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Abstract.  
Neural networks in one form or another are common precision agriculture artificial intelligence 
techniques for making predictions based on data. However, neural networks are 
computationally intensive to train and to run, and are typically “black-box” models without 
explainable output. This paper investigates an alternative artificial intelligence prediction 
technique, genetic algorithm (GA) quantitative association rule mining (QARM), which creates 
explainable output with impacts directly quantified in the existing dataset. QARM takes one or 
more data features of a dataset and restricts the value of the feature between two bounds. 
These feature(s) are then associated with a particular outcome from the data (such as frost). 
The resulting rule’s correlation can then be quantified in terms of the support (how often it is 
seen in the dataset), confidence (how often it co-occurs with the outcomes), and lift (how much 
more or less often we see this than expected). The genetic algorithm component finds the 
optimal features and value bounds to maximize the significance of the correlation. Generating 
quantitative association rules with genetic algorithms is not a new method, however, it is not 
commonly used and likely deserves more attention in the explainable AI realm. Additionally, this 
paper extends the technique by adding a sequence to each feature to analyze time data. Time 
steps were added to value bounds to determine what time range in the past was most 
significant to the correlation. This technique was compared with neural network predictors for 
multivariate time-sequence weather data in two scenarios: the open Jornada Basin LTR dataset 
for the purpose of predicting frost one day ahead, and a custom-collected dataset from Laurel 
Grove Wine Farm in Winchester, Virginia to predict frost in 5 minute intervals. The QARM GA 
technique had comparable performance to the neural network methods in the Jornada Basin 
dataset (0.803 F1 statistic score on the dataset compared to 0.847 for the neural network) while 
generating highly interpretable and computationally cheap-to-implement prediction rules. For the 
Laurel Grove Wine Farm study, both techniques were limited in overall results, but the genetic 
algorithm outperformed the neural network method (0.489 F1 score for the QARM GA method 
compared to 0.217 F1 score for the neural network). The results of these experiments indicate 
quantitative association rule mining is worth further investigation for artificial intelligence in 
precision agriculture.  
Keywords.   
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Introduction 
Artificial intelligence has been identified as an emerging technology with high potential for 
improving precision agriculture forecasts. However, while many artificial techniques are 
performant on large amounts of data, they can be 'black box' models whose underlying operation 
is difficult to explain. Increased adoption of artificial intelligence techniques for precision 
agriculture will likely need a corresponding increase in trustworthy models. 

Significance 
This study aims to compare a more conventional AI technique (Long Short Term Memory 
Network, also called an LSTM) with a less-studied but more explainable Quantitative Association 
Rule Mining Genetic Algorithm (QARM GA) technique. Both models can be used as predictors, 
with LSTM models generally boasting impressive performance where other techniques fail. 
However, the LSTM models do not generally produce highly interpretable results. Additionally, 
when data is sub optimal, model performance is often less generalizable but is difficult to catch. 
QARM GA models, on the other hand, generate highly interpretable rules that directly relate the 
data to the prediction model. This study evaluates both techniques in terms of performance and 
interpretability for use in precision agriculture site-specific frost prediction. 

Prior Work  
The prior work section of this study will mostly focus on work in quantitative association rule mining 
with genetic algorithms, as a very large body of preexisting work exists for pure microclimate 
prediction tasks. In Alvarez & Jacinto (2012), this technique was used for large database rule 
mining in place of the preexisting apriori algorithm for rule mining, and genetic algorithms were 
used in Yan, Chengqi, & Shichao (2009)  to avoid specifying a minimum support level. Alataş & 
Erhan (2006) mine both positive and negative association rules, where most algorithms only mine 
positive rules. Salleb-Aouissi et al. (2013) created QuantMiner, which is a tool for exploratory data 
analysis using these techniques. In Sinisterra-Sierra, Salvador, & Miriam (2023) genetic 
algorithms with quantitative association rule mining is used to find potential causal rules linking 
medical conditions with COVID-19. Martín et al. (2014) and Almasi & Mohammad (2015) both use 
multi-objective genetic algorithms in their mining. Li et al. (2022) uses this technique with many 
different types of data features to explore ocean dynamics. For time sequence data, Troncoso-
García et al. (2023) uses previous time steps to predict future time steps for an energy 
consumption application. Most similar to this study, Martínez-Ballesteros  et al. (2011) uses this 
technique in conjunction with a singular time sequence boundary for all rule features to predict 
ozone based on weather characteristics.  

