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Abstract.  
The digitization of orchards is an ongoing research topic, with the concept of digital twins 
attracting growing interest in recent times. Obtaining objective information from dynamic natural 
scenes is often challenging but has the potential to open the doors for a smarter kind of 
agriculture with various benefits for involved stakeholders. This paper is part of a publication 
series from the For5G project that has the goal of creating digital twins of sweet cherry trees. At 
the beginning a brief overview of the previous work in this project is provided, as well as a 
detailed review of literature closely related to this topic. Afterwards the focus shifts to a crucial 
problem in the fruit farming domain: the difficulty of making reliable yield predictions early in the 
season. Following three Satin sweet cherry trees along the year 2023 enabled the collection of 
accurate ground truth data about the development of cherries from dormancy until harvest. The 
methodology used to collect this data is presented, along with its evaluation and visualization. 
The predictive power of counting objects at all relevant vegetative stages of the fruit 
development cycle in cherry trees with regards to yield predictions is investigated. It is found 
that all investigated fruit states are suitable for yield predictions based on linear regression. 
Conceptionally, there is a trade-off between earliness and external events with the potential to 
invalidate the prediction. Considering this, two optimal timepoints are suggested that are 
opening cluster stage before the start of the flowering and the early fruit stage right after the 
second fruit drop. However, both timepoints are challenging to solve with automated procedures 
based on image data. Counting developing cherries based on images is exceptionally difficult 
due to the small fruit size and their tendency to be occluded by leaves. It was not possible to 
obtain satisfying results relying on a state-of-the-art fruit-counting method. Counting the 
elements within a bursting bud is also challenging, even when using high resolution cameras. It 
is concluded that accurate yield prediction for sweet cherry trees is possible when objects are 
manually counted and that automated features extraction with similar accuracy remains an open 
problem yet to be solved. 
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Introduction 
The continuous development and integration of new technologies have been transformative 
across various sectors, including agriculture, with notable advancements seen within the field of 
horticulture (Kondratieva et al., 2022). Smart farming and precision agriculture share a 
fundamental dependence on precise and reliable real-world data. One possible way to address 
this is by using digital twins (DT). The main function of a DT is to capture the complexities of a 
living organism and its interactions with the surrounding environment (Pylianidis et al., 2021). The 
significance of DTs in academic and applied fields is growing, underscoring their pivotal role in 
future agricultural strategies and robotic applications (Nasirahmadi & Hensel, 2022; Purcell & 
Neubauer, 2023). This paper presents the ongoing work regarding yield prediction within the 
For5G project, which ultimately aims to solve the challenges of creating DTs for fruit trees. After 
reviewing the related literature and presenting background information of our project this paper 
addresses the question of whether it is possible to accurately predict the expected fruit yield of 
individual sweet cherry trees at harvest. 
The precise contributions of this paper are as follows: 

• Proposal of a method for gathering accurate data for yield prediction in orchards.  

• Conceptual embedding of yield prediction into our comprehensive project framework for 
the creation of digital twins of fruit trees. 

• Evaluation of ground truth data from three cherry trees from the start of the 2023 season 
until late May 2024, with insights into timepoint and accuracy of possible yield predictions. 

 

 
Fig 1. For5G project evaluation roadmap with distinction between already solved, future and current work. 
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The data used for the following analysis has been published as CherrySet (Gilson et al., 2023), 
and is openly available to download free of charge1. The project is accompanied by several 
conceptual and technical publications including tree skeletonization (Meyer, Gilson, Scholz, et al., 
2023), data encoding of DTs using knowledge graphs (Gilson et al., 2024) and accurate fruit 
counting (Meyer et al., 2024). Fig. 1 displays an overview of our evaluation roadmap and puts the 
work of this paper into the project context. 

