Login

Proceedings

Find matching any: Reset
Sensor Application in Managing In-season CropVariability
Smart Weather for Precision Agriculture
Precision Weed Management
eXtension: Precision Agriculture on the Internet
Sensor Application in Managing In-season Crop Variability
Add filter to result:
Authors
Adamchuk, V.I
Alheit, K.V
Ammar, K
Ashley, R
Baharom, S.N
Bajwa, S
Bareth, G
Barros, M.F
Benavente, J.C
Berdugo, C
Bodnár, K.B
Bodson, B
Bonfil, D.J
Brase, T
Bronson, K
Bu, H
Busemeyer, L
Cao, Q
Caron, J
Chae, Y
Charvat, K
Chen, X
Cheng, S
Choi, M
Choudhari, D.D
Chung, S
Crawford, K
Cugnasca, C.E
Dao, T.H
De Baerdemaeker, J
De Ketelaere, B
Deckers, T
Dehne, H
Destain, J
Destain, M
Dhillon, R
Drummond, S.T
Drummond, S.T
Dumont, B
Duval, C
Endres, G
Ferguson, R.B
Ferguson, R.B
Fixen, P
Franzen, D.W
Franzen, D.W
Fulton, J.P
Fumery, J
Gérard, B.G
Gerth, S
Ghinassi, G.P
Gitelson, A.A
Gnip, P
Gnyp, M.L
Gombos, B
Griffin, T
Gumiere, S.J
Gupta, M
Hagolle, O
Hallema, D.W
Hanke, R
Hays, A
Hillnhuetter, C
Hoffmann, C
Holland, K.H
Huang, S
Huh, Y
Inamasu, R.Y
Jacquin, A
Jasper, J
Jezek, J
Jiang, R
Jung, K
Kana, I
Kandel, H
Khosla, R
Khosla, R
Kim, S
Kitchen, N.R
Kitchen, N.R
Kitchen, N.R
Kitchen, N.R
Klose, R
Knapp, M
Kodaira, M
Krivanek, Z
Lacey, R
Lafond, J.A
Lamb, D.W
Lambur, M
Lampinen, B
Lampinen, B
Lan, Y
Lebeau, F
Lee, J
Lepoivre, B
Leroux, G.D
Linz, A
Liu, F
Longchamps, L
Longchamps, L
Luck, J.D
Maharlooei, M
Mahlein, A
Martinon, V
Metcalf, S
Miao, Y
Miao, Y
Moeller, K
Mohammad, A.S
Molin, J
Molin, J.P
Musil, M
Nagy, J
Nayse, S.P
Nayse, S.P
Nowatzki, J
Nowatzki, J
Oerke, E
Oerke, E
Ortiz-Monasterio, I
Périard, Y
Pagni, P
Panneton, B
Panneton, B
Phillips, L
Pinkston, P
Pitla, S.K
Poilvé, H
Porto, A.J
Portz, C
Portz, G
Portz, G
Posada, L.V
Rahe, F
Redmond, C
Reisinger, S
Roach, J
Rodrigues Junior, F.A
Roger, T
Rojo, F
Roumiguié, A
Ruckelshausen, A
Saeys, W
Santos, H.P
Schepers, A.R
Schepers, J.S
Schepers, J.S
Schneider, D
Shanahan, J.F
Sharda, A
Sharma, A
Sharma, L
Shaver, T
Shearer, S.A
Shen, J
Sheridan, A
Shi, Y
Shibusawa, S
Shiratsuchi, L
Sigel, G
Sikora, R.A
Simard, M
Simard, M
Singh, G
Singh, M
Sivarajan, S
Slater, G
Slaughter, D
Sousa, R.V
Steiner, U
Stevens, L.J
Suddth, K.S
Sudduth, K.A
Sudduth, K.A
Suh, C
Sun, Z
Tangerino, G.T
Taylor, R.K
Teboh, J
Theriault, R
Theriault, R
Thiel, M
Trautz, D
Trevisan, R.G
Trotter, M.G
Udompetaikul, V
Uhlmann, N
Upadhyaya, S
Upadhyaya, S
Van Beers, R
Vancutsem, F
Vieri, M.P
Vilanova Jr., N.D
Wadhai, V.M
Wang, N
Weiss, U
Westbrook, J
Westfall, D
Wouters, N
Yao, Y
Zarco-Tejada, P.J
Zhang, H
chen, D
chen, T
dong, J
http://icons.paqinteractive.com/16x16/ac, G
jiang, S
Topics
Sensor Application in Managing In-season Crop Variability
Precision Weed Management
Sensor Application in Managing In-season CropVariability
Smart Weather for Precision Agriculture
eXtension: Precision Agriculture on the Internet
Type
Oral
Poster
Year
2010
2014
2018
Home » Topics » Results

Topics

Filter results53 paper(s) found.