Methods 

Quantitative Association Rules  
Rule Format 

Quantitative Association Rules are formed from an antecedent (also called a rule body) and a 
consequent (also called a rule head). They take the form outline in Equation 1. 
feature_1[bound_i,bound_j],feature_2[bound_i,bound_j]...feature_n[bound_i,bound_j]  
=>consequent[bound_i, bound_j]    (1) 
Features 1 through n are features of the data and (in tabular data) would generally be represented 
in the columns. The consequent is also a feature of the data, typically the feature of interest that 
the stakeholder would like to predict. The bounds of each feature i and j are the lower and upper 
values respectively that a feature can take in the rule. Note that i=j is possible if the stakeholder 
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is looking for features that take a discrete value (which in this paper is true for the consequent). 
Bounds i and j do not have to be the same across all the features in a rule, however. 
The above rule indicates an association between the antecedent (features 1 through n) and the 
consequent feature. A rule with multiple features in the antecedent indicates all features take the 
associated values in whatever axis of interest is being operated in together. The best way to 
illustrate this is with an example. Let's say one has a dataset of weather values and a dataset of 
frost events for a farm. You want to determine associations between weather patterns the day 
before and frost events. You might come up with a rule of this form presented in Equation 2.   
temperature[11, 30], humidity[30, 50] => frost[1, 1]  (2) 
This example rule states that an observed temperature value between 11 and 30 degrees and an 
observed humidity value between 30 and 50 percent has an association with a frost event (coded 
as "1" in this dataset) the next day.  
Rules identify associations, but it is important to determine how "good" associations rules are with 
metrics. These metrics indicate the strength and relevance of a given rule which helps determine 
the applicability of the rule to real-world problem solving. 
Rule metrics 

There are many possible metrics for quantitative association rules, but this paper will focus on 3 
of them in particular; support, confidence and lift. The support of the rule is given by Equation 3. 
support = number of items with rule/total number of items  (3) 
Support looks at the number of items/occurrences in the dataset (typically represented by rows in 
tabular data) that have all items in the rule at their associated values present divided by the total 
number of items/occurrences in the dataset. This indicates how often the whole rule (antecedent 
and consequent) is seen in the dataset at all.  
Using the previous example, if the rule had a 0.2 (20%) support value and there are 1000 items 
in the dataset, that would mean that there was an occurrence of temperature between 11 and 30 
degrees and humidity between 30 and 50% and a frost event the next day in 200 of the 1000 
cases. The maximum value for support is 1 (100% of the items in the dataset have the features 
at the given value and the associated consequent). 
The confidence of the rule is given by Equation 4.  
confidence = number of items with whole rule/number of items with just the antecedents  (4) 
Confidence differs from support in that while support looks at percentage of all dataset items with 
the whole rule, confidence looks at what percent of items with the antecedent features (with the 
associated bounds) also have the consequent. The maximum value for the confidence is also 1, 
meaning 100% of items with antecedent features also have the consequent feature.  
For the example rule, if the rule had an 80% confidence, it means of all occurrences in the dataset 
with a temperature between 11 and 30 degrees and humidity between 30 and 50%, 80% of the 
time the occurrence also had a frost event the next day.  
Lift is slightly more difficult to explain but is a measure of expectation of rule occurrence in the 
dataset. It is calculated in Equation 5.  
lift =(% of items with entire rule)/(% of items with rule antecedents) * (% of items with rule 
consequents)                 (5) 
Lift is essentially measuring how different the co-occurrence of the rule antecedents and 
consequent together is from the expected co-occurrence of these features based solely on 
chance (the denominator). A lift value very close to 1 indicates these rule values occurred about 
as often as expected, meaning they probably don't have a correlation significance outside of 
chance. Higher positive lift values indicate that the antecedents and consequent occur together 
more often than would be expected by chance. Lift values close to 0 indicate that the antecedents 
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and consequent occur together less often than expected by chance.  
For the example rule, if the rule had a lift of 3.1, it would indicate that a temperature between 11 
and 30 degrees and a humidity value between 30 and 50% occurred with a frost event the next 
day 3.1 more times than would be expected by pure chance.  
There are metrics used in quantitative association rule mining other than those listed above. 
Additionally, the number of occurrences with the antecedents and number of occurrences with 
the consequent can often be useful metrics to explore different facets of the data (for instance, 
the number of whole rule occurrences ratio of all consequent possibilities.) 
Ideally, a "good" rule is a balance of support, confidence, and lift. A rule with high support indicates 
that there were enough occurrences of the rule in the dataset to ensure this rule is not a fluke. A 
rule with high confidence indicates a strong relationship between the antecedents and the 
consequent. A rule with high lift indicates this relationship between the antecedents and the 
consequent is statistically meaningful. 
Sequence Extension of Quantitative Association Rules  

Sequence data is common in determining weather patterns. To extend quantitative association 
rule mining for sequence data, it is useful to determine when a feature in the antecedent occurred 
in addition to the bounds on its values. Therefore, to each feature in the antecedent, we also add 
bounds on its occurrence in sequence, presented in Equation 6.  
feature_1[bound_i, bound_j][seq_i, seq_j] feature_2[bound_i, bound_j][seq_i, seq_j]...  
feature_n[bound_i, bound_j][seq_i, seq_j]   => consequent}[bound_i, bound_j]  (6) 
Sequence i and j markers represent the upper and lower bounds on where the antecedent 
features at the given values can occur in the sequence before the consequent occurrence.  
Now if we have the rule if Equation 7: 
temperature[11, 30][2,3] humidity[30, 50][5,6] => frost[1, 1]  (7) 
This would indicate that the temperature was between 11 and 30 degrees between 2 and 3 
timesteps before and humidity was between 30 and 50% between 5 and 6 timesteps before the 
frost event in this association rule. 

