm and 25 ppm respectively. 
To maintain this concentration in a 450L hydroponic set-up which was used as our test site, 90 g 
of calcium sulfate powder and 31 g of magnesium phosphate powder are initially added manually 
to the hydroponic set-up. 
After this, the spectrophotometer system designed is used to measure real time values of these 
nutrients which stores the values on to the Google Firebase where our Machine Learning model 
is hosted. Based on the value of the ML output, the appropriate values of iron and copper that 
can be tolerated in a hydroponic set up is displayed through an Android application interface.  
The other connection from the spectrophotometer system is to the Nutrient Dispensing System 
which uses two cuvettes each with a dispensing capacity of 2 mL. Both the systems are connected 
in a closed loop system using a feedback loop, where the spectrophotometer system senses the 
nutrient parameters from the solution and sends the readings to the dispensing system which 
releases the nutrient solution if the measured concentrations are less than the recommended 
parameters. For a single run of the Nutrient Monitoring System (NMS), the sensing and the 
dispensing units are operated five times and the average value of the nutrient concentrations 
recorded from the spectrophotometer are stored on to the Firebase which is given as input to the 
Machine Learning model. 
 
Discussion: 

As discussed in the introduction section, the concentrations of heavy metals in hydroponic 
environments should be as low as possible. In a practical commercial set-up, it is not possible to 
get rid of these heavy metals completely. Due to this, it was decided to use the median value of 
iron and copper concentrations per class calculated from the historical dataset that should be 
maintained in the solution. 
For observations belonging to class 0, the recommended concentrations of iron and copper that 
can be tolerated in the hydroponic solution was 0.003 and 0.006 ppm respectively. Similarly, for 
observations belonging to class 1, the recommended concentrations of iron and copper was 2.04 
and 0.172 ppm respectively. The values of these above stated heavy metal concentrations were 
maintained as per the input concentration of calcium, sulfate and phosphate concentrations which 
were regulated with the help of our prescribed Nutrient Monitoring System (NMS).      
The effect of addition of calcium and sulfates have been studied in [13] where it was concluded 
that the dry matter yields of most of the plants under high treatments of calcium sulfate was high 
compared to the ones with less treatment. It has also been established by many studies that the 
addition of calcium increases the pH of the hydroponic solution. The effect of pH on the absorption 
of copper by plants was studied in [14] where it was concluded that increasing the pH of the soil 
decreased the rate of copper absorption by plants as determined by their shoot biomass and root 
elongation, thereby reducing the chances of copper toxicity. There have been studies on the effect 
of copper toxicity in [15] which state that when the concentration of copper increases beyond a 
certain threshold which in this case was 100 micro-Moles, the relative growth rate decreases as 
well as severe browning is observed in the leaves leading to necrosis. In [16] and [17], the effect 
of increased copper concentration leading to a decrease in phosphorus uptake by plants in 
hydroponic media was studied where significant imbalances in the nutritional values of the plants 
as well as stunted plant growth was observed. 
Similarly, the effect of pH on the absorption of iron by the plants have also been studied. In [18], 
it has been stated that the pH of the soil should be kept at moderate levels for ferric iron to be 
freed from ferric oxides and be more available for uptake by plant roots. Similarly, a lower level of 
pH would mean high uptake of iron by plants which can lead to iron toxicity. A detailed account of 
the toxic levels of iron that resulted in young plants suffer from increased oxidative stress has 
been studied in [19] with reduced relative growth rates. The detrimental effect of iron on the 
phosphate concentrations in growth environments has been discussed in [20] where phosphate 
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deficiency due to excess of iron resulted in inhibition of primary root growth and retarded 
development of lateral roots. This same observation was reinstated in [21] which stated that a 
phosphorus depleted hydroponic media for growing barley resulted in iron plaque formation in the 
root system. 
Therefore, having stated the above, it is important to regulate the nutrient parameters as 
prescribed to control the heavy metal concentrations and achieve optimal growth of lettuce in 
hydroponic systems. The presence of heavy metals such as iron and copper may reduce the 
uptake of essential nutrients by the plants in a hydroponic system. This might be detrimental to 
the growth, sustenance, and yield from lettuce. Regulation of heavy metals can reduce the 
competitive affinity of plants to the essential nutrients. 
 

Conclusion and Future Work: 
In conclusion, a smart IoT Nutrient Monitoring System was designed which was successful in 
detecting the concentrations of calcium, phosphates and sulfate in real-time and prescribed a 
specific concentration of iron and copper that can be tolerated for these nutrient concentrations 
through an User Interface based on the output of the Machine Learning classifier to which these 
nutrients were fed as inputs. 
In the future, data can be recorded from more geographically distinct terrains to create a dataset 
with more variance in data which would help in formulating a more reliable Machine Learning 
model. The spectrophotometer which currently measures only three nutrients can be extended to 
measure more chemical properties of the hydroponic solution. The size of the positioning and 
dispensing system which currently consists of two dispensing units can be scaled to make a larger 
system which can be used in larger commercial set-ups. Adding to it, the current prescribed 
system does not have a way to monitor or regulate the heavy metal concentrations in real time 
which can be incorporated.  
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