1. Hyperspectral Imaging Of Sugar Beet Symptoms Caused By Soil-borne Organisms

The soil-borne pathogen Rhizoctonia solani and the plant parasitic nematode Heterodera schachtii are the most important constraints in sugar beet production worldwide. Symptoms caused by fungal infection are yellowing of leaves and rotting of the beet tuber late in the cropping season. Nematode afflicted plants show stunted growth early in the cropping season and also leaf wilting late in the season when water stress often sets in. Due to the low mobility of soil-borne organisms, they are ide... C. Hillnhuetter, A. Mahlein, R.A. Sikora, E. Oerke

2. Using An Active Crop Sensor To Detect Variability Of Nitrogen Supply On Sugar Cane Fields

Nitrogen management has been intensively studied on several crops and recently associated with variable rate application on-the-go based on crop sensors. On sugar cane those studies are yet scarce and as a biofuel crop the input of energy matters, looking for a high positive balance of biofuel production and low carbon emission on the whole production system. This paper shows the first results obtained using a nitrogen and biomass sensor (N-SensorTM ALS, Yara International ASA) aiming to indi... J. Molin, G. Portz, J. Jasper

3. Primary Framework Of Diagnosis And Management For Wheat Production Based On The Online Telemonitoring Networks

  PRIMARY FRAMEWORK OF DIAGNOSIS AND MANAGEMENT FOR WHEAT PRODUCTION BASED ON THE ONLINE TELEMONITORING NETWORKS   Sun Zhong-fu, Du Ke-ming, Zhang Yan, Liang Ju-bao   Inst. of Environ. & Sustainable Develop. in Agriculture£¨IEDA£© Chinese... Z. Sun, ,

4. Developing An Active Crop Sensor-based In-season Nitrogen Management Strategy For Rice In Northeast China

  Crop sensor-based in-season N management strategies have been successfully developed and evaluated for winter wheat around the world, but little has been reported for rice. The objective of this study was to develop an active crop sensor-based in-season N management strategy for upland rice in ... Y. Yao, Y. Miao, S. Huang, M.L. Gnyp, R. Jiang, X. Chen, G. Bareth

5. Canopy Reflectance Sensing As Impacted By Corn Hybrid Growth

  Detection of physical and chemical properties within the growing season could help predict the overall health and yield of a corn crop. Little research has been done to show differences of corn hybrids on canopy reflectance sensing. This study was conducted to examine these potential differences during the early- to mid-vegetative growth stages of corn on three different soil types in Missouri. Canopy sensing (Crop Circle) and SPAD chlorophyll met... A. Sheridan, K.A. Sudduth, N.R. Kitchen

6. Is A Nitrogen-rich Reference Needed For Canopy Sensor-based Corn Nitrogen Applications?

The nitrogen (N) supplying capacity of the soil available to support corn (Zea mays L.) production can be highly variable both among and within fields. In recent years, canopy reflectance sensing has been investigated for in-season assessment of crop N health and fertilization. Typically the procedure followed compares the crop in an area known to be non-limiting in N (called a N-rich area) to the crop in areas inadequately fertilized. Measurements from the two areas are used to ... N.R. Kitchen, K.S. Suddth, S.T. Drummond

7. Innovative Optical Sensors For Diagnosis, Mapping And Real-time Management Of Row Crops: The Use Of Polyphenolics And Fluorescence

Force-A’s Dualex® leaf-clips and Multiplex® proximal optical sensors give rapid and quantitative estimations of chlorophyll and polyphenolics of crops by measuring the fluorescence and absorption properties of these molecules. The in vivo and real-time assessments of these plant compounds allow us to define new indicators of crop nitrogen status, health and quality. The measurements of these indicators allow consultants and farmers to monitor the nitrogen status of row crop... V. Martinon, , C. Duval, J. Fumery

8. Sensing The Inter-row For Real-time Weed Spot Spraying In Conventionally Tilled Corn Fields

The spatial distribution of weeds is aggregated most of the time in crop fields. Site-specific management of weeds could result in economical and environmental benefits due to he... L. Longchamps, B. Panneton, M. Simard, R. Theriault, T. Roger

