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ABSTRACT 

Non-destructive methods for estimation of vegetative biomass have been 
developed using several remote sensing strategies as well as physical 
measurement techniques. An effective method for estimating biomass must be at 
least as accurate as the accepted standard for destructive removal measurement 
techniques such as a forage harvester or quad harvest strategies. In large part 
vegetative biomass is considered a function of canopy or plant height. 
Subsequently, a method or piece of equipment which can estimate a height 
component is typically implemented for collecting measurements and from those 
measurements a relationship is created between height and mass. A number of 
sensing technologies have been examined for such applications. This study 
examined several types of ground-based sensing strategies for use in estimation of 
in-field forage biomass. A forage production trial consisting of multiple fertilizer 
treatments and mixed as well as monoculture species treatments was employed as 
an evaluation platform for the performance of the sensor estimation as compared 
to physical removal harvests. Predictive models were constructed and 
comparisons of sensor based estimates made to physically measured biomass 
harvested by hand from quad harvests as well as machine harvests using a forage 
harvester. Statistical analysis for both methods of harvest and sensor estimated 
harvests were performed as would normally be done according to treatment 
structure. Mean estimates were examined for evaluation of differences between 
biomass evaluation methods for each treatment. This strategy was employed in 
order to evaluate the difference if any on the overall research implications for data 
which was generated from physical collection techniques as well as sensor 
estimated data. Ultimately differences were minimal and did not contribute to 
disparity in implications for research aspects of the trial. Additionally, statistical 
analysis was performed on a subset of the data for repeatability. Paired identical 
plots were compared using Limits of agreement analysis to evaluate the 
repeatability of each technique. This analysis produced more narrow error bands  

 

 



for the sensing data as compared to the harvested data which suggests the sensing 
data is at least as stable as the physically harvested data. Subsequently, using 
ground-based mobile sensing for data collection which are incorporated into a 
biomass estimation model could prove to be effective in rapid accurate in field 
biomass estimation. 
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INTRODUCTION 

 
An effective method for in-field estimation of biomass on a dry matter 

(DM) basis must be approximately as accurate as the accepted standard for 
destructive removal measurement. Non-destructive methods for estimating dry 
biomass have been developed using plant or canopy measurements (Tucker,1980; 
Fricke and Wachendorf, 2013). In large part, vegetative mass is considered a 
function of canopy or plant height (Machado et al., 2002; Lati et al., 2013). 
Devices such as the rising plate meter, capacitance meter, and meter stick are 
typically implemented for physical measurements of vegetation height 
(Tucker,1980; Sanderson et al., 2001; Fehmi and Stevens, 2009; Doughtery et al., 
2013). The limitations associated with these techniques are labor and time needed 
to collect the measurements as well as variation due to vegetation growth 
characteristics and spatial variability. This may present difficulty in creating a 
robust estimation model, which is representative for a comprehensive range of dry 
biomass volumes that may be encountered. Alternatively, remote sensing 
strategies may overcome some of the limitations encountered with physical 
measurement strategies. Many more measurements can be taken in a considerably 
smaller amount of time and generally a much larger area can be sampled. This 
increased magnitude in data collection provides opportunity for development of a 
statistically robust estimation model as a more comprehensive representation of 
the area of interest (AOI) can be collected. Proximal optical sensors have been 
utilized for measuring height and estimating DM  in pastures (Hutchings et al., 
1990; Fricke et al., 2011; Fricke and Wachedorf, 2013)  canopy characterization 
in orchards (Zaman and Salyani, 2004; Planas et al., 2011;),  phyto-sanitary tissue 
in viticulture (Mazzetto et al., 2008), as well as crop production scenarios in 
wheat (Triticum aestivum L.) (Scotford and Miller, 2004), cotton (Gossypium 
hirsutum L.) (Sui, 2004), and corn (Zea mays L.) (Aziz et al., 2004). Spectral 
proximal sensors have been effectively used for height measurements in wheat (; 
Fumiki, 2009; Ehlert et al., 2010), corn (Selbeck et al., 2010) rape (Brassica 
napus L.), rye (Secale cereale L.), pasture (Ehlert et al., 2008), standing forests 
(Henning and Radtke, 2006), and miscellaneous vegetation (Hopkinson et al., 
2006). Fricke and Wachendorf (2013) examined the combination of ultrasonic 
and active spectral reflectance for accuracy in white clover (Trifolium repens L.), 
red clover (Trifolium pratense L.), alfalfa (Medicago sativa L.) with perennial 
ryegrass (Lolium perenne L.) for dry biomass estimation. Fricke and Wachendorf 
(2013) reported R2 = 0.99 in estimation of biomass for monoculture alfalfa and 



0.90 in alfalfa perennial ryegrass mixtures. Scotford and Miller (2004) reported 
standard errors between 4.6 and 7.2 cm estimation of canopy height in wheat 
when combining ultrasonic and Normalized Difference Vegetation Index (NDVI). 
Similar examinations were made in corn by Freeman etal (2007) using NDVI and 
ultrasonic sensors where an R2 = 0.62 was reported for forage mass. Spectral 
strategies seek to base estimations on reflectance or absorption intensities of 
wavelengths from vegetation and/or soil (Hong et al., 2007; Jones et al., 2007; 
Erdle et al., 2011; Fricke and Wachendorf, 2013). This is an effective strategy but 
can become less accurate upon full canopy closure when a point of reflectance 
saturation may occur (Erdle et al., 2011; Gnyp et al., 2014;). Subsequently, 
canopy closure early in vegetative development, may limit spectral methods for 
biomass estimation. There is limited published research on the use of sensor 
system estimation models for forage measurement. Therefore, the objective of this 
research was to develop a sensor system and estimation model for forage mass 
measurement. 