Genetic Algorithms 
Genetic Algorithms involve sets of techniques that allow for smart searching of a solution space 
in order to optimize some problem. They are especially useful when brute force searching of a 
space is infeasible due to the high number of possible parameters and values.  
Genetic algorithms involve the following concepts:  

• Individual: This is a candidate solution of interest. The encoding of the solution is highly 
context-dependent. This is also sometimes referred to as a genome.  

• Fitness: This is the 'score' of the performance of the candidate solution, generated by a 
fitness function. How the fitness function determines the suitability of an individual solution 
is also highly context dependent and often heuristic methods are used.  

• Population: This is a collection of individuals. Populations are created initially and are 
changed via individuals through the algorithm run.  

• Mutation: Mutation is the ability of the individual to change its encoding, often on one or 
more properties.  

• Selection and crossover: This is the ability of a population to change by selecting 
individuals for the next population based on some criteria. Crossover involves mixing 
different individual encodings to generate new encodings.  

• Tournament Selection: Tournament selection chooses a random subset of individuals 
from a population. Of those individuals, the highest fitness individual is selected to 
continue to the next generation.  
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• Diversity: Diversity is the degree of difference for individual encodings in the population 
from one another.  

The genetic algorithm uses the following run sequence:  
1. A population of individuals is initialized. The individual encodings in the population may be 

initialized randomly or based on some heuristic, but individuals should usually be different 
from each other.  

2. Each individual in the population is scored on fitness based on the fitness function.  
3. Selection of individuals based on a process (like tournament selection) is conducted.  
4. A subset of the individuals have their encodings randomly mutated.  
5. The process is repeated for a set number of generations or until a desired state is reached.  

There are many hyperparameters in a genetic algorithm, similar to other artificial intelligence 
methods like neural networks. Genetic algorithms benefit from domain expertise in setting 
hyperparameters like population size, diversity needs, tournament selection size, mutation rate, 
mutation amount, and more. 

Mining Quantitative Association Rules with Genetic Algorithms 
For this study, genetic algorithms are used to mine high performance quantitative association 
rules. In this setup, individuals in the population are rules. They are initialized randomly with 
random features and random bounds on both feature values and sequence values within a set 
range. Mutation options can include adding or subtracting a feature, changing a feature's value 
bounds, or changing a feature's sequence bounds. Fitness is generated by a combination of the 
rule's associated support, confidence, and lift values. 

Experiments and Results 
In this section, two sets of experiments will be discussed. The first involves predicting next-day 
frost occurrences over the Jornada Basin dataset, reproduced from the researcher's dissertation. 
The second set of experiments involves frost prediction from weather data collected at Laurel 
Grove Wine Farm in Winchester, Virginia.   

Prior work – Jornada Basin Frost Study 
Research on genetic algorithms quantitative association rule mining for the Jornada Basin was 
conducted by the University of Idaho in summer 2023 and published in the investigating PhD 
student's dissertation (Everett, 2023). It is discussed in detail here and partially reproduced as the 
groundwork indicating the potential for technique.   
Data 

The Jornada Basin dataset involves weather data from the Jornada Basin Long Term Research 
Center in the Chihuahuan desert, New Mexico, USA (Yao et al., 2023). This dataset provides 
temperature/humidity, wind, and solar radiation data as daily summaries (min, max, average) for 
multiple years across 30 sites. Data was taken from 2013 to 2022 for the study, and since different 
sites sometimes had different reporting dates, the amount of data for each site varied. Large time 
frames with missing observations were eliminated and small time frames with missing 
observations were forward filled with data from the last valid observation. Frost events in this case 
were created based on whether or not the minimum temperature for the day had met or gone 
below 32 degrees F. Frost events were predicted on a reporting-site specific basis, and 
experiments were conducted using data only from the site or by using data from all sites together. 
Data was normalized for the LSTM models but not for the genetic algorithms, which used the 
standard deviation of the parameters to create mutations. 
Comparison LSTM Model 

Multiple LSTM models were run for the dissertation study, which in part tested various types of 
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autoencoder pre-processing. However, for the most part, the models with and without 
autoencoder processing did not have statistically different differences in performance from one 
another. The best performing model achieved an F1 statistic of 0.847. It used 30 days of input 
with one day of output, and a custom autoencoder structure where first all datastreams for all sites 
were separately encoded, then all datastream latent space output was fed as input to another 
autoencoder by location, and the subsequent location latent spaces were fed to an LSTM model. 
The LSTM model had 64 nodes followed by a dropout layer of 20% and used the sigmoid function 
as its final activation. Early stopping was allowed after 10 epochs of the 100-epoch run. The mean 
squared error was used as the loss function. Other models that used only the 64 node LSTM layer 
and dropout performed similarly. The test set was split as 20% of the whole, with the validation 
set as 20% of the remainder. The batch size of the network was 32 samples, and Adam 
optimization was used. 
QARM GA Model Setups 

