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Abstract. Nitrogen and water play crucial roles in impacting both the health and yield of corn 
crops. However, their demands vary under different soil and weather conditions. Unfortunately, 
current nitrogen management practices in irrigated fields in the state of Georgia overlook this 
variability. Thus, this oversight may lead to insufficient nitrogen application, causing plant stress 
or excessive nitrogen application that can lead to environmental impact. To address this 
challenge, a precise assessment of plant nitrogen uptake (PNU) at various critical stages of corn 
is essential. Therefore, this study exploited remote sensing technology using a multispectral 
sensor with five bandwidths to predict PNU at the V6, R1, and R6 corn growth stages. The 
experimental design was a split-plot randomized complete block with three replications, featuring 
main plots under four irrigation rates (100%, 120%, 50%, and rainfed) and subplots under six 
nitrogen rates (0, 67, 136, 202, 269, and 336 kg/ha). Multispectral imaging started at the sixth 
vegetative stage and continued weekly. On the same days, ground-based physiological 
parameters were collected using an LI600 porometer/fluorometer. Plant samples were collected 
at three distinct growth stages, coinciding with image collection.  Analysis showed that various 
vegetation indices (VIs) demonstrated strong correlations with PNU. These VIs were refined 
through correlation analysis and Random Forest feature selection and then evaluated using linear 
regression (LR), multiple linear regression (MLR), and Random Forest regression (RFR) models 
to analysis their predictive ability for PNU. The findings indicate that the RFR model, which 
explained as high as 0.78 of the PNU variability at the V6 stage, consistently outperformed other 
models by effectively addressing the overfitting issues seen in simpler regression analyses. 
However, LR models displayed higher consistency between training and validation stages, 
making it simple and the best model in most of the stages. To predict PNU, CIG at the V6 stage, 
a combination of GNDVI and NDRE at the R1 stage, and CVI at the R6 stage were found to be 
most effective. This research emphasizes that identifying stage-specific indices and selecting 
suitable models are essential for accurately predicting PNU and improving in-season nitrogen 
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management strategies. 
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Introduction   
Nitrogen is an essential nutrient that significantly impacts both yield and quality of corn. Corn 
demands nitrogen in high levels, necessitating substantial applications of synthetic nitrogen 
fertilizers. Research by  Zhang et al. (2023) and Ogola et al. (2002) showed that application of 
nitrogen fertilizer can increase corn yield by 43 to 68%. However, excessive nitrogen use not only 
contributes to economic inefficiency, but can lead to environmental issues like leaching of nitrates 
into waterways and the release of nitrous oxide, a potent greenhouse gas as highlighted by  Zhang 
et al. (2023). Current nitrogen management practices in various agricultural regions of the United 
States including the state of Georgia, follow a one-size-fits-all approach based on yield goals 
(Morris et al. 2018; Sawyer et al. 2006). This method often overlooks local variations in landscape, 
soil texture, and irrigation practices, leading to nitrogen overapplication and environmental 
degradation. Studies highlight that the nitrogen use efficiency (NUE) in corn remains low, with 
only 30-40% of the applied nitrogen being utilized by the crop, while remaining nitrogen risks 
leaching into the environment (Hammad et al. 2020; Sharma and Bali 2018). Therefore, the 
management of nitrogen fertilizer applications presents a significant challenge. Moreover, studies 
by Ashraf et al. (2016) and Wang et al. (2017) showed that nitrogen uptake and its efficiency are 
heavily dependent on soil moisture conditions, further complicating nitrogen management (Ashraf 
et al. 2016; Wang et al. 2017). 
To mitigate the environmental risk, and enhance NUE, it is important to optimize nitrogen 
application based on crop agronomic demands of the corn. This necessitates accurate prediction 
of plant nitrogen uptake (PNU) that maximizes yield and minimizes environmental risk. However, 
the spatial and temporal dynamics of corn nitrogen demand under various irrigation levels 
complicate the prediction of PNU through traditional methods of tissue sampling (Hammad et al. 
2017). Such methods will be not only costly, labor-intensive but also provide only localized 
information that may not represent the entire field (Meisinger et al. 2008). Nevertheless, recent 
advances in remote sensing technology offer a promising alternative (Becker et al. 2020; Zhang 
et al. 2019). Multispectral sensors, which capture data across various bands of the 
electromagnetic spectrum, including visible (VIS; 400–700 nm), near-infrared (NIR; 400–700 nm), 
and red-edge (RE; 690–730 nm) bands, can detect within-field variability in nitrogen levels 
(Thompson and Puntel 2020). This approach is critical for refining nitrogen management 
strategies to address deficiencies effectively and optimize agricultural outputs.  
Notably, vegetation indices (VIs) that incorporate the red-edge band have been proven most 
effective in identifying in-season nitrogen stress in corn, as highlighted by Li et al. (2014). 
However, the effectiveness of VIs in detecting nitrogen stress can vary depending on the growth 
stage (Burns et al. 2022). Determining PNU at critical stages of corn development is crucial, 
particularly at the vegetative stage 6 (V6), where plants have fully developed six leaves and begin 
significant nitrogen uptake; reproductive stage one (R1), or the silking stage, where plants enter 
the reproductive phase and demand substantial nitrogen for kernel development; and 
reproductive stage 6 (R6), the maturity phase, which reflects the total nitrogen required to achieve 
the intended yield (Nleya et al. 2016).  
Regression modeling serves as a foundational method in predictive analytics and is widely used 
to estimate agricultural outcomes based on multiple variables (Jeong et al. 2016; Maulud and 
Abdulazeez 2020). Simple linear regression (LR), while straightforward, often falls short in 
agricultural applications where the relationships between variables are complex and 
interdependent (Gaso et al. 2019; Wei and Molin 2020). In such scenarios, multiple linear 
regression (MLR) becomes crucial as it can incorporate numerous predictors and capture their 
collective influence on a target variable (Mehnatkesh et al. 2012). However, its effectiveness 
diminishes when the interactions among variables are non-linear (Rajković et al. 2022).To 
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address these limitations, more sophisticated approaches such as Random Forest regression 
(RFR) have gained importance (Jeong et al. 2016). This machine learning technique, which 
utilizes multiple decision trees, is particularly well-suited for agricultural data sets characterized 
by high-dimensional and non-linear relationships (Shaikh et al. 2022). Therefore, this study aims 
to compare performance of different regression analysis and assess the predictive capabilities of 
different VIs in detecting nitrogen variability and predicting PNU at the V6, R1, and R6 growth 
stages of corn.  

