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Abstract.  
Leaf chlorophyll content (LCC) is a significant indicator of photosynthetic performance and 
development status of plants. Remote sensing of crop chlorophyll often serves as a basic tool of 
crop nitrogen fertilization recommendation. The objective of the study is to explore how remote 
sensing can be utilized to more effectively monitor variations in crop growth, such as Leaf 
Chlorophyll Content (LCC). In this study, we investigated the performance of Sentinel-2 
reflectance in (1) detecting the responses of wheat growth to different nitrogen conditions, and 
(2) estimating LCC to support nitrogen recommendation. LCC measurements were conducted 
over 2021 and 2022 at four sites under four nitrogen treatments (N1: 0 kg/ha, N2: 120 kg/ha, N3: 
150 kg/ha, N4: 180 kg/ha). Thirty-eight vegetation indices (VIs) were selected and categorized 
into LAI-related and CHL-related index groups. They were calculated from Sentinel-2 spectral 
bands by Google Earth Engine (GEE). Univariate regression (UR) and Random Forest (RF) 
regression models were calibrated and validated, respectively on 70% and 30% of the entire 
dataset, for their capabilities in estimating LCC. Results showed that LCC was significantly 
different under four nitrogen treatments during the reproductive development stage (heading, 
flowering, and ripening), also across four sites. Under nitrogen deficiency, LCC was significantly 
lower than other nitrogen treatments. Based on UR models, VIs showed a large difference in 
explaining the variability in LCC with generally poor performance (R2 = 0.01-0.37), but most of VIs 
performed well in explaining LAI (R2 = 0.01-0.67). Both individual reflectance and VIS RF models 
successfully predicted LCC in the calibration and validation datasets (R2 greater than 0.95 and 
0.59). The results indicate that LAI-related indices are indeed more sensitive to LAI, while CHL-
related indices are more sensitive to CHL. However, few LAI-related VIs were also found to be 
related to LCC and showed significant differences between N treatments. NIR-related VIs are 
most strongly correlated with LCC, followed by red and red-edge bands. For predicting LCC, using 
B8 instead of B8A for NIR-related indices and B6 instead of B7 and B5 for red-edge-related 
indices may yield better results. Among soil background correction indices, SAVI exhibits stronger 
correlations with both LAI and CHL compared to OSAVI and GOSAVI. Finally, this research 
achieved the mapping of CHL distribution for 2021 and 2022, which can provide fertilizer 
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recommendations to farmers to some extent. 
Keywords.   
chlorophyll spectral indices, precision nutrient management, nitrogen deficiency, precision 
farming, satellite remote sensing. 