This section will discuss more in detail the QARM GA setups compared to the LSTM model 
setups.  
For the genetic algorithms, there were two types of prediction models: one that tried to predict 
frost for one site by using only that site's data, and one that tried to predict frost for one site by 
using data from all sites concurrently.  
Multiple variations of each model was run, broken up into slates that shared parameters by 
alphabetical letter. Letters A, C, E, G, and M used only specific site data as input, while letters B, 
D, F, H, and N used all site data as input. Additionally, these models were run with sequence and 
non-sequence models. For non-sequence models, the algorithm tried to generate rules using data 

only the day before a potential frost event, 
while in the sequence models, the algorithm 
could use any number of historical days up 
to one day before the frost event. The 
parameters for the sequence and non-
sequence models are in Figures 1 and 2. 
 
The population size and generations related 
directly to the genetic algorithm parameters 
discussed when explaining the algorithm. 
The diversify parameter is true when the 
rules kept across population runs have 
enforced diversity of different parameters. 
The reseed parameter is true when killed 
population members are replaced from the 
best performers list rather than randomly 
reinitialized.  The range penalty reduces 
fitness if parameters in rules encompass too 
broad a range, and the sequence penalty 
works similarly for sequence rules with too 

broad a time frame. The calculations for the range and sequence penalty indexes as well as the 
fitness functions are presented in the Appendix.  

Population 
Size Generations Diversify Reseed

Fitness 
Function 
Index

Range 
Penalty 
Index

A/B
1 150 150 T T 1 0
2 150 150 T T 2 0
3 150 150 T F 1 0
4 150 150 T F 2 0

C/D
1 200 150 T F 2 0
2 200 150 T F 5 0
3 300 250 T F 2 0
4 300 250 T F 5 0

E/F
1 100 100 T F 2 0
2 150 150 T T 2 0
3 100 100 T F 5 0
4 150 150 T T 5 0

G/H
1 150 150 T F 2 1
2 150 150 T T 2 1
3 150 150 F T 2 1
4 150 150 F F 2 1

M/N
1 200 150 T F 2 1
2 200 150 T F 5 1
3 300 250 T F 2 1
4 300 250 T F 5 1

Figure 1: The Parameters for non-sequence models for 
QARM GA Jornada Basin Models. 
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The experiments and associated parameter 
sets above were run for each site 3 separate 
times. 
Results  

The results for the QARM GA models is 
presented in Figure 3 as the best F1 statistic 
across all sites for both the sequence and 
non-sequence models.  
Overall the best F1 score across the models 
was 0.803, for a non-sequence QARM GA 
model predicting next-day frost from one day 
ahead with data from all sites. This is not 
quite as good as the LSTM model, with a 
score of 0.847, but is quite close and 
generated highly explainable rules. The 
sequence runs of the model also had slightly 

more 

stable performance across sub-optimal hyperparameter 
sets compared to the sequence models. A non-sequence 
sample rule for site frost prediction is presented in Figure 
4 and for sequence in Figure 5. For the non-sequence rule, 
the C GRAV average air temperature measure was the 
best predictor of frost for the C Cali site, and in the 
sequence rule, the minimum air temperature for the P 
SMAL site was the best predictor of the frost in the M 
WELL site, 1-10 days beforehand.  
While not quite as performant as an LSTM model, the 
ability of the QARM GA to be directly understood and 
perhaps capture between-site interactions was considered 
useful for further study. For this reason, further testing took 
place for a custom collected dataset at Laurel Grove Wine 
Farm. 

Laurel Grove Wine Farm Frost Study 
Laurel Grove Wine Farm is a vineyard located in 

Winchester, Virginia, owned by research partners Dustin and Jaclyn Mommen. The planned 
vineyard encompasses 120 acres, but only one block was planned to be planted in April 2024. 
This block was divided into 4 zones based 

Figure 4: A non-sequence example rule from the 
Jornada study. Temperature in F.  Figure 5: A sequence example rule from the Jornada 

study. Temperature in F.  