Materials and Methods 

Experimental Sites and Treatments  
The field experiment was conducted at Iron Horse Farm (IHF) located in Greene County, Georgia 
(GA) (33° 43′ 36.84″ N, 83° 18′ 3.31″ W) in 2023. The research trial occupied an area of 1.6 ha  
with predominantly sandy clay loam soil, and organic matter ranging from 2 to 4%. The field was 
designed in a split-plot randomized complete block design, with irrigation levels as the main plot 
factor and nitrogen rates as the sub-plot factor with three replications (r=3). The irrigation 
treatment comprises four levels: full irrigation (FI) at 100%, 120% FI, 50% FI, and rainfed (0% FI) 
based on SI CropFit application recommendations for 100%. The nitrogen levels include six 
different rates: 0 kg N/ha- control, 67 kg N/ha, 135 kg N/ha, 202 kg N/ha, 269 kg N/ha, and 336 
kg N/ha. The highest rate of nitrogen is based on an expected yield goal for Georgia of 250 bu/ac. 
Urea – ammonium nitrate (liquid, 32%) was applied in a split dose, 30% at planting and 70% at 
the V6 stage.  

Data Collection 
Spectral reflectance of the entire field was collected weekly from the V6 growth stage until the 
crop reached maturity using a multispectral RedEdge-P (AgEagle Aerial Systems Inc., Wichita, 
KS) sensor mounted on a DJI Matrice 300 RTK UAV (Da Jiang Innovations (DJI), Shenzhen, 
China). Images were captured within two hours before or after solar noon on sunny and cloud-
free days. On the same days as the UAV flights, ground data were also collected using an LI-600 
fluorometer/porometer (LI-COR Biosciences, Lincoln, NE) between 10 am and 2 pm. 
Measurements were taken from three plants per plot from the fully developed uppermost leaf and 
averaged to obtain one measurement per plot. The LI-600 parameters analyzed in this study were 
the electron transfer rate (ETR), and the quantum efficiency of photosystem II (PhiPS2) at the leaf 
level. 
Similarly, UAV flights were also conducted at the V6, R1, and R6 growth stages during plant 
sample data collection. Six plants per plot were collected at these three critical growth stages and 
sent to a laboratory for leaf tissue nitrogen concentration analysis. Results were used to calculate 
the total plant N concentration (PNC). PNC was further multiplied by above ground biomass 
(ABG) for each plot at each stage to calculate PNU (eq. 1).  

