Book Title

Agricultural Robotics for Outdoor and Indoor Crop Production

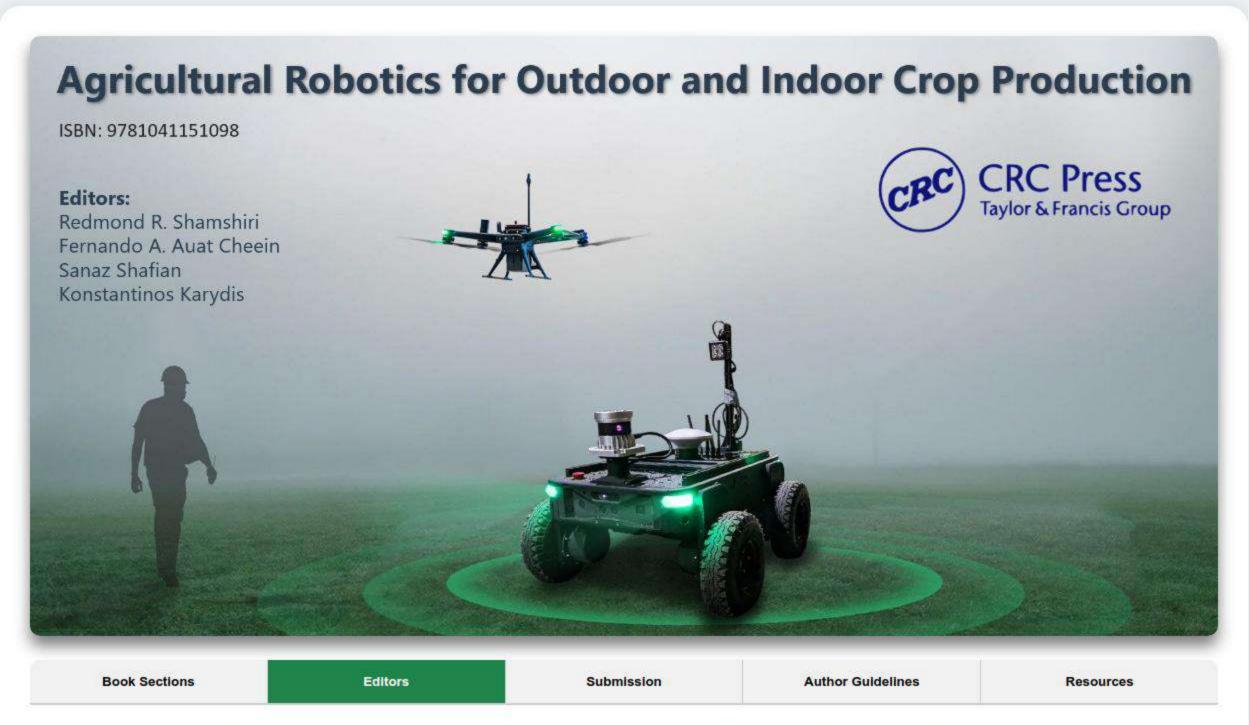
Publisher
CRC Press Taylor & Francis Group

Abstract Submission 30th September, 2025

EDITORS

Redmond R. Shamshiri Leibniz Institute, Germany

Fernando A. Auat Cheein Harper Adams University, UK



Sanaz Shafian Virginia Tech, USA

No Publication Fee

Konstantinos Karydis
University of California Riverside, USA

ISBN: 9781041151098

Publisher: Taylor & Francis Group

Editors

Dr. Redmond R. Shamshiri Leibniz Inst for Agri-Eng (ATB)