Population 
Size Generations Diversify Reseed

Fitness 
Function 
Index

Range 
Penalty 
Index

Sequence 
Penalty 
Index

A/B
1 150 150 T T 1 0 2
2 150 150 T T 1 0 3
3 150 150 T T 2 0 2
4 150 150 T T 2 0 3

C/D
1 200 150 T F 2 0 3
2 200 150 T F 5 0 3
3 300 250 T F 2 0 3
4 300 250 T F 5 0 3

E/F
1 100 100 T F 2 0 3
2 150 150 T T 2 0 3
3 100 100 T F 5 0 3
4 150 150 T T 5 0 3

G/H
1 150 150 T F 2 1 3
2 150 150 T T 2 1 3
3 150 150 F T 2 1 3
4 150 150 F F 2 1 3

M/N
1 200 150 T F 2 1 3
2 200 150 T F 5 1 3
3 300 250 T F 2 1 3
4 300 250 T F 5 1 3

Figure 2: The Parameters for sequence models for QARM 
GA Jornada Basin Models. 

Run – Non 
Sequence

Param 1 
Best F1

Param 2 
Best F1

Param 3 
Best F1

Param 4 
Best F1

A 0.490 0.789 0.330 0.508
B 0.614 0.796 0.395 0.581
C 0.523 0.440 0.536 0.465
D 0.583 0.517 0.500 0.498
E 0.505 0.781 0.403 0.715
F 0.575 0.803 0.495 0.741
G 0.534 0.784 0.796 0.530
H 0.615 0.800 0.794 0.560
M 0.500 0.444 0.567 0.449
N 0.574 0.517 0.533 0.525
Run – 
Sequence
A 0.503 0.563 0.730 0.751
B 0.529 0.631 0.752 0.767
C 0.693 0.585 0.694 0.597
D 0.720 0.622 0.674 0.618
E 0.667 0.746 0.591 0.699
F 0.701 0.764 0.624 0.691
G 0.671 0.716 0.699 0.687
H 0.707 0.771 0.774 0.688
M 0.693 0.575 0.693 0.594
N 0.696 0.606 0.716 0.606

Figure 3: Results of best F1 statistic across 
sequence and non-sequence models for 

Jornada data. 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

8 

temperature/humidity sensors placed along contours for each sub-block in the planting area, and 
frost events were analyzed for each zone (alpha, bravo, charlie, and delta). Based on the number 
and length of frost events, the alpha, bravo, and charlie zones were selected for actual planting 
in April 2024. However, for the study, the delta frost events were chosen for prediction as these 
generally precede frost events in most of the other zones and can provide additional time to react. 
Frost was considered any temperature at below 29 degrees F for this vineyard. 
Data  

Laurel Grove Wine Farm uses a high-density real-time wireless sensor network across its 120 
acres of land. Data is taken from fully-featured weather rack stations and from 
temperature/humidity Bluetooth KKM K6P beacons in higher densities. However, this is a real-
world setup for sensor network that is around 2 years old; there are often data outages or sensor 
issues. This creates a very noisy dataset where there were periods of high data amounts for 
sensors followed by no data. Some weather stations have issues reporting on some of the 
sensors, additionally.  
Data was taken from 25 different weather station sensors and 17 KKM K6P temperature/humidity 
beacon sensors. All sensors are supposed to report their information every 5 minutes indefinitely, 
but due to sensor issues and/or network outages this is not always the case. The features reported 
by the weather stations include temperature, humidity, average wind speed, gust wind speed, 
wind direction, light, and uv. The features reported by the KKM K6P sensors in this study included 
temperature and humidity.  
Figure 6 displays the layout of the KKM K6P sensors and weather rack sensors across Laurel 
Grove Wine Farm. The weather rack sensors were included over a wide area, while the KKM K6P 
sensors were included over a much more limited area due to time constraints of the study.  
Data was normalized for the LSTM network but not for the QARM GA setup, which did not require 
it. For these experiments, April and March 2023 frost events were provided as the training set, 

with March 2024 frost events left as the test 
set. 
LSTM Neural Network Setup  

Figure 7 lists the parameter sets for the 
LSTM experiments. There were 71 total, but 
only those with eventually non-zero f1 scores 
are reproduced here for brevity. The model 
number refers to the type of model setup 
which is outlined in the Appendix. The 
Dataset Backfilled parameter refers to data 
interpolation for the set - most missing data 
was forward filled by the last value in the 
data, however some sensors had large 
amounts of data missing at the onset. If this 
parameter is True, the dataset was backfilled 

with the last valid 
value; if False, the 
dataset was cut to take 
out the missing initial 
data. The Features 
Shortened parameter 
refers to the number of 
features used. For 
most experiments 
(Features Shortened 
set to False), all 114 

Figure 6: Icons for the KKM K6P sensors and weather racks 
sensor positions.  