𝑃𝑁𝑈	 = 	𝑃𝑁𝐶	 ∗ 	𝐴𝐺𝐵  (1) 

Data Analysis 
Analysis of remotely sensed data to observe its ability to detect nitrogen variability in the irrigated 
corn field conditions, validations with ground data and PNU predictions includes following steps: 

1) Processing of multispectral images and VIs calculation 
2) Spearman correlation analysis between ground-collected  data and VIs 
3) Random Forest feature selection  
4) Regression analysis to predict PNU using selected VIs  

a. Linear regression model (LR)  
b. Multivariate linear model (MLR) 
c. Random Forest regression model 
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1. Processing of Multispectral Images and Calculation of Vegetation Indices (VIs): 

Multispectral images collected weekly at various growth stages were stitched using Pix4D 
software (Pix4D, Lausanne, Switzerland). Subsequently, a random forest algorithm from the 
FieldimageR package in R (Matias et al. 2020) was used for soil pixel removal from each single 
band. Based on the literature, twelve VIs were selected and calculated (Table 1) based on their 
ability in detecting chlorophyll content and nitrogen variability in plants. The indices were extracted 
specifically from the central four rows of each plot, applying a 1.2-meter negative buffer from the 
plot boundaries to avoid edge effects.  

Table 1: List of Vegetation Indices calculated in this study. 
VIs Name  Formula Source  

NDVI Normalized Difference Vegetation Index  (NIR - R) / (NIR + R) (Jw 1973; Tucker 1980) 
NDRE Normalized Difference Red Edge  (NIR -RE) / (NIR + RE) (Gitelson and Merzlyak 1994) 
GNDVI Green Normalized Difference Vegetation 

Index  NIR-G/NIR + G 
(Gitelson and Merzlyak 1997) 

BNDVI Blue Normalized Difference Vegetation Index  NIR-B/NIR + B (Beisel et al. 2018) 
CIG Chlorophyll Index - Green  (NIR/G) – 1 (Gitelson, Gritz, et al. 2003) 

CIRE  
Chlorophyll Index-red edge (NIR/RE) – 1 

(Gitelson et al. 2005; Gitelson, 
Viña, et al. 2003) 

MTCI MERIS Terrestrial Chlorophyll Index  (NIR − RE)/(RE − R) (Dash and Curran 2004) 
CVI Chlorophyll Vegetation Index (NIR*R)/(G2) (Vincini et al. 2008) 
DVI Difference Vegetation Index NIR-RE (Tucker 1979) 
EVI 

Enhanced vegetation Index  
2.5*(NIR-R)/(NIR + 6*R-7.5*B 

+1) 
(Matsushita et al. 2007) 

MSAVI 
Modified Soil-Adjusted Vegetation Index 

(2* NIR + 1 - sqrt((2 * NIR + 1)2- 
8 * (NIR - R))) /2 

(Qi et al. 1994) 

RDVI Renormalized Difference Vegetation Index  (NIR - R) / sqrt(NIR + R) (Roujean and Breon 1995) 
NIR: Near Infra-red; R: Red; RE: Red-Edge; G: Green; B: Blue, bands 

 

Spearman Correlation Analysis  

A Spearman correlation analysis was conducted using R at a significance level of 0.05 between 
ETR and PhiPS2 and VIs in different days after planting (DAP). Similarly, correlation analysis of 
VIs and PNU was done at three growth stage V6, R1 and R6 separately to identify the most 
effective VIs for predicting PNU.  
Feature Selection  

VIs demonstrating a significant correlation above 0.5 with PNU at each stage were subjected to 
feature selection using the Random Forest algorithm, which is built on classification and 
regression trees using R. This algorithm iteratively selects and evaluates layers of features, 
discarding the least important ones and refining the selection to the most significant variables. 
This process helps in selecting the most predictive VIs for different growth stages for further 
regression analysis. 
Regression Analysis  

The selected VIs were used to build regression models for the stages V6, R1, and R6. The 
dataset, comprising data from 72 plots, was split into a training set (70%) and a validation set 
(30%) for each stage. Various models, including LR, MLR and RFR, were evaluated based on 
their predictive accuracy using metrics such as R² (Determination Coefficient) (Equation 2), which 
measures the proportion of variance in the dependent variable predictable from the independent 
variable(s), RMSE (Root Mean Square Error) (Equation 3) , which quantifies the average 
magnitude of the prediction errors and the Willmott's Agreement Index (WAI) (Equation 4), which 
ranges from 0 (no agreement) to 1 (perfect agreement), indicating the accuracy of the model 
predictions relative to observed data. Regressions were performed in R using the tidyverse 
package (Wickham and Wickham 2017).   