Introduction 
Chlorophylls play a significant role in photosynthetic process, including light harvesting and 
energy conversion (Zarco-Tejada et al., 2002). Nitrogen (N) is the main ingredient of chlorophyll, 
and there is a close relationship between leaf chlorophyll content (LCC) and leaf nitrogen content 
(LNC). Crops generally absorb nitrogen from soil, as soil N supply is often limited, nitrogen 
fertilizer management should be adjusted to crop N requirements to optimize plant production 
(Nathalie et al., 2011; Muñoz-Huerta et al., 2013). Thus, accurate estimation of chlorophyll 
variations is important to help crop managers efficiently apply agrochemicals and fertilizers (Yu 
et al., 2014). 
The traditional acquirement of leaf chlorophyll content data was usually conducted in the 
laboratory, which is destructive, time and labor-consuming (Hartmut & Alan, 1983). For portable 
and non-destructive measurement, few chlorophyll meters were developed, like SPAD-502 
(Markwell et al., 1995; Zhang et al., 2022) and Dualex-4 (Cerovic et al., 2012). The essence of 
the chlorophyll meter is a measure of the greenness of leaves. To be representative, it required 
taking more readings in each region of interest (Dong et al., 2019). Moreover, the estimates of 
chlorophyll for the entire growing season are also less accurate. Remote sensing provides a 
practical approach to obtaining LCC across large scale. The red-edge bands, in particular, has a 
strong ability to predict chlorophyll (Clevers et al., 2001; Dash & Curran, 2004). Due to the high 
revisit frequency, Sentinel-2 can provide high temporal, spatial, and spectral resolution multi-
spectral imageries. Especially it includes 3 red-edge bands (705 nm, 740 nm, and 783 nm) which 
are quite important for chlorophyll retrieval (Boochds et al., 1990; Drusch et al., 2012). 
Nevertheless, which red-edge band correlated more with chlorophyll is not clear yet. 
Satellite vegetative indices (VIs) have been developed and well used to relate canopy reflectance 
with various crop parameters, like biomass, chlorophyll (CHL), and leaf area index (LAI) (Hatfield 
& Prueger, 2010; Hatfield et al., 2019). The calculation of VIs is simple and can be quickly used 
to estimate parameters in a wide range. Different indices exhibit varying performance under 
different conditions, as crop types, growth stages, nitrogen fertilizer treatments. The reflectance 
of plant canopy is a mixed pixel, which is comprehensively affected by the reflectance of 
underlying surfaces such as soil, and the structure of plant canopy (Huete et al., 2002; Hatfield et 
al., 2008). LAI is commonly used as one of the indicators to quantify vegetation canopy structure 
(Liang, 2004). The red-edge spectrum is influenced by both chlorophyll pigments and LAI, making 
it difficult to completely define and distinguish which indices are chlorophyll-related and which are 
LAI-related (Filella & Penuelas, 1994; Lamb et al., 2002). Chlorophyll related VIs are often 
dependent on the phenology, and they are also affected by various sources of variations other 
than chlorophyll (Cui et al., 2019). LAI related VIs are often highly connected to the above ground 
biomass, like NDVI (Anatoly et al., 2003). Therefore, understanding the capacity of chlorophyll-
related indices and LAI-related indices to predict LCC and LAI, as well as the sensitivity of 
chlorophyll-related indices to LAI, is critical for selecting or developing indices that can improve 
the accuracy of chlorophyll predictions.  
LCC can be used as an indicator to monitor differences in crop growth. The study's objectives 
were (1) to compare whether the current indices can be used to monitor wheat LCC levels under 
different conditions; (2) to evaluate how Sentinel-2 reflectance can monitor LCC more effectively; 
(3) to propose a strategy for estimating LCC of winter wheat using remotely sensed data; and (4) 
to map the LCC distribution to guide fertilization for farmers. 
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Materials and Methods 

Field Measurements 
The overall workflow of this study is shown in Figure 1. The field experiment was conducted at 
the Technical University of Munich, Germany (Freising, 50.7299°N, 7.0754°E). The soil is loam. 
The annual precipitation and average temperature are 505 mm and 7.6°C, respectively. The field 
samplings were conducted from 2021 to 2022 at four locations: Haunerfeld, Thalhausen, Schafhof 
and Grafenfeld. All of the fields were planted winter wheat and were applied 4 Nitrogen treatments 
in the spring, which were 0 kg N/ha (N1), 120 kg N/ha (N2), 150 kg N/ha (N3), and 180 kg N/ha 
(N4) in total. 

 
Fig 1. Overall workflow of this study. 

 
Fig 2. Locations of the study sites across southern Germany. The colorful dots in the left figure respectively show the four 

experimental sites in Freising, and the yellow dots in the right figures denote the field sampling sites. 

Leaf samples and LAI data were taken from April to July in each year. The LAI data were collected 
by LAI-2000 Plant Canopy Analyzer. In this experiment, every field has 16 plots with a size of 900 
m2 (30 × 30 m). For every plot, 3 subsamples were evenly set and the GPS coordinates were 
recorded. During the entire growing season, sampling was conducted several times and the 
growth stages were recorded (Table 1). Three leaves and three times LAI were collected around 
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each spot for LCC measurement. The average of the three subsamples was taken as the final 
LCC of each plot. 
Table 1. Fields, working years and dates, growth stage and number of sample points (n, 3 subsamples were averaged as 1 

observation, i.e., sample point) of the study. 
Year Field Sampling date Growth Stage n 
2021 Haunerfeld 15.06.2021 Flowering 16 