Dr. Fernando A. Auat Cheein Harper Adams University

Dr. Sanaz Shafian Virginia Tech

Dr. Konstantinos Karydis University of California, Riverside

Assistant Editors

Batuhan Sakal, M.Sc. Porsche Robotics Eng | RWTH Aaachen

Maryam Behjati, M.Sc. Field Robotics | Univ of Tehran

ISBN: 9781041151098

Publisher: Taylor & Francis Group

Sections

Mey Technologies for Agri-Robots

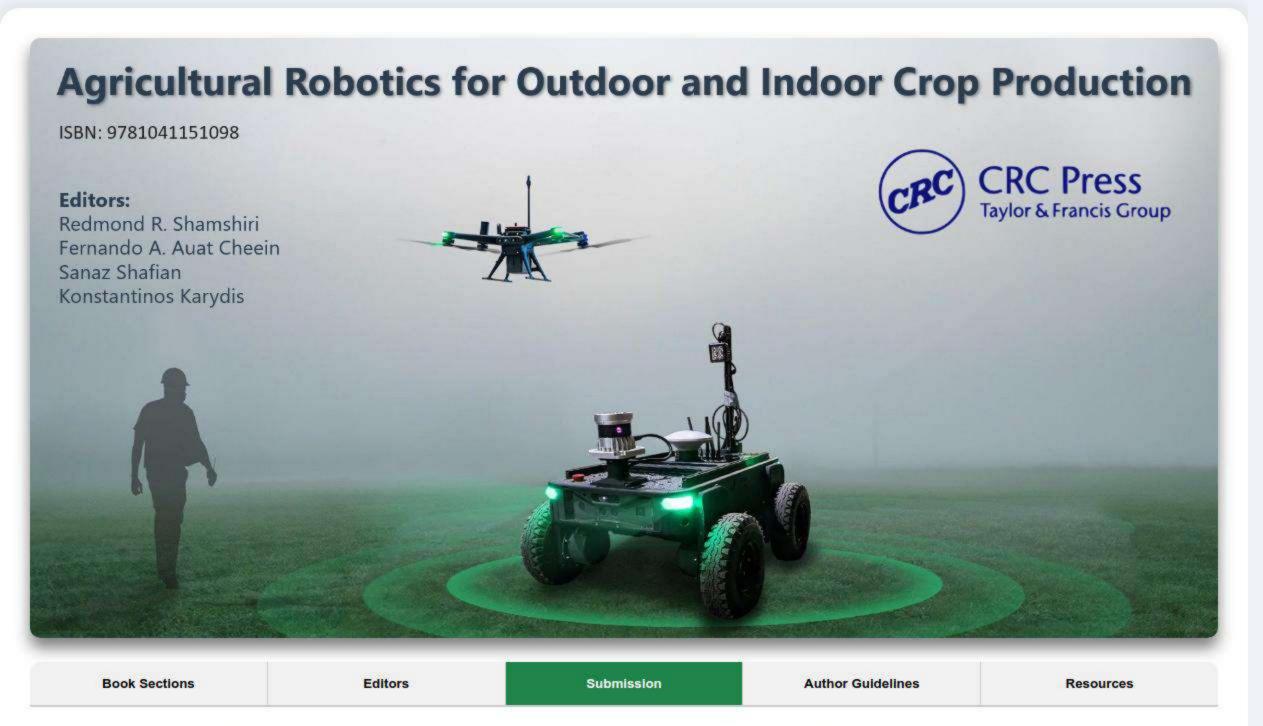
- Perception, sensing, and autonomous navigation for agricultural settings
- Control methods: PID, MPC, and H∞ robust control
- Al and deep learning for detection, planning, and decision-making
- SLAM, path planning (A*, RRT), and localization techniques
- Simulation platforms, digital twins, and virtual environments
- ROS, embedded systems, and wireless communication (LoRa, CANBUS, 5G)