𝑅! =	
∑ (𝑌𝑒𝑠𝑡	 −		𝑌3)"
#$%

(𝑌𝑜𝑏𝑠	 −	𝑌3)
 (1) 
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RMSE = 	;
∑ (𝑌𝑜𝑏𝑠	 − 	𝑌𝑒𝑠𝑡)!"
#$%

𝑛
  (2) 

d = 1 −
∑ (𝑌𝑜𝑏𝑠 − 𝑌𝑒𝑠𝑡)!"
#$%

∑ (|𝑌𝑒𝑠𝑡 −	𝑌3| + (|𝑌𝑜𝑏𝑠 − 𝑌3|)"
#$%

 (3) 

where R2 is the determination coefficient, RMSE is the root mean square of the average error and 
d is the Willmott index coefficient. Yobs indicates the observed values, Yest indicates estimated 
values by the models, n is the total number of data analyzed and 𝑌3 is the average value of the 
estimated variable.   
Linear Regression   
Based on the random forest feature selection, the six most important VIs were selected for each 
stage. LR was run for each VI with PNU to identify which VIs were most significant at different 
stages to predict PNU.  
Multiple Linear Regression 
To determine if additional VIs could enhance predictive accuracy, we employed MLR models. 
Five models were sequentially run to evaluate the impact of systematically reducing the number 
of VIs based on their importance. The first model incorporated all six VIs that has high importance 
in feature selection analysis. In each subsequent model one input variable was removed based 
on the lowest importance value. This approach helped to identify the optimal number of VIs 
necessary for accurate predictions and to assess the impact of each VI's removal on model 
performance, providing insights into the relative importance and contribution of each VI. 
Random Forest Regression  
A more sophisticated technique, RFR, was utilized to refine prediction models further across the 
three growth stages. This method leverages multiple decision trees to improve prediction 
accuracy. It involved running five models, each analyzing different combinations of the top six VIs, 
mirroring the approach used in the multiple regression models. Given the small dataset, leave-
one-out cross-validation was applied to increase accuracy. The optimal values for 'mtry' and 'tree' 
parameters were determined based on a grid search, selecting the configuration with the highest 
R² value. This parallel analysis between RFR and MLR models allowed for a robust comparison 
of methodologies in handling variable importance and model simplification. 

Results and Discussion  
The Spearman correlation analysis was conducted to evaluate the correlation between 
multispectral sensor-derived VIs and parameters that can indicate corn nitrogen stress including 
PNU at three distinct growth stages (V6, R1, and R6) and photosynthetic parameters (ETR and 
PhiPS2) at eight different dates after planting (36, 43, 54, 63, 69, 75, 82 and 97 DAP). The results 
shown in Figures 1 indicate significant correlations between most of the VIs and PNU across 
these stages. At the V6 stage, out of 12 VIs, 10 exhibited high and significant correlations (r > 
0.63) with PNU, with the DVI showing the highest correlation (r = 0.79). DVI is the combination of 
NIR and Red-edge band and at an early stage when canopy is not fully closed, DVI can detect 
small difference in plants nitrogen conditions due to its strong relation with chlorophyll content 
(Hua and Zhao, 2021). However, this correlation decreases at the R1 stage when plants reach 
full development, indicating a decreased sensitivity of DVI during the mid-growth stage. The 
correlation again increases at the maturity stage, suggesting DVI’s sensitivity to detecting 
difference in chlorophyll content during the stage of leaf senescence, where total NIR reflectance 
decreased with increase in background exposure (Knipling, 1970). Similar pattern is seen in other 
indices that have NIR band such as NDVI, NDRE, GNDVI, CIG, CIRE, EVI, and MSAVI. Further, 
a study by Li et al. (2014) also found that red-edge-based indices are better for estimating PNU 
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as they are more sensitive to the differences in chlorophyll. In contrast, indices such CVI and 
BNDVI, which rely on visible light, show lower correlations with PNU in early growth stages. This 
is likely because the photosynthetic pigments, which heavily influence these visible indices, have 
not yet fully developed to their potential, making them less sensitive to variations in plant 
conditions. As corn matures and reaches the R1 stage, the BNDVI index shows the highest 
correlation (r = 0.65), indicating sensitivity to the decrease in reflectance at the blue band due to 
increased absorption of blue light by the higher chlorophyll content and denser canopy. At the R6 
stage, the CVI showed the highest correlation (r = 0.76) with PNU. 
 