Haunerfeld 22.06.2021 End of Flowering 16 
Haunerfeld 12.07.2021 End of Fruiting 16 
Thalhausen 14.06.2021 Flowering 16 
Thalhausen 28.06.2021 Beginning of Fruiting 16 
Thalhausen 21.07.2021 Ripening 16 

2022 Schafhof 03.06.2022 End of Heading 16 
Grafenfeld 28.04.2022 Stem Elongation (SE) 16 
Grafenfeld 02.06.2022 End of Heading 16 
Grafenfeld 30.06.2022 Fruiting 16 

Leaf Sampling and Chlorophyll Determination 
The three leaf samples of each sampling site were collected and immediately frozen. The total 
chlorophyll content of each sample was extracted from 50 mg lyophilized material by 5 ml 
methanol, which was then filled up to 25 ml. After extraction, the absorbance of the extracts was 
measured with a UV-VIS spectrophotometer and the LCC was finally determined. 

Remote Sensing Data 
Sentinel-2A (S2A) images with 10 m spatial resolution obtained over the sites of interest in 2021 
and 2022 were calculated to vegetation indices directly during the growing season from Google 
Earth Engine (GEE) (Google, 2002). The characteristics of the spectral bands (wavelength and 
bandwidth) are described on the GEE website. To avoid discrepancies between field 
measurements and radiometric information, the time difference between imaging and sampling 
was tried to minimize (Table 2). 

Table 2. Comparison between sampling dates and S2A imaging dates 
Year Field Sampling date S2A imaging dates 
2021 Haunerfeld 15.06.2021 15.06.2021 

Haunerfeld 22.06.2021 27.06.2021 
Haunerfeld 12.07.2021 12.07.2021 
Thalhausen 14.06.2021 15.06.2021 
Thalhausen 28.06.2021 27.06.2021 
Thalhausen 21.07.2021 20.07.2021 

2022 Schafhof 03.06.2022 05.06.2022 
Grafenfeld 28.04.2022 03.05.2022 
Grafenfeld 02.06.2022 05.06.2022 
Grafenfeld 30.06.2022 30.06.2022 

S2A Based Vegetation Indices (VIs) 
Vegetation indices (VIs) have been related to various parameters and well used for vegetation 
monitoring. Among the parameters, chlorophyll content and LAI are highly connected to the 
estimation of leaf chlorophyll content. Thus, this research selected 38 vegetation indices and 
separated them into 2 groups: CHL-related and LAI-related indices (Table 3).  

Table 3. Vegetation indices (VIs) used in the study. B2, B3, and B4 are blue, green, and red; B5, B6 and B7 are vegetation 
red-edge bands 1, 2 and 3, respectively. Both B8 and B8A are near infrared bands. 

Group Index Name Formula 
CHL MCARI1 Modified chlorophyll absorption reflectance 

index 1 
((B5-B4)-0.2*(B5-B3))*(B5/B4) (Daughtry et al., 2002) 

MCARI2 Modified chlorophyll absorption reflectance 
index 2 ((B6-B4)-0.2*(B6-B3))*(B6/B4) (Daughtry et al., 2002) 

MCARI3 Modified chlorophyll absorption reflectance 
index 3 ((B7-B4)-0.2*(B7-B3))*(B7/B4) (Daughtry et al., 2002) 

CIre1 Red-edge 1 chlorophyll index B8/B5-1 (Gitelson et al., 2005) 
CIre2 Red-edge 2 chlorophyll index B8/B6-1 (Gitelson et al., 2005) 
CIre3 Red-edge 3 chlorophyll index B8/B7-1 (Gitelson et al., 2005) 

CIgreen Green chlorophyll index B7/B3-1(Hatfield & Prueger, 2005) 
MND Modified normalized difference (B6-B2)/(B6+B5-2*B2) (Anatoly et al., 2003) 