9. Partial Weed Scouting For Exhaustive Real-time Spot Spraying Of Herbicides In Corn

Real-time spot spraying of weeds implies the use of plant detectors ahead of a sprayer. The range of weed spatial autocorrelation perpendicularly to crop rows is often greater than the space between the corn rows. To assess the possibility of using less than one plant detector scouting each inter-row, a one hectare field was entirely sampled with ground pictures at the appropriate timing for weed spraying. Different ways of disposing the detectors ahead of the sprayer were virtually tested. S... L. Longchamps, B. Panneton, G.D. Leroux, M. Simard, R. Theriault

10. Ultra Low Level Aircraft (ULLA) As A Platform For Active Optical Sensing Of Crop Biomass

Crop producers requiring crop biomass maps to support timely application of in-season fertilisers, pesticides or growth regulators rely on either on-ground active sensors or airborne/satellite imagery. Active crop sensing (for example using Yara N-SensorTM, GreenseekerTM or CropcircleTM) can only be used when the crop is accessible by person or vehicle, and extensive, high-resolution coverage is time consuming. On the other hand, airborne or satellite imaging ... D.W. Lamb, M.G. Trotter, D. Schneider

11. Investigation Of Crop Varieties At Different Growth Stages Using Optical Sensor Data

Cotton, soybean and sorghum are economically important crops in Texas. Knowing the growing status of crops at different stages of growth is crucial to apply site-specific management and increase crop yield for farmers. Field experiments were initiated to measure cotton, soybean and sorghum plants growth status and spatial variability through the whole growing cycle. A ground-based active optical sensor, Greenseeker®, was used to collect the Normalized Difference Vegetation Index (NDVI) da... H. Zhang, Y. Lan, J. Westbrook, C. Suh, C. Hoffmann, R. Lacey

12. Performance Evaluation Of Off-shelf Range Sensors For In-field Crop Height Measurement

Abstract: In-season plant height is a good predictor of yield potential, which needs to be measured with techniques of high spatial resolution and accuracy. In this study, systematic performance evaluations were conducted on three types of commercial range sensors, an ultrasonic sensor, a laser range finder and a range camera on plant height measurement, under laboratory and field conditions. Results showed that the average errors between the measured heigh... N. Wang, Y. Shi, R.K. Taylor

13. A Model For Wheat Yield Prediction Based On Real-time Monitoring Of Environmental Factors

... B. Dumont, F. Vancutsem, J. Destain, B. Bodson, F. Lebeau, M. Destain

14. Real-time Calibration Of Active Crop Sensor System For Making In-season N Applications

... K.H. Holland, J.S. Schepers

15. Comparison Of Three Canopy Reflectance Sensors For Variable-rate Nitrogen Application In Corn

In recent years, canopy reflectance sensing has been investigated for in-season assessment of crop nitrogen (N) health and subsequent control of N fertilization. The several sensor systems that are now commercially available have design and operational differences. One difference is the sensed wavelengths, although these typically include wavelengths in both the visible and near-infrared ranges. Another difference is orientation – the sensors most commonly used in the US are designed to... K.A. Sudduth, N.R. Kitchen, S.T. Drummond

16. Changes Of Data Sampling Procedure To Avoid Energy And Data Losses During Microclimates Monitoring With Wireless Sensor Networks

... J.C. Benavente, C.E. Cugnasca, M.F. Barros, H.P. Santos, G. Http://icons.paqinteractive.com/16x16/ac

17. Development Of A Nitrogen Requirement Algorithm Using Ground-based Active Remote Sensors In Irrigated Maize

Studies have shown that normalized difference vegetation index (NDVI) from ground-based active remote sensors is highly related with leaf N content in maize (Zea mays). Remotely sensed NDVI imagery can provide valuable information about in-field N variability in maize and significant linear relationships between sensor NDVI and maize grain yield have been found suggesting that an N recommendation algorithm based on NDVI could optimize N application. Therefore, a study was conducted using the ... T. Shaver, R. Khosla, D. Westfall