Correlation analysis between physiological parameters (ETR and PhiPS2) and multiple VIs are 
shown across multiple DAP (Fig. 3). At 36 DAP, an early growth stage, CIG show moderate 
correlations (r = 0.46) with PhiPS2, suggesting their potential predictive value during initial growth. 
However, at this stage, most VIs display weaker correlations with both ETR and PhiPS2. During 
the intermediate stages (43, 54, 63, 69, 75, and 82 DAP), lower correlation values are 
predominant. At 54 DAP, except for DVI and ETR, most VIs show negligible to no correlation with 
either physiological parameter, indicating a low chance of predictive capability during theses 
stages. Increased correlations occur at 97 DAP, a later growth stage among various indices with 
both ETR and PhiPS2. DVI and SAVI consistently demonstrated low correlations across most 
DAPs, suggesting minimal predictive utility for both ETR and PhiPS2.These results highlight that 
VIs based on multispectral data may not effectively capture small changes in physiological 
parameters, which are highly dynamic with micro-climate conditions. 

Fig. 1. Spearman correlation analysis between vegetation indices (VIs) and plant nitrogen Uptake (PNU) by 
growth stages 

Fig. 2. Spearman correlation analysis between vegetation indices (VIs) and plant physiological 
parameters ETR (electron transfer rate) and PhiPS2 (quantum efficiency of photosystem II)  
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Random Forest Feature Selection Algorithm  
The random forest feature selection algorithm applied to VIs with correlation values greater than 
0.5 with PNU at different crop growth stages are presented in Figure 2. Results showed that at 
the V6 stage DVI, and CIG were identified as the most important, each achieving importance 
values greater than 12, suggesting their strong predictive power in early growth stages. These 
indices captured distinct aspects of plant health and vigor, potentially linked to the nitrogen status 
of the plants at this early vegetative stage (Burns et al. 2022; Li et al. 2014) . The MTCI was 
deemed the least important index, indicating lesser contribution in nitrogen uptake estimation at 
early stages.  

At the R1 stage, GNDVI emerged as the most significant, exceeding an importance value of 10, 
and NDRE closely following at approximately 9, highlighting their utility in reflecting PNU variability 
during the onset of the reproductive stage. BNDVI, CVI and MSAVI are the least important 
variables in PNU estimation with importance values lower than 5. At the R6 stage CVI, MTCI, and 
DVI were highlighted as the top indices showing their potential effectiveness in capturing critical 
information on PNU at a mature stage of growth, each with importance values above 10, while 
NDVI was the least important with a value lower than 5. 
The observed variability in the importance rankings of VIs across different growth stages 
highlights the dynamic nature of plant development and the consequential difference in the 
selection of these indices. This variability indicates the necessity for developing a stage-specific 
predictive model for PNU, which facilitates more precise and timely agricultural decision-making 
based on multispectral data. Similar results were observed by Barzin et al. (2020), which showed 
that the influence of VIs in the ability to predicting yield also varies with phenological stage of 
corn.   

Regression Models for PNU  
Linear Regression Model 

Linear regression models were developed to analyze the relationship between VIs and their ability 
to explain the variation in PNU at different growth stages of corn (Table 2). At the V6 stage, CIG 
had the strongest relationship with PNU, achieving a consistent coefficient of determination (R2) 
of 0.60 for both training and validation, closely followed by GNDVI with an R2 of 0.58 for training 
and 0.59 for validation. Both have a high WAI of 0.86 for validation. Additionally, NDRE and CIRE 
also showed high R2 values of 0.61. All VIs at R1 stage showed relatively lower R2 compared to 
V6 and R6, ranging from 0.35 to 0.36 for training and up to 0.48 for validation. The WAI also 
shows a pattern of improvement from training to validation, suggesting that despite lower R2 
values, the models' predictions align reasonably well with actual data trends when tested against 
unseen data. In the R6 stage, CVI stood out as the strongest predictor, with an R2 value of 0.61 
for training and 0.72 for validation. MTCI also demonstrated high predictive strength with R2 
values of 0.71, followed closely by CIRE and GNDVI, each with an R2 of 0.70. Similarly, high WAI 
values (0.84 to 0.90) across the board underscore strong agreement between the models' 