Datt99 Datt99 (B8-B5)/(B8-B4) (Sims & Gamo, 2002) 
CSI Chlorophyll sensitive index 2.5*[(B8-B5)/(B8+B5)]*(B2/B5) (Zhang et al., 2022) 
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MTCI MERIS terrestrial chlorophyll index (B6-B5)/(B5-B4) (Dash & Curran, 2004)  
PSRI Plant senescence reflectance index (B4-B2)/B8 (Anatoly et al., 2003) 
IRECI Inverted red-edge chlorophyll index (B8-B4)/(B5/B6) (Frampton et al., 2022) 

Macc01 Maccioni 2001 (B7-B5)/(B7-B4) (Maccioni et al., 2022) 
NPCI Normalized pigment chlorophyll ratio index (B4-B2)/(B4+B2) (Hatfield & Prueger, 2005) 
TCI Terrestrial chlorophyll index (B6-B5)/(B5−B4) (Dash & Curran, 2004) 

TVI Triangular vegetation index 0.5*(120*(B8-B3)-200*(B4-B3)) (Broge  & leblanc, 
2001) 

TCARI Transformed chlorophyll absorption in 
reflectance index 

3*((B5-B4)-0.2*(B5-B3)*(B5/B4)) (Haboudane et al., 
2002) 

CVI Chlorophyll vegetation index (B8/B3)*(B4/B3) (Vincini, 2002) 
SR3 Simple ratio 3 B7/B6 (Gitelson et al., 1994) 
SR4 Simple ratio 4 B7/B5 (Gitelson et al., 1994) 

MCARI/OSAVI MCARI/OSAVI MCARI/OSAVI (Wu et al., 2008) 
TCARI/MSAVI TCARI/MSAVI TCARI/MSAVI (Haboudane et al., 2002) 
TCARI/OSAVI TCARI/OSAVI TCARI/OSAVI (Haboudane et al., 2002) 

LAI MCARI4 Modified chlorophyll absorption reflectance 
index 4 

1.2*[2.5*(B8-B4)-1.3*(B8-B3)] (Haboudane et al., 
2004) 

NDRE1 Red-edge 1 normalized difference 
vegetation index (B6-B5)/(B6+B5) (Hatfield & Prueger, 2005) 

NDRE2 Red-edge 2 normalized difference 
vegetation index (B7-B5)/(B7+B5) (Hatfield & Prueger, 2005) 

SR1 Simple ratio 1 B6/B4 (Gitelson et al., 1994) 
SR2 Simple ratio 2 B8/B4  (Gitelson et al., 1994) 

MSAVI Modified soil adjusted vegetation index 0.5*{(2*B8+1)-!(2*B8+1)2-8*(B8-B4)} (Qi et al., 1994) 
DVI Difference vegetation index B8-B4 (Tucker, 1979) 

SAVI Soil-adjusted vegetation index (1+0.7)*(B8-B4)/(B8+B4+0.7) (Huete, 1988) 
OSAVI Optimized soil adjusted vegetation index (1+0.16)*(B8-B4)/(B8+B4+0.16) (Rondeaux, 1996) 

GOSAVI Green optimized soil adjusted vegetation 
index (1+0.16)*(B8-B3)/(B8+B3+0.16) (Rondeaux, 1996) 

GNDVI Green normalized difference vegetation 
index (B8-B3)/(B8+B3) (Gitelson, 1996) 

WDRVI Wide dynamic range vegetation index (0.3*B8-B4)/(0.3*B8+B4) (Gitelson, 2004) 
REIP Red edge inflection point 705+35*((B4+B7)/2-B5)/(B6-B5) (Clevers, 2013) 

CCCI Canopy chlorophyll content index ((B7-B5)/(B7+B5)]/[(B7-B4)/(B7+B4)) (Barnes et al., 
2000) 

