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Abstract.  
Crop yield variability is often attributed to spatial variation in soil properties. Remote sensing 
offers a practical approach to capture soil surface properties over large areas, enabling the 
development of detailed soil maps. This study aimed to predict cation exchange capacity (CEC), 
a key indicator of soil quality, in the agricultural fields of the Lower Mississippi Alluvial Valley 
using digital soil mapping techniques. Approximately 14,000 soil samples were collected from 
agricultural fields across the study area between fall 2019 and fall 2023, which provided ground 
reference information. A bare soil composite image was created from Landsat 9 imagery drawn 
from the months of October to April of each year from 2019 to 2023 using Google Earth Engine. 
Cation exchange capacity was predicted using a Random Forest model based on the 
reflectance of bands 2 (blue, 0.45 - 0.51 μm), 3 (green, 0.53 - 0.59 μm), 4 (red, 0.64 - 0.67 μm), 
5 (near infrared, 0.85 - 0.88 μm), 6 (short-wave infrared 1, 1.57 - 1.65 μm), and 7 (short-wave 
infrared 2, 2.11 – 2.29 μm). The model’s performance was evaluated using an 80/20 
training/testing split. Overall, the predictive model performed successfully, achieving an R-
squared value of 0.63 and a root mean squared error of 5.6 meq 100 g-1. The most important 
spectral bands were short-wave infrared 2 and near infrared. These results suggest that digital 
soil mapping techniques can effectively map CEC in this region, reducing the need to 
extensively sample for future studies. 
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Introduction 
Crop yield variability, often attributed to spatial variation in soil properties, can be addressed by 
exploring the relationship between remotely sensed properties and agronomic relevance.  As a 
tool for precision agriculture, satellite-based sensors offer a practical approach to capture soil 
surface properties over large areas (Ben-Dor et al., 2009), enabling the development of detailed 
soil maps, a process referred to as “digital soil mapping” (DSM). An alternative to traditional 
methods (Lagacherie & McBratney, 2006), DSM uses readily available spatial data like remotely 
sensed imagery to develop models that can predict soil properties. Machine learning algorithms 
have been applied to DSM as early as the 1990s (Lagacherie, 2008). Brown et al. (2006) 
demonstrated the relative strength of decision trees for estimating soil parameters such as clay, 
soil carbon, and cation exchange capacity (CEC); decision trees also outperformed geostatistical 
techniques such as kriging for DSM (Vandana et al., 2024). While DSM requires bare soil (Dobos, 
2006), techniques like time series composites from multiple satellite images can overcome this 
limitation (Demattê et al., 2016). The success of these techniques in other regions (Demattê et 
al., 2018; Rizzo et al., 2020; Rogge et al., 2018; Safanelli et al., 2020) suggests they may be 
appropriate for mapping the Lower Mississippi Alluvial Valley with its highly variable soils (Logan, 
1916). Moreover, the window between crop cycles in the region offers a multi-month fallow period 
with bare soil imagery. 
Heil et al. (2018) found that soil parameters offered a better basis for delineation of management 
zones than yearly variation in yield. Cation exchange capacity reflects a soil's capacity to retain 
exchangeable cations that could be absorbed or released at a defined pH (Huang et al., 2015). 
High CEC soils exhibit improved fertility, structure, and buffering capacity against chemical 
changes; the end result of which is that high CEC is a key indicator of soil quality (Charman & 
Murphy, 2007; Larson & Pierce, 1994; Masto et al., 2008). Precise spatial mapping of CEC allows 
for site-specific management practices, such as variable-rate application of fertilizers, seeds, and 
herbicides (Lacoste et al., 2014), and thus serves as a tool for farmers to optimize crop 
performance and improve resource management. However, conventional methods involving field 
data collection are recognized for being inefficient, requiring significant time, financial resources, 
and manual labor (Minasny & McBratney, 2016). Therefore, this study seeks to apply a Random 
Forest (RF) model to predict CEC across a large portion of Lower Mississippi Alluvial Valley.  