Fig. 3. Random Forest feature selection of highly correlated vegetation indices with plant nitrogen uptake at A) V6 B) R1 C) 
R6 Phenological Stage 
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predictions and observed data, highlighting the models' reliability at the R6 stage. Moreover, the 
observed trends suggest that the predictive power of VIs increases with the maturity of the plants, 
with higher performance noted particularly at the R6 stage. The increased ability of models in 
explaining the variation in PNU in the validation dataset at R6 compared to the training might be 
a result of model overfitting due to the low number of validation data points. The models should 
be tested again with a bigger dataset to confirm the model’s performance.  
Table 2. Linear regression model performance metrics for plant nitrogen uptake (Kg/ha) with different vegetation indices at 

critical phenological stages (VIs). 
Stage  Input Variables R2 RMSE Willmott Agreement R2 RMSE Willmott Agreement 

  Training Validation 

V6 

DVI 0.50 3.53 0.81 0.56 4.02 0.83 
CIG 0.60 3.18 0.86 0.60 3.81 0.86 

GNDVI 0.58 3.23 0.85 0.59 3.87 0.86 
EVI 0.39 3.91 0.74 0.54 4.09 0.85 

CIRE 0.52 3.46 0.82 0.61 3.76 0.86 
NDRE 0.53 3.43 0.83 0.61 3.77 0.87 

R1 

GNDVI 0.35 31.28 0.71 0.47 29.58 0.83 
NDRE 0.36 31.11 0.71 0.47 29.64 0.82 
CIG 0.36 30.94 0.72 0.48 29.39 0.83 

NDVI 0.35 31.32 0.71 0.31 33.80 0.74 
MTCI 0.35 31.35 0.70 0.45 30.11 0.82 
CIRE 0.36 30.89 0.72 0.46 29.75 0.82 

R6 

CVI 0.61 34.18 0.87 0.72 39.38 0.90 
MTCI 0.57 35.67 0.85 0.71 40.13 0.90 
DVI 0.54 37.06 0.83 0.68 41.93 0.90 

CIRE 0.56 36.35 0.84 0.70 40.94 0.89 
GNDVI 0.56 36.32 0.84 0.70 40.53 0.90 

CIG 0.55 36.83 0.84 0.69 41.17 0.89 

Multiple Linear Regression Model  

Five different MLR models were analyzed to investigate the best combination of VIs to predict 
PNU at different stages of plant growth (Table 3). At the V6 stage, as the number of input variables 
decreases, the models show a general trend of improving R2 values in validation, increasing from 
0.45 to 0.59, which suggests that simpler models (using fewer VIs) maintain or enhance prediction 
accuracy. 
Table 3: Multiple regression model performance metrics for plant nitrogen uptake (Kg/ha) with different vegetation indices 

(VIs) at different phenological stages  
Stage Input Variables R2 RMSE Willmott Agreement R2 RMSE Willmott Agreement 