Image source: Adaptive AgroTech

2 Agricultural Robotics for Outdoor Crop Production

3 Agricultural Robotics for Indoor Crop Production

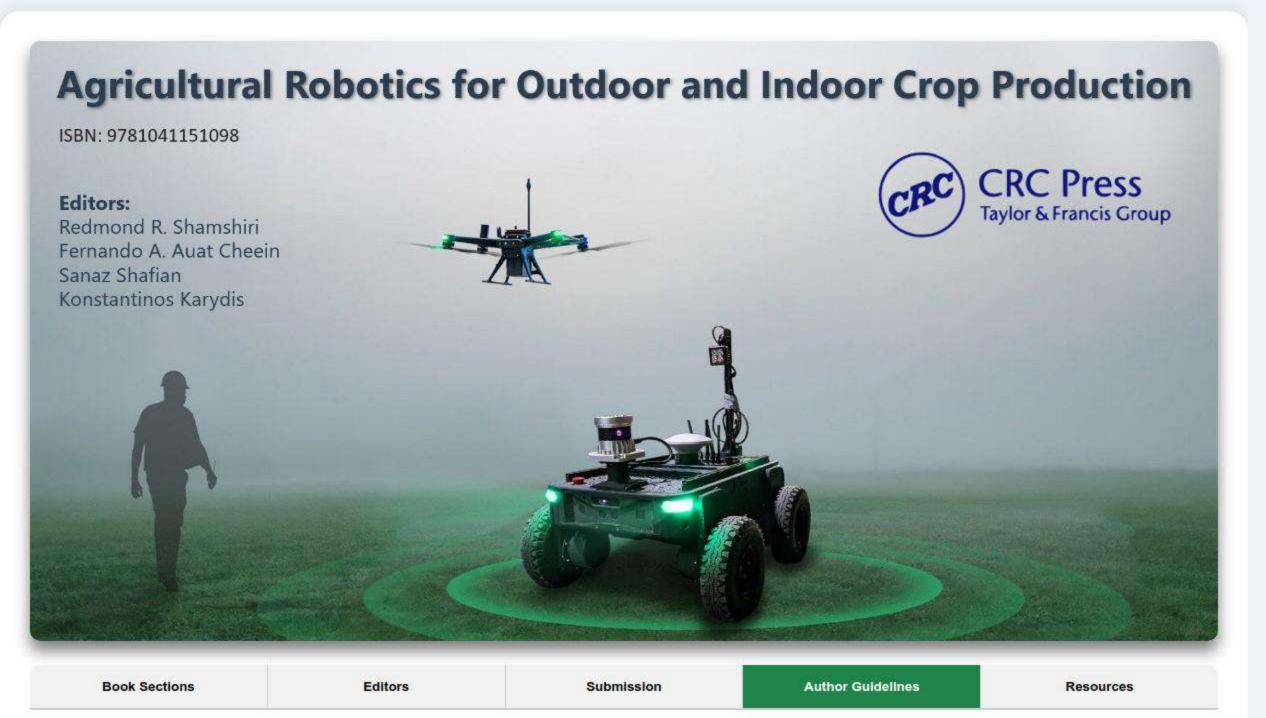
- Robust design for variable terrain, weather, and off-grid environments
- Adaptive navigation, slip control, and hybrid locomotion
- ✓ ML-based control of traction, obstacle handling, and field movement
- Autonomous tractors, smart implements, and crop-specific robots
- ✓ Precision sprayers, harvesters, and field-scouting systems
- Case applications: AgXeed, Naïo, and multi-purpose platforms


- Robotics for greenhouses, vertical farms, and plant factories
- Navigation in tight spaces and dense crop layouts
- Vision-guided harvesting, soft grippers, and robotic manipulators
- ✓ SLAM and AI for real-time crop inspection and monitoring
- Automation of pollination, spraying, sanitation, and seedling tasks
- Integration with climate systems and hydroponic/aeroponic automation