Regression Models 
Few regression models were tested to estimate LCC in this research: VI-based univariate models 
and Sentinel-2 based multivariate Random Forest (RF) models. The VIs were correlated with 
LCC by several UR models: linear, exponential, power, polynomial and logarithmic. Models were 
built using the ‘lm’ function in R environment. Table 4 showed the best performance and R2 of 
different indices. 
For RF models, one is using reflectance bands as input, and the other is using vegetation indices 
as input. Models were built in Python platform. We used a calibration and validation strategy to 
train the RF models. The dataset was randomly sampled for calibration (70%) and validation 
(30%). Since the size of the analysis dataset was limited (Table 1), the models were tested by 
splitting data 200 times for cross-validation []. The “RandomForestRegressor” package was used 
to build the models and a “n_estimators” was set to 200 which means the numbers of decision 
trees. The importance of predictor variables can be calculated to show which variables performed 
better.  
The coefficient of determination (R2) and root mean square error (RMSE) were using to assess 
the performances of the models, here are the equations: 

 R2 =1- ∑ (Obsi-Modi)n
i=1

2

∑ (Obsi-Obs)n
i=1

2  (1) 

 RMSE =!∑ (Obsi-Modi)n
i=1

2

n
 (2) 

where Obsi and Modi are observed and modeled values, respectively, Obs and Mod are mean 
observed and modeled values, and n is the total number of samples. 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

6 

Results and Discussion 

Leaf Chlorophyll Content Distribution 
In 2021, the average LCC for the entire growing season in Haunerfeld and Thalhausen was 41.89 
and 20.51 µg/cm2 respectively. In 2022, Grafenfeld had an average LCC of 38.91 µg/cm2. 
Samples were collected only during the Heading stage in Schafhof in 2022, with an average LCC 
of 37.67 µg/cm2. Due to substantial disparities in sampling times and locations across different 
sites and years, there are notable variations in LCC. LCC distribution varies significantly among 
different growing seasons and N treatments. However, with the exception of the stem elongation 
and ripening stages, LCC shows a significant increase with rising nitrogen application during the 
reproductive development stage (heading, flowering, and ripening). In early stem elongation 
stage, where nitrogen fertilizer has yet to affect the vegetation, the differences in LCC between N 
groups are not discernible. In the later ripening stage, LCC diminishes due to aging, thus making 
it challenging to assess. The LCC content of the N0 group, without any nitrogen application, 
notably lower from that of the other groups in reproductive stages, especially in flowering and 
fruiting. 

 
Fig 3. Leaf chlorophyll content distribution across different locations, Nitrogen treatments, and growing seasons. 

Univariate regressions (UR) 
The results of UR between LCC and VIS are shown in Table 4. Generally, the fits between VIs 
and LCC differed from moderate to poor depending on the VI. None of the R2 values exceeded 
0.375. Due to the models were using all samples, the results are not fits well. CIre2 and SR3 has 
the best performance with R2 values in 0.375 and 0.353 using linear and polynomial functions, 
respectively. Among these VIs, NIR-related VIs had stronger correlations with LCC compared to 
others, also a little correlated with red and red-edge bands. SAVI has better performance than 
OSAVI and GOSAVI on LCC estimation. Among the top ten VIs, CHL-related indices work better 
than LAI-related indices. 

Table 4. Results of univariate regressions between LCC and VIS. The sequence of VIs is sorted by the R2 values with the 
order from largest to lowest values. The best performance model were also listed. 

VIs Model R2 RMSE VIs Model R2 RMSE 
CIre2 linear 0.375  0.081  MCARI/OSAVI exponential 0.181  0.435  
SR3 polynomial 0.353  0.057  Datt99 polynomial 0.165  0.044  
DVI power 0.288  0.052  MND polynomial 0.156  0.050  

SAVI power 0.287  0.063  CIre3 polynomial 0.152  0.049  
MSAVI power 0.284  0.074  GNDVI exponential 0.133  0.102  

TVI power 0.274  3.412  WDRVI linear 0.132  0.170  
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MCARI4 power 0.265  0.087  SR2 exponential 0.132  1.514  
IRECI power 0.262  0.153  TCARI/OSAVI polynomial 0.131  0.061  
CIre1 exponential 0.233  0.493  NDRE1 polynomial 0.128  0.065  
MTCI polynomial 0.215  1.213  MCARI2 power 0.123  0.209  