  Training Validation 

V6 

DVI, CIG, GNDVI, EVI, CIRE, NDRE 0.58 3.02 0.88 0.45 3.78 0.88 

DVI, CIG, GNDVI, EVI, CIRE 0.58 3.07 0.87 0.53 3.60 0.88 

DVI, CIG, GNDVI, EVI, 0.59 3.07 0.87 0.56 3.59 0.89 

DVI, CIG, GNDVI 0.60 3.08 0.87 0.57 3.68 0.88 

DVI, CIG 0.61 3.08 0.87 0.59 3.67 0.88 

R1 

GNDVI, NDRE, CIG, NDVI, MTCI, 
CIRE 

0.30 30.29 0.74 0.21 30.54 0.80 

GNDVI, NDRE, CIG, NDVI, MTCI 0.32 30.30 0.74 0.26 30.44 0.80 

GNDVI, NDRE, CIG, NDVI 0.33 30.31 0.74 0.30 30.53 0.80 

GNDVI, NDRE, CIG 0.34 30.52 0.73 0.36 30.03 0.81 

GNDVI, NDRE 0.33 31.08 0.71 0.42 29.49 0.83 

R6 

CVI, MTCI, DVI, CIRE, GNDVI, CIG 0.67 29.43 0.91 0.38 49.53 0.87 

CVI, MTCI, DVI, CIRE, GNDVI 0.67 29.74 0.91 0.45 48.14 0.88 

CVI, MTCI, DVI, CIRE 0.68 29.75 0.91 0.49 47.96 0.88 

CVI, MTCI, DVI 0.59 33.88 0.87 0.66 40.00 0.90 

CVI, MTCI 0.60 33.92 0.87 0.66 41.13 0.89 

The model using DVI and CIG as input variables showed the best performance. It has the highest 
R2 and displays consistency between training and validation tests, with R2 values of 0.61 for 
training and 0.59 for validation, demonstrating that it generalizes well to new data without 
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overfitting. At the R1 stage, reducing the number of VIs consistently improved the validation R2 
from 0.21 to 0.42, suggesting that models with fewer variables are more effective at this stage. 
The reduction of VIs also resulted in lower RMSE for validation, decreasing to 29.49 kg/ha, which 
reflects improved model accuracy with simpler input configurations. WAI increases as the number 
of VIs decreases, peaking at 0.83, indicating that the model's predictions align better with the 
actual data as complexity is reduced. The model featuring GNDVI and NDRE as inputs showed 
the best validation performance. At R6 stage, the model using CVI, MTCI, and DVI provided the 
best balance between complexity and performance. It achieved R2 values of 0.59 for training and 
0.66 for validation, coupled with an RMSE of 40.00 kg/ha and WAI of 0.90. These metrics suggest 
high predictive accuracy and reliability. Despite a slight increase in RMSE from training to 
validation (33.88 to 40.00), this model maintains high agreement (WA). 
At each stage, the models with fewer VIs tended to show a better overall performance, indicating 
that simpler models often provide better or comparable predictive power and generalization 
capabilities. This pattern is particularly evident at stages R1 and R6, where reducing the number 
of VIs significantly improved validation metrics. 
Random Forest Regression Model  

Results for RFRs showed that all models at V6 showed a strong fit, maintained a high R2 for 
training (0.90). While all models at V6 maintained a high R2 during training, validation R2 values 
ranged from 0.74 to 0.78. Notably, there is a reduction in RMSE when the model complexity is 
decreased to four VIs (DVI, CIG, GNDVI, EVI), suggesting an optimal balance between model 
complexity and predictive power. This specific combination achieved the best validation 
performance, marked by the lowest RMSE (3.01 kg/ha) and the highest R2 (0.78), effectively 
capturing the essential features required for accurate predictions at this stage. However, a further 
simplified model using just DVI and CIG also showed promising results, with the same RMSE 
(3.01 kg/ha) and a slightly lower R2 (0.76), offering a good trade-off between model simplicity and 
accuracy. 
Table 4. Random Forest regression model performance metrics for plant nitrogen uptake (kg/ha) with different vegetation 

indices (VIs) at different phenological stages 
Stage Input Variables R2 RMSE Willmott 