Methods and Materials 
The study area covers 44,590 km2 in the Lower Mississippi Alluvial Valley, including portions of 
northwest Mississippi, southeast Arkansas, and northeast Louisiana. Centuries of seasonal 
flooding from the Mississippi River and its tributaries have deposited deep alluvial soils, rich in 
nutrients but exhibiting significant spatial heterogeneity in texture, structure, depth, and drainage 
due to variations in overflow frequency (Snipes, 2005). Approximately 14,000 soil samples were 
collected from agricultural fields representing 0-15 cm depth on a ~0.4-ha grid across the study 
area from 2019 to 2023. Cation exchange capacity was determined for all soil samples based on 
the Mehlich III extraction of calcium, magnesium, potassium, sodium, and an estimate of 
exchangeable hydrogen obtained from the buffer pH. A multi-temporal bare soil composite image 
representing the median reflectance for 2021-2024 was generated utilizing the Google Earth 
Engine platform (Hird et al., 2017) using atmospherically corrected Landsat 9 images drawn from 
the fallow season (October to April). Bare areas were isolated by applying masks (as outlined in 
Table 1). Reflectance bands in the composite image included blue (band 2, 450-510 nm), green 
(band 3, 530-590 nm), red (band 4, 640-670 nm), near infrared (band 5, 850-880 nm), and short-
wave infrared (band 6, 1570-1650 nm; band 7, 2110-2290 nm) (Demattê et al., 2020; Demattê et 
al., 2018; Sorenson et al., 2021). Finally, a RF model was developed utilizing the 'ranger' package 
(Wright & Ziegler, 2015) in program R to predict soil CEC across the study area based on 
reflectance values from a bare soil composite image and soil test CEC. To ensure robust 
evaluation and minimize farm-specific biases, stratified K-fold cross-validation (K=5) was 
employed. Data were first stratified by farm, and within each stratum, an 80/20 split was used for 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

3 

training and testing. For each combination of train and test data, a model was generated, and the 
average result was extracted. The model performance was evaluated using several metrics 
including: the square root of the mean squared error (RMSE), the coefficient of determination 
(R²), the ratio of performance to deviation [RPD, (Williams, 1987)], and bias.  
 

Table 1. Vegetation indices and their associated thresholds used for generating the bare soil composite image 
Vegetation Index  Equation Threshold 

Normalized difference vegetation index (NDVI)  𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝑁𝐼𝑅 + 𝑅𝑒𝑑⁄  0.3 
Normalized difference water index (NDWI)  𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅 𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅⁄  0.5 

Normalized burn ratio 2 (NDR2)  𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2 𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2⁄  0.1 
Normalized different index 7 (NDI7)  𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2 𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2⁄  0 

Abbreviations: NIR, near infrared; SWIR, short-wave infrared. Reflectance bands: green (530-590 nm); red (640-670 nm); NIR (850-
880 nm), SWIR1 (1570-1650 nm); SWIR2 (2110-2290 nm). 

Results and Discussion 
Cation exchange capacity values ranged from 3.7 to 50.4 milliequivalents per 100 grams of soil 
(meq 100g⁻¹), with a mean of 22.5 meq 100g⁻¹ and a median of 22.2 meq 100g⁻¹. The standard 
deviation for CEC was 9.25 meq 100g⁻¹. This suggests that the sampling captured significant 
variability within the study area, providing a good representation of the region's soil 
characteristics. The CEC model exhibited an R² of 0.64, a RMSE of 5.54 meq 100g⁻¹, and a RPD 
of 1.67 (Fig. 1). The most important spectral bands were short-wave infrared 2 and near infrared. 
Since clay share absorption features within the short-wave infrared band (Rossel & Behrens, 
2010), the model captures the CEC variability indirectly through its relationship as observed in 
other studies (Sorenson et al., 2022). This study achieved performance that was comparable or 
better than similar previous research (Gallo et al., 2018; Rizzo et al., 2020; Safanelli et al., 2020), 
but the need for improvement is clear. Results from other studies support improvements to model 
performance through the addition of covariates such as topography, climate, and soil texture 
(Bouslihim et al., 2024; Cambule et al., 2013; McBratney et al., 2003; Xia et al., 2022). However, 
there are some limitations inherent in the study area to meaningful inclusion of some covariates 
(e.g., the widespread prevalence of laser land leveling, which effectively removes the influence of 
topography), and therefore careful 
consideration of potential covariates is 
warranted. 

Summary 
This study utilized DSM techniques with RF 
models to predict CEC in the Lower Mississippi 
Alluvial Valley. The model achieved fair 
accuracy, comparable to or exceeding the 
results of previous remote sensing applications 
for similar purposes. While this study 
demonstrates the effectiveness of DSM, the 
model could have benefitted from additional 
data, and future efforts should seek to include 
such parameters as soil moisture, topography, 
and climate (where such factors exhibit 
sufficient variability or where utility is not limited 
by external factors). 

Acknowledgments 
This research was funded by USDA NIFA 
CARE award #2022-68008-36356.  

 
Figure 1. The relationship between predicted and 

observed cation exchange capacity (meq 100g-1) in the 
validation dataset. The dashed line represents the 1:1 

line for perfect agreement, while the solid line represents 
the linear regression line. 
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