Related Work 
Based on research results from various fields, DTs show great potential for improving efficiency 
and sustainability (Slob & Hurst, 2022). The use of DTs in the field of agriculture is still at an early 
stage (Verdouw et al., 2021). Monteiro et al. (2018) presented a model for the introduction of DTs 
in sustainable agriculture. The model shows how DTs can contribute to the life cycle of planning, 
operation, monitoring, and optimization of agricultural products. Skobelev et al. (2020) investigate 
DTs in agricultural business management. The paper proposes a multi-agent approach for the 
development of DTs of crops that reflects the different stages of crop development and allows to 
predict the harvest more accurately. In addition, the possibility of formalizing domain knowledge 
about new agricultural technologies for crop production and the automation of decision-making 
processes in precision agriculture is demonstrated (Skobelev et al., 2020). In the article by 
Khatraty et al. (2023), an architecture for rice field management with DTs is presented that 
combines IoT sensors, satellite data and machine learning models to predict crop yields, weather, 
and soil conditions. The concept of sDTs is also growing in the greenhouse sector (Khatraty et 
al., 2023). Howard et al. (2020) propose the integration of DTs into greenhouse management to 
optimize energy consumption and increase productivity. In summary, the management aspects 
of using DTs to plan, monitor, control and optimize agricultural processes need to be further 
investigated (Verdouw et al., 2021).  
Yield data is of significant importance for the fruit industry. Yield estimations allow decisions to be 
made about orchard management in terms of the labor required, storage, transport, and 
marketing. Fruit growers generally use traditional yield estimation methods, where yields are 
estimated by manually counting or weighing samples from small, randomly selected areas to then 
estimate the yield of the entire orchard or a large area (He et al., 2022). Wulfsohn et al.(2012) 
and Marani et al. (2021) point out that due to the differences between individual fruit trees and 
the variability of many orchard parameters, the error rate of such approaches is higher than 
expected. In addition, it is emphasized that estimating fruit yields requires extensive sampling and 
counting of fruit, which makes it difficult to collect pre-harvest yield data. Therefore, the 
introduction of an efficient automated system for modern fruit crop management is considered 
crucial to reduce the manual effort (He et al., 2022). Another approach for obtaining yield data is 
to recognize and count the fruits directly on the plants and then estimate the fruit yield. Early 
detection of fruit on trees is based on image processing methods or machine learning algorithm-
based classifiers that recognize fruit based on color, shape and texture characteristics, as widely 
discussed (Liu et al., 2018; Sengupta & Lee, 2014; Xu et al., 2019). In a review paper, Gongal et 
al. (2015) emphasize that machine learning can provide more accurate results in fruit recognition 
than the traditional methods of image processing.  
Many researchers have worked on methods for predicting and estimating fruit yields. An overview 
of the application of image processing technologies for automatic yield mapping of fruit and 
vegetable crops was given by Darwin et al. (2021). Anderson et al. (2021) provided an overview 
of yield models and image processing technologies offered for yield mapping in orchards in a new 
study. They concluded that most of the current research on yield assessment in orchards is 
dominated by image processing. However, most of the work on yield prediction that has been 
examined has focused on the application of a single technology or has not been specialized in 

 
 
1 Data can be downloaded at: https://fordatis.fraunhofer.de/handle/fordatis/383  

https://fordatis.fraunhofer.de/handle/fordatis/383
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fruit production. Therefore, a comprehensive analysis of yield prediction and estimation for 
orchards and fruit is not available (He et al., 2022). 
Recently the field of agricultural data processing and image analysis has seen the advent of deep 
learning (DL). An overview of DL technologies for fruit detection and yield estimation is provided 
by Koirala et al. (2019a, 2019b), which also include suggestions for the use of public datasets 
and the implementation of transfer learning. Orchard yield estimation in most studies focuses on 
target recognition. However, it can also be considered as generic object counting. The cropping 
patterns of different fruit tree species differ considerably, some are dense (e.g. apple trees or 
grapevines), others are patchy (e.g. mango trees). For this reason, a variety of counting strategies 
have been proposed for estimating fruit tree yield, including regression counting of fruit pixel 
density (Zaman et al., 2010), fruit counting in independent images (Payne et al., 2013), and fruit 
counting in composite images (Mekhalfi et al., 2020). In previous work of the For5G project 
FruitNeRF (Meyer et al., 2024), a fruit agnostic framework for fruit counting with state of the art 
results was developed.  

Project Background and Methods 
As briefly discussed in the introduction, the For5G project aims to develop an end-to-end 
approach for the creation of digital tree twins. Focusing on the sweet cherry the project started 
with a systematic proposal of our approach that is displayed in Fig. 2 from Meyer et al. (2023). 

 
Fig 2. Visualization of the For5G concept from a real-world tree to a polished end user application. 