18. Comparison Of Spectral Indices Derived From Active Crop Canopy Sensors For Assessing Nitrogen And Water Status

... L. Shiratsuchi, R.B. Ferguson, J.F. Shanahan, V.I. Adamchuk, G. Slater

19. Embedded Sensing System To Control Variable Rate Agricultural Inputs

 This paper presents an embedded sensing system for agricultural machines to collect information about plants and also to control the application of fertilizer with variable rate in corn crop. The Crop Circle reflectance sensor was used with the aim to explore the spe... G.T. Tangerino, R.V. Sousa, A.J. Porto, R. . Inamasu, P. Pinkston

20. Development Of Batch Type Yield Monitor For Small Fields

 Abstract The yield monitor is intended to give the user an accurate assessment of yield variations y within a field. A yield monitor can assist grain producers in many aspects of crop management. A yield monitor by itself can provide useful information and enhance on-farm research. Yield data c... M. Singh, A. Sharma, G. Singh, P. Fixen

21. Extension: Precision Ariculture On The Internet

This session will include an overall description of the new eXtension precision agriculture Web site. eXtension is an interactive learning environment delivering the best, most researched knowledge from land-grant university  across America. Session participants will learn about the Website, and how to participate in the continued site development. The precision agriculture eXtension Web site is a virtual platform for engage... J. Nowatzki, T. Brase

22. Not Possible In Real Life: Precision Agriculture’s Future In 3D Virtual Worlds

Immersive 3D virtual worlds may be several years away from mainstream adoption, but thousands of scientists, educators, and visionary thinkers are already using these environments to network with colleagues, conduct research, create engaging simulations, and develop instructional models that can reach global audiences. Virtual reality offers the potential to create dynamic content that is either not possible to build in real life, or prohibitively expensive. Travel costs can be reduced by bri... L. Phillips

23. Assessment Of Physiological Effects Of Fungicides In Wheat

The use of fungicides is one of the most widespread methods implemented in intensive crop production focused in solving phytosanitary problems. The use of fungicides belonging to groups such as strobilurins has been associated with positive physiological effects such as increased tolerance against abiotic stresses, changes in plant growth regulator activities and delayed leaf senescence. The use of thermography is a non- destructive method which permits to distinguish physiological changes ca... C. Berdugo, U. Steiner, E. Oerke, H. Dehne

24. Development Of A Sensor Suite To Determine Plant Water Potential

The goal of this research was to develop a mobile sensor suite to determine plant water status in almonds and walnuts. The sensor suite consisted of an infrared thermometer to measure leaf temperature and additional sensors to measure relevant ambient conditions such as light intensity, air temperature, air humidity, and wind speed. In the Summer of 2009, the system was used to study the relationship between leaf temperature, plant water status, and relevant microclimatic information in an al... V. Udompetaikul, S. Upadhyaya, B. Lampinen, D. Slaughter

25. The Scholarship Of eXtension

  eXtension (www.extension.org) is an interactive on-line learning environment delivering "best of the best," researched-based knowledge from the top minds across the land-grant university system.  It is a space where university content providers can collaborate to gather and produce new educational and information resources on wide-ranging topics while continually interacting with their customers to help solve real-life problems in real time.  The works of ... M. Lambur

26. Sensor And System Technology For Individual Plant Crop Scouting

Sensor and system technologies are key components for automatic treatment of individual plants as well as for plant phenotyping in field trials. Based on experiences in research and application of sensors in agriculture the authors have developed phenotyping platforms for field applications including sensors, system and software development and application-specific mountings.   Sensor and data fusion have a high potential by compensating varying s... A. Ruckelshausen, K.V. Alheit, L. Busemeyer, R. Klose, A. Linz, K. Moeller, F. Rahe, M. Thiel, D. Trautz, U. Weiss

27. Vlite Node – New Sensor Technology For Precision Farming

... K. Charvat, J. Jezek, M. Musil, Z. Krivanek, P. Gnip

28. We Want You: Contributing Your Expertise To A Community Of Practice (COP)

  eXtension Communities of Practice (CoP’s) are online collaborative networks of subject matter experts.  Community of Practice as a method are not new, almost everyone has come across one by now, but you may not have realized what you were looking at was a collaborative effort.  CoP’s exist on sites like Consumer Reports, in CNET, and many other places where groups of experts work to create the content that populates a website.  Communities are self-... A. Hays

29. Cognitive Radio In Precision Agriculture

 This is an attempt to design a precision agriculture (PA) model, to control the required parameters in greenhouse with wireless sensor network (WSN). This proto type model of wireless sensor and actuators network is designed as per required parameters of available crops in a greenhouse. The design of the sensor node consists of sensors, a micro-controller and a low-powered radio module. Real-time data, enable the operators to characterise the operating parameters of the greenhouse and a... S.P. Nayse, D.D. Choudhari, V.M. Wadhai