Run 
Number

Model 
Number

Datas et 
Backfilled

Features  
Shortened

Batch 
Size

Epoch
s Hrs  input

Hrs  
offs et Monitoring

36 3 F F 32 200 20 3 Recall
53 3 F T 64 100 20 3 Recall
62 3 F T 32 100 10 1 Recall
63 1 F T 64 100 10 1 Recall
64 2 F T 64 100 10 1 Recall
65 3 F T 64 100 10 1 Recall
67 2 F T 32 50 10 1 Recall
71 3 F T 32 200 10 1 Recall

Figure 7: LSTM Model parameter setups with non-zero F1 score. 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

9 

features were used, but for runs 48-71, a subset of 19 recurring features identified as related to 
frost events by the QARM GA experiments were used. The batch size parameters and epochs 
directly correspond to the neural network hyperparameters. The hours input field relates to the 
number of hours of input (in 5 minute intervals) which was given to the algorithm (20 hours = 240 
samples) and the hours offset indicates how far ahead the network predict a single frost event. 
For a sample set starting at 8:00am one day, with a 20 hour input and 3 hour offset, the prediction 
would be relevant for 7:00am the next day. The monitoring parameter refers to the feature 
monitored to load in the best performing model, either the loss of the network (which used Binary 
Cross-Entropy as the loss function) or the recall of the network.  
For the LSTM networks, both training and test sets used all frost event occurrences. This QARM 
GA algorithm only trained on the start of frost events, which is explained further in that section. 
QARM GA Neural Network Setup 

Figure 8 displays the experiment parameters for QARM GA Runs. There were 75 total runs, but 
only the 12 best are reproduced here for brevity. Unlike the LSTM models, data did not need to 
be normalized or filled, as the algorithm can handle different data intervals and missing data. The 
QARM GA models were trained with only the first frost event counted as a true frost event, to 
preclude the possibility of the algorithm correlating the reduction in temperature alone with a frost 
event, which would be possible for the sustained frost events. The test set included all frost 
events, however, to get a better reading on the model's predictive power.  
The parameters for the QARM GA that were modulated include the mutation rate (percent of time 
the rule was chosen for mutation), the mutation amount (as a percent of the standard deviation of 
the chosen rule parameter), the initial rule limit (the maximum number of parameters that can be 
initialized for a rule), the Add Subtract and Change Percents, which must sum to 100 and indicate 
the percentage of the time a parameter is added/subtracted or the bounds are changed in a 
mutation event, the maximum mutation tries for validness before a mutation operation is 
abandoned, the index of the fitness function used (see Appendix for calculation), the number of 
top rules kept across generations, the number of generations to run, the tournament selection 
size, the limit of the sequence backward for each parameter, (in 5 minute intervals) and the 
sequence offset (same as corresponding LSTM offset, in 5 minute intervals).  
All QARM GA models are modeled primarily on the F1 statistic, though precision and recall are 
also tracked. The number of ultimate rules tracked correspond to the number of top rules, so that 
parameter ultimately controls how many "sub-models" each run generates. 

Experiment
Mutation 

Rate
Mutation 
Amount

Initial 
Rule 
Limit

Add 
/Subtract 
Percent

Change 
Percent

Max 
Mutation 

Tries

Fitness 
Function 

Index
Top 

Rules Generations
Tournament 

Size
Sequence 

Limit
Sequence 

Offset
37 50 100 4 30 70 5 12 20 50 4 120 13
51 50 100 4 30 70 5 10 20 50 4 240 36
54 50 100 4 30 70 5 13 20 50 4 240 36
55 50 100 4 30 70 5 10 20 100 4 240 36
63 50 100 4 30 70 5 17 20 50 4 240 36
64 50 100 4 30 70 5 18 20 50 4 240 36
66 50 100 4 30 70 5 18 20 25 4 240 36
67 50 100 4 30 70 5 17 20 100 4 240 36
72 50 100 6 30 70 5 18 20 50 4 240 36
77 50 100 4 30 70 5 18 20 50 4 240 36
88 50 100 4 30 70 5 17 40 50 4 240 36
89 50 100 4 30 70 5 18 40 50 4 240 36

Figure 8: Parameter setups for 12 best QARM GA Model runs.  
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Results  

The results for the best LSTM models are displayed in Figure 9 and for the best QARM GA models 
in Figure 10. For the QARM GA models, the best rule based on the F1 statistic has its metrics 

displayed.  
It can be seen first of all that neither model performed 
very well, with the highest F1 statistic across both 
models reaching only 0.489. There are likely several 
reasons for this. To begin, the model is predicting frost 
in 5 minute increments, which is very high fidelity, and 