Overview of data collection process 
In our data-gathering process, we utilize a system involving a drone equipped with a camera, 
autonomously navigating a predefined course, and transmitting data directly via 5G. Due to the 
absence of a native 5G network onsite, a portable campus network was utilized. The unmanned 
aerial vehicle (UAV) deployed for this initiative is a DJI M300, equipped with a high-resolution 
photogrammetric camera for capturing detailed videos and images. This configuration allows us 
to pre-set various flight trajectories customized to our needs, whether for close-up inspections of 
individual trees or broader sweeps across rows of trees. The fieldwork is conducted at the 
Obstinformationszentrum Fränkische Schweiz, a local cherry orchard research facility in 
Hiltpoltstein, Germany. Over the course of the 2023 season, three selected sweet cherry trees of 
type Satin were subject to detailed measurements at 12 different time points. The resulting high-
resolution images and accompanying manually collected ground truth data are published in a 
related publication (Gilson et al., 2023). Fig. 3 gives an impression of the field site and the 5G 
campus network. For later evaluations, the focus was switched from detailed measurements of 
individual trees to row-wise data collection with less detail but also significantly shorter 
measurement times per tree.  
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Fig 3. Pictures of the orchard used as data site in Hiltpoltstein, the drone and the mobile 5G campus network station. 

Obtaining ground truth data as reference  
While the focus of the data collection was on obtaining high-quality image data, ground truth 
reference data was manually counted as well. To verify our automated evaluation results, real-
world data is required. From their dormant state in March, through the blossoming and growth 
phases, up to the harvest in July 2023, the fruit development process was monitored. Counted 
object types include buds, blossoms, and fruit of selected branches during each vegetation phase. 
For this purpose, 6 branches were selected and marked on every tree to be able to track the 
development of individual fruit from buds to ready to harvest cherries. In Table 1 the digitized 
reference values for one exemplary branch are displayed. The branch was physically marked with 
a pink marker during the manual counts on eight different days between March and July 2023. At 
harvest not only the reference branches, but all the cherries of the entire tree were counted and 
weighted. Additionally, the distinction was made between goodCrops and badCrops, whereas 
goodCrops refer only to cherries that are in good enough condition to be sold directly to end 
consumers. In contrast, the term badCrops stands for cherries that were damaged, showed signs 
of parasite infestation or were not eligible for direct sale for other reasons. However, they still 
could be eligible for juice production or secondary products. 

Table 1. Exemplary display of manually collected reference data for “pink” branch from tree satin_2.  The fruit 
development was tracked from late stages of dormancy until the finally harvested cherry. 

Date  
2023 

season 

 
BBCH treeID branchID branchColor objectType objectCount cropWeight 

Mar-2 51 satin_2 2s1 pink bud 175  
Apr-14 56 satin_2 2s1 pink bud 96  
Apr-25 60 satin_2 2s1 pink blossom 257  
May-25 65 satin_2 2s1 pink blossom 141  
Jun-06 75 satin_2 2s1 pink cherry 53  
Jun-16 81 satin_2 2s1 pink cherry 52  
Jul-06 85 satin_2 2s1 pink cherry 52  
Jul-14 89 satin_2 2s1 pink goodCrops 31 0,29 
Jul-14 89 satin_2 2s1 pink badCrops 23 0,18 
Jul-14 89 satin_2 2s1 pink totalCrops 54 0,47 

 
Fig 4. Photo (left) of the “pink” branch referenced in Table 1 with noised background for better visibility. Handwritten 

reference data (right) for this branch on the same day (25th of April 2023). 

© StMWi/Quirin Leppert 
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Fig. 4 shows a picture of the exemplary chosen “pink” branch as a picture in early flowering stage 
(25th of April 2023) together with the handwritten reference data. Not all counted blossoms are 
visible in the image, caused by the limited perspective given the picture is taken from one angle 
only. 
How this exact branch can be conceptualized as a knowledge graph including the counted objects 
information is explained and visualized in Gilson et al. (2024). For referencing the development 
stages, the unified BBCH code from Meier (2018) was used. Fig. 5 from Bound et al. (2022) 
illustrates the early stages from dormancy up until young fruit with pictures and corresponding 
BBCH code for a clear categorization. For a detailed explanation of the BBCH stages and the 
BBCH stages of the fruit development phase refer to Meier (2018). 

 
Fig 5. Visualization of the phenological stages in sweet cherry with reference to the BBCH growth stages (Meier, 2018). 

Photo credits: SA Bound. Figure from (Bound et al., 2022). 