OSAVI exponential 0.213  0.086  CVI linear 0.106  0.835  
GOSAVI exponential 0.210  0.077  CIgreen polynomial 0.105  0.998  

PSRI logarithmic 0.209  0.044  TCARI polynomial 0.104  0.025  
MCARI3 exponential 0.205  0.374  Macc01 polynomial 0.091  0.049  

SR4 polynomial 0.205  0.443  NPCI logarithmic 0.085  0.087  
NDRE2 polynomial 0.201  0.074  TCI polynomial 0.077  0.780  

TCARI/MSAVI polynomial 0.196  0.065  SR1 exponential 0.073  1.021  
REIP polynomial 0.188  2.890  CCCI polynomial 0.055  0.063  
CSI polynomial 0.186  0.158  MCARI1 polynomial 0.053  0.027  

The relationship between LAI and VIs was also compared. The results of UR are shown in Table 
5. In general, the fits between VIs and LAI differed from preferable to poor depending on the VI, 
which is better than the results of LCC. More than half of the fits between LAI and VIs are better 
than those with LCC. The R² results of the top ten VIs with LAI are all greater than 0.5. Among 
them, DVI, TVI, and MCARI4 performed the best, with all the R² greater than 0.65. Among the top 
ten indices which performed best with LAI, most of them were found that they are also the best-
performing indices in the LCC UR model. Although CIre2 and SR3, which fit best with LCC, have 
lower R² values compared to other indices, they still show a strong correlation with LAI, with R² 
values of 0.467 and 0.401 respectively, even surpassing their performance with LCC.  
Among the top 10 indices, LAI-related indices indeed have greater potential in predicting LAI, as 
evidenced by the fact that four out of the top five indices with the highest R² are LAI-related. 
However, it can be observed that CHL-related indices also have good potential in predicting LAI, 
such as TVI, PSRI, and CSI. Especially for CSI, although this index is proposed to be more 
sensitive to CHL while ignoring the influence of LAI (Zhang et al., 2022), our study found that it 
still has a strong correlation with LAI, with its R² with LAI even being higher than with CHL. 

Table 5. Results of univariate regressions between LAI and VIS. The sequence of VIs is sorted by the R2 values with the 
order from largest to lowest values. The best performance model were also listed. 

VIs Model R2 RMSE VIs Model R2 RMSE 
DVI Polynomial 0.668 0.044 NDRE 2 Power 0.409 0.087 
TVI Polynomial 0.656 3.022 SR 3 Polynomial 0.401 0.061 

MCARI 4 Polynomial 0.649 0.078 WDRVI Polynomial 0.387 0.157 
SAVI Polynomial 0.631 0.059 NDRE 1 Polynomial 0.374 0.072 

MSAVI Polynomial 0.610 0.069 SR 4 Power 0.371 0.471 
PSRI Polynomial 0.586 0.054 MCARI 1 Polynomial 0.360 0.024 
IRECI Polynomial 0.570 0.139 SR 2 Polynomial 0.307 1.383 
CSI Polynomial 0.537 0.145 SR 1 Polynomial 0.303 0.923 

OSAVI Polynomial 0.524 0.082 Datt99 Polynomial 0.291 0.064 
MCARI 3 Power 0.506 0.379 GNDVI Polynomial 0.287 0.093 

MND Linear 0.488 0.056 REIP Polynomial 0.269 4.320 
MCARI/OSAVI Power 0.482 0.457 CIgreen Polynomial 0.223 0.936 

CIre 2 Polynomial 0.467 0.076 Macc01 Polynomial 0.222 0.072 
NPCI Polynomial 0.458 0.085 TCI Polynomial 0.216 0.871 

MCARI 2 Power 0.456 0.216 CCCI Polynomial 0.201 0.080 
CIre 1 Power 0.437 0.503 TCARI/MSAVI Polynomial 0.124 0.074 
TCARI Power 0.431 0.027 CIre 3 Polynomial 0.102 0.051 

GOSAVI Polynomial 0.424 0.074 CVI Polynomial 0.098 0.806 
MTCI Polynomial 0.411 1.217 TCARI/OSAVI Polynomial 0.054 0.058 