Integration, Impact, and Future Directions

- Integration with IoT, DSS, and cloud-based digital agriculture platforms
- Socio-economic impact, adoption challenges, and cost-benefit analysis
- ✓ Technology Readiness Levels (TRLs): from basic research to fully deployed systems
- Human–Robot Interaction (HRI) for collaborative farming and user-centered robotic design
- Regulatory, ethical, and labor considerations for agri-robotics
- Real-world case studies and technology deployment lessons
- Startups, policy, and public-private partnerships in scaling solutions
- ✓ Future trends: AR/VR interfaces, remote control, and robotics roadmaps

ISBN: 9781041151098


Publisher: Taylor & Francis Group

Abstract Submission

- Abstracts due: September 30, 2025
- Chapters due: December 30, 2025
- Authors are invited to submit an abstract of up to 500 words outlining the proposed chapter topic. Relevant images or figures may be included to support the concept.

Submit Your Abstract

Name:	Email:	
Affiliation:		
Paper Title:		
Keywords:		
Abstract File (PDF/DOCX):		
Choose File No file chosen		
Submit		

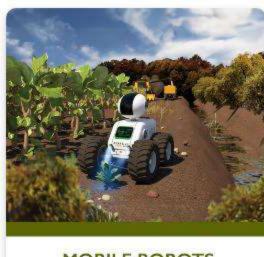
ISBN: 9781041151098

Publisher: Taylor & Francis Group

Author Guidelines

- Chapter length: 15–30 pages (excluding references)
- Each contributor must sign the Contributor Agreement form
- The publisher prefers all chapters to be submitted in Microsoft Word format
- Do not format your chapter—typesetting is handled by the publisher
- All artwork (figures, equations, tables) must be submitted as separate, labeled files
- Secure image permissions early and include all documentation with your final chapter
- Al-generated content is not permitted; authors must comply with the publisher's Al policy
- The abstract will not appear in print but will enhance online discoverability

ISBN: 9781041151098


Publisher: Taylor & Francis Group

Resources

- Call for Chapters (PDF)
- Permissions & Al Verification Form
- Overleaf LaTeX Editor
- Turnitin Plagiarism Checker
- Grammarly for Proofreading
- Citation Machine
- American Society of Agricultural and Biological Engineers (ASABE)
- IEEE Robotics and Automation Society (RAS)
- Contact: maryam@adaptiveagrotech.com

Agricultural Robotics for Outdoor and Indoor Crop Production Publisher CRC Press Taylor & Francis Group Abstract Submission 30th September, 2025 Abstract Submission 30th September, 2025 Robotics CRC Press State Indiana Indiana

Previous Book Project

MOBILE ROBOTS FOR DIGITAL FARMING

> Redmond R. Shamshiri and Ibrahim A. Hameed

Title: Mobile Robots for Digital Farming

Edited By: Redmond R. Shamshiri, Ibrahim A. Hameed

DOI: <u>10.1201/9781003306283</u> Pages: 208 | ISBN: 9781032304663

Subjects: Computer Science, Engineering & Technology, Environment & Agriculture

Available at: Amazon | Routledge | Taylor & Francis

This book provides a complete and comprehensive reference for agricultural mobile robots, covering all aspects of the design process—from sensing and perceiving to planning and acting for practical farming applications. *Mobile Robots for Digital Farming* explores topics such as Robot Operating Systems (ROS), dynamic simulation, artificial intelligence, image processing, and machine learning. It also features multiple case studies from funded projects and real-field trials. It is useful for professors, students, farmers, startups, companies, consultancy agencies, equipment suppliers, and policymakers in the agricultural domain.

- Chapter 1: Sensors, Algorithms, and Software for Autonomous Navigation of Agricultural Mobile Robots
- Chapter 2: Robot-Assisted Soil Apparent Electrical Conductivity Measurements in Orchards
- Chapter 3: Electrical Tractors for Autonomous Farming
- Chapter 4: Agricultural Robotics to Revolutionize Farming, Requirements and Challenges
- Chapter 5: Toward Optimizing Path Tracking of Agricultural Mobile Robots with Different Steering Mechanisms