Results 

Ground truth data analysis 
We followed three cherry trees over the course of the 2023 season and selected 6 branches on 
each of the trees for accurate ground truth sampling. In the following figures the results are 
visualized graphically once for all reference branches over time (Fig. 6) and aggregated by tree 
(Fig. 7). It can be observed that there is an initial drop in objects between early March and the 
middle of April. This is caused by the fact that it is not possible to distinguish buds that will become 
leaves from buds that result in blossoms. However, once the buds open up, they contain clusters 
with multiple blossoms, which explains the object increase in later April and the peak at the stage 
of full flowering. After that the blossom count steadily declines and young fruit start to develop. 
However, not every blossom produces fruit, explaining the object count decrease between April 
and May. This effect is reinforced during the early stages of fruit development, where trees drop 
a certain amount of their fruit (called “fruit drop”) before they end up with the final number of 
cherries that could potentially make it to harvest. Cherries that are subject of the fruit drop were 
not counted on the 6th of June.  Between early June and harvest during July, there is comparatively 
little movement in the object count. Occasionally measured increasing numbers are a result of 
miscounts and measurement errors, since additional cherries cannot develop naturally at this 
stage. The slight but steady decrease observed for the other data points can be explained by fruit 
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that get picked by birds or are lost due to other natural influences. 

 
Fig 6. Manually counted references values for every branch during the 2023 season. 

 
Fig 7. Reference branch values aggregated and grouped by corresponding tree. 
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Fruit counting-based yield prediction 
Counting fruit after the second fruit drop (BBCH 73+) could be a good estimator for the final yield. 
Especially since the risks of natural events with high impact on the fruit count decrease with 
remaining time until harvest. Because earlier yield estimations are still more valuable than 
predictions directly before harvest, the time point after the second fruit drop could be a good 
candidate. As the reference data shows, the fruit count remains relatively stable until harvest. 
However, the attempt to count young cherries comes with its own set of challenges. The already 
introduced FruitNeRF framework (Meyer et al., 2024) produced state-of-the-art results for apples, 
mangoes, plums, and other fruits. Yet it struggled with counting cherries. As seen in Fig. 8, later 
fruit stages are easy to segment, since sweet cherries have distinctive color and can be detected 
using simple thresholding procedures. Detection in earlier development stages, is more 
complicated, but also solvable using modern detection methods, such as supervised deep 
learning algorithms.  

 
Fig. 8 Picture of sweet cherry tree with fruit in late development stages (left) together with semantic segmentation mask of 

fruit based on color thresholding (right). 

The cause of the problem is not the 2D segmentation of cherries, but the poor visibility of fruit in 
images regardless of the viewpoint. This is caused due to inherent traits of cherry trees, like 
comparatively small fruit size and the fact that cherries tend to grow in clusters that often are 
poorly visible from multiple angles and tend to stay hidden behind leaves. In photographs of the 
tree, even from close distance, only a small percentage of the present cherries is visible at all. 
Basis for the fruit-counting algorithm are semantic 2D segmentation masks of the objects that are 
to be counted. Fruits that are not present in the image data can thus not be counted later. 
Consequently, it was not possible to determine a valid fruit count for cherries using FruitNeRF. 
As a future research direction, it could be interesting to find out whether the number of cherries 
can be estimated based on other tree features instead of accurate counting. To further investigate 
the informative value of earlier stages in the fruit development cycle, a linear regression analysis 
was carried out. 

Linear regression for yield prediction 
For accurate yield prediction, there is a strong correlation between the investigated tree trait and 
the final yield required. Fig. 9 displays the results of the results of a linear regression analysis, 
which is further underlined by the results shown in Table 2. A significant correlation (R2=0.39, 
p<.05) between the counted objects and harvested cherries is seen as early as during the bud 
swelling stage on the 2nd of March, more than four months before the harvest. This correlation 
increases, the closer objects are counted towards the harvest, with the highest correlation less 
than two weeks before the harvest on the 6th of July (R2=0.99, p<.001). Despite these high 
correlations we observed that the slope of the regression changes considerably throughout the 
season depending on the type of objects counted. On our first day of measurements on the 2nd of 
March the slope is 0.23, while counting cherries towards the end of the season resulted almost in 
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one-to-one relationships with the final harvest.  

 
Fig 9.  Linear regression of objects counted on seven days throughout the season with the final number of cherries 

counted after harvest on the 14th of July. Each plot shows results for a single day and each measurement point 
corresponds to the number of objects on an individual branch. 

Table 2.  Results of linear regression analysis. Each row corresponds to a graph in Fig. 9.  