lends 
itself to 

many 
false 

positives 
in the 
case of 

the QARM GA models. Of more importance, perhaps, 
is the ability of the model to give decent warning time 
before the start of a given frost event, but this is 
difficult to evaluate directly, and would be a good topic 
for future work. The length of the frost event was also 
important, and particularly difficult to predict for these 
models. These experiments also only had two months 
of training data (albeit high resolution data) and one 
month of test data. In addition, this was a custom 
collected, very noisy dataset with plenty of periodic data outages and uneven distributions of 
readings across sensors.  
Ultimately, the LSTM models performed very poorly on this task. The highest F1 statistic occurred 
was only 0.217, on a model using 10 hours of input with a 1 hour offset. This model was able to 
predict only 45% of the frost events. The overwhelming majority of the models did not predict any 
true frost events at all.  
In contrast, most of the QARM GA models had at least one rule with some predictive power. The 
best F1 statistic occurred in run 51, at 0.489 (recall of 84.3%). Another 11 rules had an F1 score 
above 0.28.  
While the F1 scores are somewhat unimpressive for both models, the explainability of the QARM 
GA rules points to some interesting potential insights about the way land features and weather 
might interact. The best-scoring rule for the QARM GA function indicated that in a particular 
moment in time, frost is predicted if the temperature on one particular KKM K6P sensor was 
between 35.4 and 28.4 degrees F at any point  between 65 and 320 minute prior. While only a 
34.5% precise rule, it predicted 84.3% of the frost events, and as can be seen in the graph in 
Figure 11, was able to predict the frost ahead of time. This could indicate that in most cases this 
sensor gives about an hour heads-up with temperature drops that lead to impactful freezes. Figure 
12 displays the location of the temperature sensor, which is adjacent to the planted blocks.  

Run 
Number

Model 
Number Precis ion Recall F1 Score

36 3 0.313 0.120 0.173
53 3 0.024 0.013 0.017
62 3 0.056 0.771 0.105
63 1 0.142 0.452 0.217
64 2 0.031 0.061 0.041
65 3 0.036 0.074 0.049
67 2 0.017 0.168 0.031
71 3 0.044 0.082 0.057

Figure 9: Results for Laurel Grove LSTM models.  

Experiment Precis ion Recall F1
Index 
Bes t

37 0.345 0.843 0.489 5
51 0.321 0.481 0.386 5
54 0.354 0.258 0.298 17
55 0.366 0.258 0.303 13
63 0.213 0.420 0.283 9
64 0.251 0.420 0.314 13
66 0.472 0.226 0.306 9
67 0.530 0.258 0.347 10
72 0.257 0.415 0.318 3
77 0.508 0.258 0.342 8
88 0.196 0.508 0.283 14
89 0.564 0.258 is 17

Figure 10: Results for Laurel Grove QARM GA 
models.  
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Another rule stated that a frost event occurs if in the 
preceding 275 - 1205 minutes, the wind direction on one of 
the weather stations (weather rack 11) was either non-
existent (0 degrees) or northeast (0.1-78.7 degrees). This 
rule only has a recall of 48.1% and an F1 of 38.6%, but is 
one of several rules that references wind properties of this 
particular sensor and their relation to frost events. This is an 
interesting result, as this sensor is considerably further away 
from the planted area Further work should explore whether 
there are environmentally sound reasons for this weather 
relation pattern between these micro-climates. 
 
 

Limitations of the Study 
This study was run with very limited data over a small area with a limited set of parameters. There 
might be considerably better model hyperparameters for both the LSTM models and the QARM 
GA models that would change the results of the study. Some of the sensors used in this study 
can have noisy readings and not all weather events may be accurately reflected in the dataset. 
An LSTM model also might not be the best neural network based time sequence model; but a 
transformer model (which may have performed better) was not selected due to data and time 
constraints. 

Future Work  
For future iterations of this study, data for more sensors will be incorporated for more months over 
a longer time span. Additionally, in the future it would be good to modify the genetic algorithm to 
make combinations of rules outside a logical "AND" operation, to include "OR" situations or 
possibly ensemble methods with rule voting weights. When the vineyard is more mature, it would 
be useful to understand exactly how these weather events impact the vines. 

Figure 11: True vs. Predicted Frost evens for Laurel Grove Wine Farm based on rule predictor with best F1.  

Figure 12: Location of sensor in best 
performing QARM GA rule (opaque).  
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Conclusion 
Early experiments suggest that the QARM GA method may be a good explainable alternative 
candidate to conventional neural network methods. In the Jornada dataset, these algorithms were 
able to provide simple rules with nearly the same F1 score as the much larger neural network 
models. In the custom collected dataset, while neither method was particularly performant, the 
QARM GA method produced better prediction results than the LSTM model. In both datasets, the 
QARM GA model had an additional advantage of providing indicators of land and weather 
interactions that may be useful to the farmer or grower in understanding land interactions aside 
from pure predictive performance. 

Acknowledgments 
The researchers would like to thank Dustin and Jaclyn Mommen of Laurel Grove Wine Farm for 
being part of the research team and allowing the University of Idaho to work with their vineyard 
data to explore frost interactions. The author would also like to thank Dr. John Shovic for research 
mentoring, and the SCARECRO team for data assistance, including Garrett Wells, Lacey Hunt, 
James Lasso, Walter Neils, Jordan Reed, and Zach Preston, for their work on the project over 
the last 2 and a half years.  