30. Optimizing Vineyard Irrigation Through The Automatic Resistivity Profiling (arp) Technology. The Proposal Of A Methodological Approach

 In Tuscany, central Italy, grape cultivation and wine production (i.e., Chianti DOCG, Brunello di Montalcino) are farming activities appreciated worldwide. Differently from the past, irrigation is allowed to meet the intense physiological stress that may occur during seasons affected by the increasing climate variability, in order to guarantee quality product and hence high market profitability in many vines areas. Most ... P. Pagni, G.P. Ghinassi, M.P. Vieri

31. Canopy Reflectance-based Nitrogen Management Strategies For Subsurface Drip Irrigated Cotton

Nitrogen (N) fertilizer management in subsurface drip irrigation (SDI) systems for cotton (Gossypium hirsutum L.) can be very efficient when N is fertigated on a near daily time step.  Determining the amounts and timing of the N fertigation, however are questions that weekly canopy reflectance measurements may answer.   The main objective of this 3-yr. study was to test two canopy reflectance strategies for adjusting urea ammonium nitrate (UAN) fertilizer in-season injections... K. Bronson

32. Generating Herbicide Effective Application Rate Maps Based On GPS Position, Nozzle Pressure, And Boom Section Actuation Data Collected From Sprayer Control Systems

The application of pre- and post- emergence burn-down herbicides (i.e., glyphosate) continues to increase as producers attempt to reduce both negative environmental impacts from tillage and input costs from labor, machinery and materials.  The use of precision agriculture technologies such as automatic boom section control allows producers to reduce off-target application when applying herbicides.  While automatic boom section control has provided benefits, pressure differences acro... J.D. Luck, A. Sharda, S.K. Pitla, J.P. Fulton, S.A. Shearer

33. Effect Of Precision Guided Cultivation On Weed Control In Wide Row Cropping Systems

Wide row cropping has been traditionally followed in summer crops but it is also becoming popular in winter crops such as chickpeas and lupins.  High precision guidance systems with 2 cm accuracy offer unique opportunities to cultivate closer to the row and increase weed control efficiency in wide row cropping systems. Two field experiments were conducted in chickpeas with a Real Time Kinematic Differential Global Positioning System (RTK-DGPS) controlled mechanical cultivation. Cultivati... M. Gupta, ,

34. Edxrfs-based Sensing Of Phosphorus And Other Mineral Macronutrient Distribution In Field Soils

Phosphorus (P) requirements for major agronomic crops have been currently based on a pre-plant mass balance method.  Fertilizer needs are estimated from crop needs, available soil P and other external nutrient inputs that include animal manure, crop residues, etc...  Thus, this approach uses f... T.H. Dao

35. Application based Wireless Sensor Node for Underground Moisture Sensing for Precision Agriculture

In this paper, we are attempting to examine the WUWSN (wireless underground water sensor node*) for precision agriculture. The development and function of this sensor along with its software application is described in this paper. The equipment is under testing and the laboratory results and interpretations are discussed in this paper. This equipment is based on the new concept of sensing underground soil moisture. The sensor is cost effective sensor and has a lon... S.P. Nayse, A.S. Mohammad

36. Rapidscan And CropCircle Radiometers: Opportunities And Limitation In Assessing Wheat Biomass And Nitrogen

Remote sensing is a promising technology that provides information about the crop's physiological and phenological status. This information is based on the spectral absorption and scattering features of the plants. Many different vegetation indices (VI) have been developed, and are in use to estimate quantitatively the relationship between multi and hyper-spectral reflectance and effective crop physiological parameters, i.e. nitrogen (N) content, biomass, leaf area index (LAI). The C... A.A. Gitelson, D.J. Bonfil

37. Active Optical Sensor Algorithms For Corn Yield Prediction And In-Season N Application In North Dakota

A recent series of seventy seven field N rate experiments with corn (Zea mays, L.) in North Dakota was conducted. Multiple regression analysis of the characteristics of the data set indicated that segregating the data into those with high clay soils and those with medium textures increased the relationship between N rate and corn yield. However, the nearly linear positive slope relationship in high clay soils and coarser texture soils with lower yield productivity indic... L. Sharma, H. Bu, R. Ashley, G. Endres, J. Teboh, D.W. Franzen