Date Object Development 
stage 

BBCH Slope Intercept R2 p-value n 

Mar-2 Buds Swelling  51 0.23 11.49 0.39 P<.05 14 

Apr-14 Buds Open cluster 56 0.40 2.03 0.84 P<.001 15 

Apr-25 Blossoms First bloom 60 0.16 0.81 0.76 P<.001 14 

May-23 Blossoms Full bloom 65 0.31 2.33 0.85 P<.001 14 

Jun-6 Cherries  
Development of 

fruit  
75 

0.91 -0.10 0.72 P<.001 15 

Jun-16 Cherries 
Beginning of fruit 

coloring  
81 

1.11 -11.52 0.94 P<.001 14 

Jul-6 Cherries 
Advanced fruit 

coloring  
85 

1.11 -3.75 0.99 P<.001 15 

The evaluation of the reference data suggests that yield prediction can happen in early vegetation 
states. Besides the correlation there are several other advantages to consider: Automated 
evaluation based on image data is easier for trees in vegetative states with no leaves, since leaves 
occlude the view on developing fruit and cause noisy data and distortions by reacting to natural 
influences like wind. Earlier yield predictions are also of increasing interest to farmers and 
breeders since they have more time to adjust their operative and financial planning for the ongoing 
season. The possible downside of early yield prediction is the increased risk of natural influences 
or external factors that interfere with the fruit development. While yield predictions during the 
stage of bud bursting can provide promising results in regular seasons, the risk of a night frost 
during the flowering stage or a drought later in the season is still present. As part of the For5G 
project, it was tried to use the results of the 2023 season from Table 2 to predict the yield for the 
2024 season. However, there were two frost nights during the flowering stage at the project's field 
site, which caused an almost complete loss of fruit. While the 2024 harvest is yet to come, it is 
already clear that the frost damage prevented the application of the 2023 results for the ongoing 
season. 
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Limitations 
While the collection of ground truth data was done by domain experts, manual counting still comes 
with inaccuracies and potential mistakes that should be considered. Occasionally, reference 
branches were missed or accidentally pruned and during the evaluation of the data some 
inconsistencies were noticed. Error prune manual counting is however the industry standard and 
remains the closest approximation to the actual ground truth that is available. Furthermore, the 
generalizability of the findings is limited because of the small sample size of trees and reference 
branches. Obtaining data from one field site, during one season is not an ideal approach for 
findings beyond a proof of concept. The project aims to mitigate this problem by continuing for 
more seasons and optimizing the data collection strategy for multiple tree rows. 
Seasonal changes and weather events can have significant impact on fruit development and the 
expected yield. A robust yield prediction needs to take this into account, which is difficult because 
events like night frost, which severely impacted the 2024 season, can only be predicted short 
term and with limited certainty. 
Relying on linear regression as yield prediction has other limitations such as a certain amount of 
consistency between the trees is required to get accurate factors for estimations. Also, it relies on 
the assumption that correlation results and factors are transferrable over multiple seasons, which 
can be wrong, especially for younger trees or species with unregular cycles and higher inter-
seasonal variations. Furthermore, good yield prediction relies on accurate feature detection that 
proves to be challenging with automated techniques, but also with manual counting.  

Conclusion 
This paper presented a methodology for obtaining ground truth data of sweet cherries at 
exemplary time points during an entire season of fruit development. The presented approach has 
been applied to three Satin trees and the results are discussed and visualized. 
Regarding the research question of how and when this kind of data is sufficient to support robust 
yield predictions there are several points that should be considered. Firstly, it can be stated that 
the final harvested yield can be predicted based on counting in early development stages. Using 
linear regression gives satisfactory results supporting the hypothesis that the final yield can be 
predicted reliably. There is a trade-off between benefits and risks of the ideal time for yield 
predictions. Earlier predictions enable long-term planning and might surpass the prediction skills 
of a domain expert with years of experience. However, the bigger the time window until harvest, 
the more unforeseen factors might come into play, which potentially can influence the number of 
fruits significantly, which makes the early prediction results unusable. Taking this trade-off into 
account, the evaluation presented in this paper suggests two possible timepoints that seem to be 
particularly suitable for sweet cherry yield predictions: 
For early prediction with higher uncertainty the phase after the buds burst open and clusters 
emerge from the buds (BBCH 56) seems promising. A less fragile prediction can be made based 
on counting young cherries after the second fruit drop (BBCH 73+). 
Future work should focus on validating these findings on a broader scale as well as developing 
methods for automated tree feature detection and counting of objects of interest. Various 
challenges complicate automated data collection and need to be solved for each development 
stage respectively. Previous unsuccessful experiments with a state-of-the-art fruit-counting 
algorithm demonstrated that sweet cherry trees are especially challenging for automated feature 
detection. Considering the impact of external factors such as frost, drought, and birds, which can 
skew prediction values and assuming consistent tree behavior, it can be concluded that yield 
prediction with linear progression is possible for all growth stages during the fruit development 
cycle of sweet cherry trees. 
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