References 
Alataş, Bilal, and Erhan Akin. "An efficient genetic algorithm for automated mining of both positive 
and negative quantitative association rules." Soft Computing 10 (2006): 230-237. 
Almasi, Mehrdad, and Mohammad Saniee Abadeh. "Rare-PEARs: A new multi objective 
evolutionary algorithm to mine rare and non-redundant quantitative association rules." 
Knowledge-Based Systems 89 (2015): 366-384. 
Alvarez, Victoria Pachon, and Jacinto Mata Vazquez. "An evolutionary algorithm to discover 
quantitative association rules from huge databases without the need for an a priori discretization." 
Expert Systems with Applications 39.1 (2012): 585-593. 
Christou, Ioannis T., et al. "Predictive and explainable machine learning for industrial internet of 
things applications." 2020 16th international conference on distributed computing in sensor 
systems (DCOSS). IEEE, 2020. 
Everett, Mary L. Exploration of Artificial Intelligence Techniques for Model Usability With 
Multivariate Time Sequence Data. Diss. University of Idaho, 2023. 
Li, Lianwei, et al. "Posdms: A mining system for oceanic dynamics with time series of raster-
formatted datasets." Remote Sensing 14.13 (2022): 2991. 
Martín, D., et al. "QAR-CIP-NSGA-II: A new multi-objective evolutionary algorithm to mine 
quantitative association rules." Information Sciences 258 (2014): 1-28. 
Martínez-Ballesteros, María, et al. "An evolutionary algorithm to discover quantitative association 
rules in multidimensional time series." Soft Computing 15 (2011): 2065-2084. 
Salleb-Aouissi, Ansaf, et al. "Quantminer for mining quantitative association rules." Journal of 
Machine Learning Research 14 (2013): 3153-3157. 
Sinisterra-Sierra, Santiago, Salvador Godoy-Calderón, and Miriam Pescador-Rojas. "COVID-19 
data analysis with a multi-objective evolutionary algorithm for causal association rule mining." 
Mathematical and Computational Applications 28.1 (2023): 12. 
Troncoso-García, A. R., et al. "A new approach based on association rules to add explainability 
to time series forecasting models." Information Fusion 94 (2023): 169-180. 
Yan, Xiaowei, Chengqi Zhang, and Shichao Zhang. "Genetic algorithm-based strategy for 
identifying association rules without specifying actual minimum support." Expert Systems with 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

13 

Applications 36.2 (2009): 3066-3076. 
Yao, Jin, et al. "Gap-filled daily precipitation at the 15 long-term NPP sites at Jornada Basin LTER, 
1980-ongoing." (2023). 
 

Appendix 

Equations for Jornada QARM GA Models 
The sequence penalty equations for the Jornada QARM GA models are below.  
Index 2: fitness = fitness – (1 – 0.5*amplitude_of_sequence) + 0.8*(fulfillment_early)  (8) 
Index 3: fitness = fitness – (1 – 0.5*amplitude_of_sequence) + 0.8*(fulfillment_late)   (9) 
The amplitude_of_sequence parameter refers to the length of the sequence divided by the total 
possible length, averaged across the rule parameters. The fulfillment_early parameter is the % 
backward the earliest bound occurs in the total sequence limit, while the fulfillment_late is the % 
backward of the latest bound.  
The range penalty equations for the Jornada QARM GA models are below.  
Index 0: fitness = fitness – 1*(0.1*amplitude_bound)  (10) 
Index 1: fitness = fitness – 0.2(*0.1*amplitude_bound)  (11) 
The amplitude_bound parameter is the average bound range out of the total possible range 
across the rule features.  
The fitness function equations for the Jornada QARM GA models are below.  
Index 1: fitness = (2*support)*(num_whole_rule/num_consequent)*confidence  (12) 
Index 2: fitness = 5*support +0.5*confidence    (13) 
Index 3: fitness = 5*support + 0.5*confidence +0.1*lift  (14) 

Model Setups for Laurel Grove Wine Farm LSTM Models 
Model 1: 128 node LSTM layer, 20% dropout layer, 96 node LSTM layer, 20% dropout layer, 64 
node LSTM layer, 20% dropout layer, 64 node Dense layer with relu final activation.  
Model 2: 64 node LSTM layer, 20% dropout layer, 48 node LSTM layer, 20% dropout layer, 32 
node LSTM layer, 20% dropout layer, 32 node Dense layer with relu final activation.  
Model 3: 16 node LSTM layer, 20% dropout layer, 12 node LSTM layer, 20% dropout layer, 8 
node LSTM layer, 20% dropout layer, 8 node Dense layer with relu final activation. 

Fitness Function Equations for Laurel Grove Wine Farm QARM GA Models 
Index 10: fitness = (2*support)+(num_whole_rule/num_consequent +(3*confidence)*(1-lift)  (15) 
Index 12: support+5*(num_whole_rule/num_consequent +(5*confidence)+(0.1*lift)  (16) 
Index 13: support+3*(num_whole_rule/num_consequent +(5*confidence)  (17) 
Index 17: support+(num_whole_rule/num_consequent +(8*confidence)*(0.1*lift)  (18) 
Index 18: support+2*(num_whole_rule/num_consequent +(10*confidence)*(0.1*lift)  (19) 