38. In-Season Nitrogen Requirement For Maize Using Model And Sensor-Based Recommendation Approaches

Nitrogen (N), an essential element, is often limiting to plant growth.  There is great value in determining the optimum quantity and timing of N application to meet crop needs while minimizing losses.  Low nitrogen use efficiency (NUE) has been attributed to several factors including poor synchrony between N fertilizer and crop demand, unaccounted for spatial variability resulting in varying crop N needs, and temporal variances in crop N needs.  Applying a portion... L.J. Stevens, R.B. Ferguson, D.W. Franzen, N.R. Kitchen

39. Modeling Canopy Light Interception For Estimating Yield In Almond And Walnut Trees

A knowledge of spatio-temporal variability in potential yield is essential for site-specific nutrient management in crop production. The objectives of this project were to develop a model for photosynthetically active radiation (PAR) intercepted by almond and walnut trees based on data obtained from respective tree(s) and estimate potential crop yield in individual trees or in blocks of five trees. This project uses proximally sensed PAR interception data measured using a lightb... R. Dhillon, S. Upadhyaya, J. Roach, K. Crawford, B. lampinen, S. Metcalf, F. Rojo

40. Using Precision Agriculture And Remote Sensing Techniques To Improve Genotype Selection In A Breeding Program

Precision Agriculture (PA) and Remote Sensing (RS) technologies are increasingly being used as tools to assess crop and soil properties by breeders and physiologists.  These technologies are showing potential to improve genotype selections over their traditional field measurements, by providing quick access to crop properties throughout the crop cycle and yield estimation. The objective of this work was to use vegetation indices (VIs) and soil apparent electrical conductivi... F.A. Rodrigues junior, I. Ortiz-monasterio, P.J. Zarco-tejada, K. Ammar, B.G. Gérard

41. Development Of An Index-Based Insurance Product: Validation Of A Forage Production Index Derived From Medium Spatial Resolution fCover Time Series

An index-based insurance solution is developed by Pacifica Crédit Agricole Assurances and Astrium GEO-Information to estimate and monitor the near real-time forage production in France. In this system, payouts are indexed on an indicator, called Forage Production Index (FPI), calculated using a biophysical characterization of the grassland from medium spatial resolution remote sensing time series. We used the Fraction of green Vegetation Cover (fCover) integral ... A. Jacquin, G. Sigel, O. Hagolle, B. Lepoivre, A. Roumiguié, H. Poilvé

42. Detection Of Drainage Failure In Reconstructed Cranberry Soils Using Time Series Analysis

A cranberry farm is often a semi-closed water system, where water is applied by means of irrigation and drained using an artificial drainage system. Cranberry bogs must be drained to the water level inside the surrounding ditches in order to maintain an optimal pore pressure within the root zone, which is important for a number of reasons. First of all, Phytophthara causing root rot are commonly associated with irrigation with contaminated surface water (Oudemans, 1999)... S.J. Gumiere, Y. Périard, J. Caron, D.W. Hallema, J.A. Lafond

43. Comparison Of Calibration Models Developed For A Visible-Near Infrared Real-Time Soil Sensor

The visible-near infrared (Vis-NIR) based real-time soil sensor (RTSS) is found to be a great tool for determining distribution of various soil properties for precision agriculture purposes. However, the developed calibration models applied on the collected spectra for prediction of soil properties were site-specific (local). This is found to be less practical since the RTSS needs to be calibrated separately for every field. General calibration approach is expected to ... S. Shibusawa, M. Kodaira, I. Kana, S.N. Baharom

44. Cotton Field Relations Of Plant Height To Biomass Accumulation And N-Uptake On Conventional And Narrow Row Systems

Although studied for decades, cotton field management remains a challenge for growers, especially due to spatial variability of soil conditions and crop growth, which demands the use of variable rate application technology (VRT) for nitrogen and growth regulators to improve yields and quality and/or save inputs. Canopy optical reflectance sensors are being studied as an option to detect infield variability but may have some limitations due to the known effect of signal saturation when us... N. . Vilanova jr., J.P. Molin, C. Portz, L.V. Posada, G. Portz, R.G. Trevisan