Random forest regressions 
The results of RF models are shown in Table 5. This study used S2A reflectance directly and S2A 
calculated VIs as inputs, respectively. As mentioned before, 160 samples were collected in total. 
70% including 112 samples were randomly selected for calibration and the left was used for 
validation. Both models showed good results, but reflectance model is a little better than VIs 
model. Overall, calibration accuracies were high, the R2 and RMSE for the reflectance model are 
0.957 and 3.131, respectively, while for the VIS model, they are 0.952 and 3.314, respectively. 
However, for the validation, the accuracies decreased. The R2 for the reflectance and VIs model 
decreased to 0.701 and 0.589, and RMSE increased to 8.177 and 9.596.  

Table 5. Results of random forest regressions. 
 S2A reflectance S2A VIs 
 Calibration (n=112) Validation (n=48) Calibration (n=112) Validation(n=38) 

R2 0.957 0.701 0.952 0.589 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

8 

RMSE 3.131 8.177 3.314 9.596 

Based on the importance analysis shown in Figure 4, the bands of near infrared (NIR) and red-
edge and the related VIs (e.g., DVI, TVI, MND, CSI, CIre2) are the most important for the RF 
analysis. In the reflectance model, it can be found that the wavelength range of the near-infrared 
band B8 (832.8 nm) has better performance than that of B8A (864.7 nm). Among the three red 
edge bands, the spectral range of B7 (782.8 nm) and B6 (740.5 nm) is also better than that of B5 
(704.1 nm) in estimating the leaf chlorophyll content (LCC). Therefore, in the VIS model, this study 
used the B8 band to calculate near-infrared related indices. In the VIS model, the B6 band seems 
to be the most suitable among the three red edge bands for applications in chlorophyll monitoring 
(e.g., NDRE2 performs better than NDRE1, and the same holds for MCARI2 and CIre2). Worth 
to notice, CIre2 and SR3 also play a significant role in the ranking of importance, which has similar 
results with linear model. Among the top 10 important indices, only DVI and MCARI4 belong to 
LAI related, which can illustrate the CHL-related indices are more related to LCC and showed 
significant differences between N treatments than LAI-related indices. 

 
Fig 4. Importance of predictor variables (individual reflectance bands and vegetation indices) according to the random 

forest regression analysis in explaining the leaf chlorophyll content (LCC). The left figure showed the result of individual 
bands, and the right figure showed the VIs result. 

Discussion 

Comparison between models 
Most VIs fitted preferable to moderately with LAI, especially the calibration R² of DVI and TVI are 
good, at 0.668 and 0.656 respectively. The proportion of VIs with calibration R² greater than 0.4 
exceeds 50%. Vegetation indices fitted better with LAI than with LCC. Even though few VIs (e.g., 
CIre2 and SR3) fitted moderately with LCC (R2 values for model calibration were 0.375 and 
0.353), the overall VI-based UR performed inadequately (Table 4), which further indicates that 
the UR model was not suitable for LCC estimation. The differences of LCC among different 
nitrogen treatments were not significant at early and late stage, which may contribute to the poor 
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correlation. Moreover, due to the varied sampling dates across different growth stages and fields, 
and the influence of soil background on remote sensing images varies across different periods. 
This makes it challenging to build robust models based on simple VIs to accommodate such 
uneven conditions. 
Compared to UR, RF models show significantly better performance in LCC estimation. Its most 
notable enhancement over UR is its ability to manage multiple variables within a single model, 
leveraging more information and intuitive output the variable importance. In this study, RF models 
achieved higher overall accuracy, with slightly better calibration and validation for single band 
reflectance model than VIs model (Table 5). RF exhibits clear advantages such as simplicity of 
operation, high efficiency, and robust reliability. 