Agreement  R2 RMSE Willmott 
Agreement 

  Training Validation 

V6 

DVI,  CIG, GNDVI,  EVI , CIRE , NDRE 0.90 1.71 0.96 0.74 3.18 0.90 

DVI , CIG , GNDVI, EVI , CIRE 0.90 1.73 0.96 0.77 3.06 0.91 

DVI , CIG , GNDVI, EVI 0.90 1.74 0.96 0.78 3.01 0.91 

DVI , CIG , GNDVI 0.90 1.78 0.96 0.76 3.10 0.91 

DVI , CIG 0.90 1.72 0.96 0.77 3.01 0.92 

R1 

GNDVI, NDRE, CIG, NDVI, MTCI, CIRE 0.88 15.07 0.94 0.53 33.99 0.78 

GNDVI, NDRE, CIG, NDVI, MTCI 0.88 15.26 0.95 0.55 33.64 0.79 

GNDVI, NDRE, CIG, NDVI 0.88 15.21 0.95 0.54 32.87 0.78 

GNDVI, NDRE, CIG 0.86 16.02 0.94 0.57 31.03 0.82 

GNDVI, NDRE 0.87 15.47 0.95 0.54 30.96 0.82 

R6 

CVI, MTCI, DVI, CIRE, GNDVI, CIG 0.90 18.39 0.97 0.71 42.69 0.88 

CVI, MTCI, DVI, CIRE, GNDVI 0.90 18.39 0.97 0.73 41.62 0.88 

CVI, MTCI, DVI, CIRE 0.90 18.75 0.96 0.75 40.57 0.89 

CVI, MTCI, DVI 0.90 18.70 0.96 0.73 41.52 0.89 

CVI, MTCI 0.89 19.07 0.95 0.70 43.99 0.86 
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A general trend was observed at R1, where reducing the number of VIs from six to three improved 
the validation RMSE and maintained or slightly enhanced the R2. The simplest model, using 
GNDVI and NDRE, had the best RMSE (30.96 kg/ha) for validation. However, the model that 
included GNDVI, NDRE, and CIG showed the best R2 (0.57) for validation, with more consistent 
R2 values between training and validation compared to other configurations. This model offered 
a better balance between consistency, complexity, and accuracy. At the R6 stage, all models 
showed similar R2 values for training showing good model fit. While analyzing the validation data, 
the model featuring CVI, MTCI, DVI, and CIRE showed the best performance, with the lowest 
RMSE (40.57 kg/ha) and highest R2 (0.75).  
Across all stages, there is a clear trend where models with fewer input variables tend to perform 
equally well or better for validation than their more complex counterparts. Contrasting these 
observations, Jang et al. (2024) reported that multivariate analysis provided greater accuracy than 
univariate analysis in predicting yield variability under different nitrogen applications. This finding 
suggests that while incorporating additional VIs might seem beneficial, it does not necessarily 
enhance model performance and may contribute to overfitting. Importantly, each developmental 
stage of vegetation monitoring appears to have an optimal VI configuration that maximizes model 
efficacy, underscoring the importance of adopting stage-specific modeling strategies. Similarly, 
research conducted by Shrestha et al. (2023) on corn yield prediction aligns with these insights. 
Their study highlighted the dynamic nature of canopy reflectance and emphasized the critical role 
of accounting for growth stages and environmental conditions to achieve accurate predictions.  
Moreover, although RFR models exhibit strong performance during training, the accuracy levels 
during validation varied significantly. This variation underscores the necessity of selecting model 
complexities judiciously to ensure both generalizability and high predictive performance across 
different plant growth stages. 

Comparative Analysis of Linear Regression, Multiple Linear Regression, and Random 
Forest Regression Models 
This study evaluated the performance of three different regression models—LR, MLR, and RFR—
across various plant growth stages using selected VIs to predict physiological nitrogen uptake 
(PNU). Overall, the RFR models generally delivered superior predictive performance.  
At the V6 stage, the LR model utilizing the CIG VI outperformed the simplest MLR model, which 
incorporated both DVI and CIG VIs. The addition of DVI did not significantly enhance PNU 
prediction, rendering the single VI LR model with CIG as the superior performer at this stage. 
Despite the strong performance of the LR model (R² = 0.60), the least effective RFR model still 
surpasses even the best LR model. Once again, at R1 stage the LR model performed better than 
the MLR models. The CIG VI, with an R² of 0.48 in validation, performed well. However, the RFR 
model, which includes GNDVI and NDRE, proved to be superior, achieving a higher R² of 0.57 in 
validation. At maturity, the RFR model, which uses CVI, MTCI, DVI, and CIRE, achieved the 
highest accuracy (R² of 0.90 in training and 0.75 in validation) and the lowest RMSE (40.57 in 
validation). Although the RFR model rates highly in terms of R² and RMSE, significant variation 
between these metrics in validation data suggests a decrease in model reliability under validation 
conditions.  

Conclusion  
The study utilized twelve multispectral sensor-based VIs calculated using different combination 
of green, blue, and red, NIR and red edge. Spearman correlation analysis of VIs with physiological 
parameters showed correlation can be seen at early and late stages. Higher number of VIs are 
correlated with physiological parameters and PNU at maturity. Especially with PNU, DVI is highly 
correlated at V6 stage, BNDVI at R1 stage and CVI at R6 stage. Further, correlation analysis and 
random forest feature selection underscore the importance of selecting stage-specific VIs for 
precise predictions, highlighting the distinct predictive capabilities of CIG at the V6 stage, GNDVI 
and NDRE at the R1 stage, and CVI at the R6 stage.   
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The findings revealed that while the RFR model generally provided superior predictive 
performance, its effectiveness was hindered by the relatively small dataset of just 72 samples for 
each stage. This small sample size was not sufficient to fully leverage the potential of machine 
learning models, which typically require larger datasets to capture and generalize complex 
interactions effectively. While the current study provides valuable insights into the specific VIs that 
are effective at different growth stages, it also highlights the challenges faced when working with 
limited datasets in complex predictive modeling scenarios. This studied in being repeat in two 
separate locations to test the robustness of the predictive models.  
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