45. X-Ray Computed Tomography For State Of The Art Plant And Root Analysis

During the last years, the formerly in medical applications established technique of X-ray computed tomography (CT) is used for non-destructive material analysis as well. Adapting this technique for the visualization and analysis of growth processes of plants above and underneath the soil enables new possibilities in the so called smart agriculture. Using State-of-the-art CT systems the computed 3D volume datasets allows the visualization and virtual analysis of hidden structures like ro... S. Reisinger, N. Uhlmann, R. Hanke, S. Gerth

46. Evaluation Of In-Field Sensors To Monitor Nitrogen Status In Soybean

In recent years, active optical crop sensors have been gaining importance to determine in-season nitrogen (N) fertilization requirements for on-the-go variable rate application.  Although most of these active in-field crop sensors have been evaluated in corn and wheat crops, they have not yet been evaluated in soybean production systems in North Dakota. Recent research from both South Dakota and North Dakota indicate that in-season N application in soybean can increase soybean yield... J. Nowatzki, S. Bajwa, S. Sivarajan, M. Maharlooei, H. Kandel

47. Crop Circle Sensor-Based Precision Nitrogen Management Strategy For Rice In Northeast China

GreenSeeker (GS) sensor-based precision N management strategy for rice has been developed, significantly improved N fertilizer use efficiency. Crop Circle ACS-470 (CC) active sensor is a new user configurable sensor, with a choice of 6 possible bands. The objectives of this study were to identify important vegetation indices obtained from CC sensor for estimating rice yield potential and rice responsiveness to topdressing N application and evaluate their potential improvements over GS no... Q. Cao, Y. Miao, J. Shen, S. Cheng, R. Khosla, F. Liu

48. Design And Construction Of An Ultrasonic Cutting Width Sensor For Full-Feed Type Mid-Sized Multi-Purpose Combines

Precision agriculture analyzes the spatial variability according to the characteristics of an optimum setting of agricultural materials. To raise the profitability of agriculture and to reduce the environmental impact, technological research and development of precision agriculture has been conducted. In Asian countries such as Ja... Y. Huh, S. Chung, Y. Chae, J. Lee, S. Kim, M. Choi, K. Jung

49. Design And Implementation Of Agricultural Sensor Data Of Multiple And Heterogeneous Access Architecture

For the moment, the Internet of things system oriented to the whole industry chain is gradually established in some fields of agriculture; At the same time, traditional management style of agricultural sensor data lack effective sharing mechanism, that can not meet the demand of agricultural network system for the multiple and heterogeneous sensor data. Especially with the growing the demand of agricultural products quality safety supervision system to the monitoring of agricult... T. Chen, D. Chen, J. Dong, S. Jiang

50. Towards Automated Pneumatic Thinning Of Floral Buds On Pear Trees

Thinning of pome and stone fruit is an important horticultural practice that is used to enhance fruit set and quality by removing excess floral buds. As it is still mostly conducted through manual labor, thinning comprises a large part of a grower’s production costs. Various thinning machines developed in recent years have clearly demonstrated that mechanization of this technique is both feasible and cost effective. Generally, these machines still lack sufficient selectivi... N. Wouters, R. Van beers, B. De ketelaere, T. Deckers, J. De baerdemaeker, W. Saeys

51. Using Imagery As A Proxy Yield Map And Scouting Tool

Combine yield maps represent a post-mortem quantification of the spatial variability in crop vigor that occurred during the growing season. The spatial resolution of yield maps is defined by the width of the combine header but the length of the cell depends on the ground-speed of the implement and how long it takes for the grain t... J.S. Schepers, A.R. Schepers

52. Correlations Between Meteorological Parameters and the Water Loss of Maize from Silking to Harvesting

The University of Debrecen provides outstanding conditions for the development of “Smart Weather for Precision Agriculture” programs. The reliability of research is provided by the Polyfactoral Long-term Field Experiments of Debrecen (hybrid x fertilisation x plant density x tillage x irrigation) established in 1983. Within this research program, it is possible to examine various crop cultures, cultivars and hybrids under changing natural, environmental and weather circu... K.B. Bodnár, J. Nagy, B. Gombos

53. Managing the Kansas Mesonet for Site Specific Weather Information

Weather data has become one of the most widely discussed layers in precision agriculture especially in terms of agricultural ‘big data’. However, most farmers (and even other researchers outside of meteorology) are not likely aware of the complexities required to maintain weather stations that provide data. These stations are exposed to the elements 24/7 and provide unique challenges for sustainment during extreme weather conditions. Based upon decades of experience, this paper di... T. Griffin, C. Redmond, M. Knapp