Comparison between VIs 
All models indicate that CHL-related indices are better at monitoring LCC variations under 
different conditions compared to LAI-related indices. The results of the UR model indeed show 
that LAI-related indices are more sensitive to LAI, while CHL-related indices are more sensitive 
to LCC. However, CHL-related and LAI-related indices cannot be completely separated. As CIre2 
and SR3 are CHL-related indices, but they exhibit higher correlation in predicting LAI than in 
predicting LCC. 
Among soil background correction indices, SAVI exhibits stronger correlations with LAI compared 
to OSAVI and GOSAVI. But at the meantime, soil correction indices also show strong potential in 
predicting LAI. For instance, SAVI, MSAVI, and OSAVI all rank in the top ten in terms of R² in the 
UR model with LAI. 
NIR-related VIS indices are strongly correlated with LCC, followed by the red and red-edge bands. 
When applying indices to predict LCC, calculations using B8 instead of B8A for NIR-related 
indices and B6 instead of B7 and B5 for red-edge-related indices may yield better results. 
Considering all models, indices such as CIre2, SR3, DVI, TVI, MND, and CSI appear to have 
better predictive capabilities for LCC. 

Spatial distribution of Leaf chlorophyll content  
Due to the higher accuracy of the RF reflectance model, and significant differences in LCC were 
observed among different nitrogen treatments during the flowering and fruiting growth stages. 
Instantaneous LCC during these two growth periods within the study area can be plotted (Figure 
5). Using Google Earth Engine (GEE), images for June 17th, 2021, and June 27th, 2022, were 
downloaded to predict the spatial distribution of LCC during the fruiting period in 2021 for 
Haunerfeld and Thalhausen, and during the flowering period in 2022 for Grafenfeld and Schafhof. 
From the map, farmers can potentially identify variations in LCC within and between fields. By 
comparing different nitrogen treatments, it was found that wheat LCC under the 0 kg N/ha 
condition was significantly lower than other groups, while LCC under the 180 kg N/ha condition 
was not markedly higher than other groups. Over-fertilization not only wastes resources but also 
burdens the land with environmental pollution. Comparing LCC under the 120 and 150 kg N/ha 
treatments, they were generally at similar levels, with LCC slightly higher under the 150 kg N/ha 
condition compared to 120 kg N/ha, but the difference was not distinct. From the perspective of 
environmentally sustainable resource utilization, the 120 kg N/ha treatment appears to be the 
most cost-effective option. 
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Fig 5. Layout of the estimated leaf chlorophyll content (LCC) from Sentinel-2 imagery obtained on 17 June 2021 (for 

Haunerfeld and Thalhausen, in flowering stage) and 27 June 2022 (for Grafenfeld and Schafhof, in fruiting stage), using the 
RF reflectance model. The background imagery are Sentinel-2 imageries of the two dates above mentioned. 

This study enables precise prediction of LCC. By monitoring changes and distribution of LCC 
levels, it aids farmers in assessing plant growth and nutrient status, thereby providing valuable 
fertilizer recommendations. 

Conclusions 
(i) LCC estimation of flowering and fruiting stages in southern Germany from Sentinel-2 data using 
univariate and multivariate regression models was tested in this study. The results demonstrate 
precise in-season LCC estimation by the random forest algorithm. Random forest models 
performed better than the univariate models in terms of accuracy. Using individual reflectance of 
RF regression is a little better compared to utilizing vegetation indices. 
(ii) It was challenging to develop a sufficiently robust univariate model to estimate crop LCC by 
directly using Sentinel-2 based vegetation indices. Due to the varied sampling dates across 
different growth stages and fields, achieving more accurate estimation of LCC throughout the 
phenological cycle remains challenging with the current vegetation indices. Given the time and 
labor consuming of sampling, the existing dataset is relatively limited. Establishing a larger 
dataset could address this issue, thus necessitating continuous resources and possible 
international collaboration for further data collection. Verified results indicate that CHL-related 
indices are more effective in monitoring dynamic changes in LCC compared to LAI-related 
indices. However, how to use these indices more accurately and efficiently to monitor LCC will be 
the next focus of our study. 
 (iii) The estimated distribution of LCC fitted well with the Nitrogen fertilization treatments. The 
methods established in this study could be used to assist farmers in monitoring crop health status 
and making decisions on fertilization. 
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