 
MATERIALS AND METHODS 

 
Alfalfa and Bermudagrass Mixture Experiment 

 
The alfalfa (Medicago sativa L. ‘600RR’)-bermudagrass [Cynodon 

dactylon (L.) Pers. ‘Midland 99’] mixture trial was conducted at the Noble 
Foundation Red River Research and Demonstration Ranch near Burneyville, OK 
(33.88o N, 97.28o W; elevation 234 m.). The soils are characterized as 
Slaughterville fine sandy loam (coarse-loamy, mixed, superactive, thermic Udic 
Haplustolls) with N-nitrate at less than 5 g kg-1 , soil test P value of 64 g kg-1, K 
of 52 g kg-1 (amended 178.5 g kg-1  0-0-60), B of 0.17 mg kg-1 (amended 74.5 mg 
kg-1) and pH of 6.3. Alfalfa was inter-seeding alfalfa into an established 
bermudagrass sward in fall of 2012 and spring of 2013. Data was collected the 
following spring and summer of each establishment year. Additionally an 
adjacent experiment with eight replicates of 1.5 x 6 m bermudagrass only plots 
treated with seven different levels of N fertilizer ranging from 0 to 224 g kg-1 N 
was established and harvested concurrently with the alfalfa-bermudagrass mixture 
experiment. Measurements were taken from all plots using a meter stick and a 
0.1-m2 aluminum rising plate disk meter (NZ Agriworks LTD t/a Jenquip, 
Feilding, NZ) (Interrante et al., 2012). Plot biomass weights were recorded on a 
whole plot basis and converted to a dry matter basis. Active and passive spectral 
as well as proximal sensors were employed for data collection. A ground-based 
mobile platform in the form of an electric golf cart was utilized for moving 
sensors across the trial areas. The cart was custom-fitted with a mast extending 
from the front upon which all sensors were attached and power was routed 
through a common switch by which data acquisition could be initiated or 
terminated. The sensor array measured approximately 25 cm wide and 45 cm 
from front to back. Each plot was driven across at 3.2- 4.8 km hr-1 resulting in 
approximately 5 seconds of data acquisition per plot and approximately 25-30 
averaged senor readings per plot resulting in  4-5 readings per linear m.  

 
Wheat Experiments 



 
Two wheat trials were also employed for sensor data collection. The first 

wheat experiment was initiated at the Noble Foundation Dupy farm near Gene 
Autry, OK (34.29o N, 96.99o W; elevation 220 m.).  The soils are characterized as 
Dale silt loam with pH of 7.3 and N-nitrate, P, and K of 14, 31, and 132 g kg-1, 
respectively. Approximately 1200 (1.5 x 3 m) plots of various wheat varieties 
were planted as part of variety selection trials. These were arranged in a two 
replication RCBD design. The second wheat experiment was initiated at the 
Noble Foundation Unit 3 farm in Ardmore, OK (34.17o N, 97.08o W; elevation 
268 m.). The soils are characterized as Konsil loamy fine sandy with pH of 6.8 
and N-nitrate P, and K of 28, 50, and 111 g kg-1, respectively. This trial contained 
136 (1.5 x 3 m) plots. Data were collected in the spring of 2014. Wheat dry matter 
was estimated by hand clipping a 0.16 m2 quadrat which were dried in a forced 
draft oven at 50°C for 7 days prior to weighing and reported as kg ha-1 on DM 
basis. Sensor data was collected from the wheat trials using a gasoline-powered 
Spider high-clearance tractor (LeeAgra, Inc., Lubbock, TX). The factory installed 
spray mast attached to the front of the tractor was converted to a manifold 
configuration to accommodate the sensor array. All sensors were powered using 
the onboard factory installed 12 V power supply. The sensor array measured 
approximately 20 cm long by ten cm wide. Each plot was driven across at 1.6-3.2 
km hr-1 resulting in approximately 3 seconds of data acquisition per plot. This 
amount of time provided approximately 25-30 sampled values per plot.  

 
All Trials-Data Acquisition/Processing 

 
Positional data was acquired during data collection for all trials using a 

GPS with OmniStar XP GNSS positioning at10 Hz such that multiple locations 
could be recorded within each plot. For all experiments, analog data were 
acquired by a laptop or notepad via USB connection to a data acquisition module 
(DAQ) or direct connection to the sensor. All data for all sensors was collected 
simultateously.For all experiments, all streams of data were captured real-time 
using Agri-logger and WinWedge Pro© software (TAL Technologies Inc., 
Philadelphia, PA). These software applications were not used simultaneously for 
concurrent data collection. Agri-logger is a proprietary software application was 
developed to accommodate multi sensor system data acquisition. WinWedge Pro 
was also used as a commercial comparison. Toggling of sensor power was 
necessary for plot delineation when acquiring data with WinWedge pro so as to 
insert skips in the data streams. This strategy required combining the data from all 
streams post-processing. Conversely, Agri-logger enabled the user to insert plot 
identifiers real-time as the data were acquired. Data from the passive radiometer 
was combined with other data post processing. Time intensive log file 
combination and plot delineation was necessary when data was acquired using 
WinWedge Pro. Data acquired using Agri-logger was manually edited to remove 
non-plot areas but due to the ability to mark the data as it was acquired this 
process was much less time intensive. Estimation models were generated by 
including all parameters measured for biomass and canopy height in partial least 
squares regression using SAS PROC PLS with cross validation as well as 
CVTEST and NOINT option for selection of simplest models (SAS, 2012; ; Chen  



Table 1. Centered Scaled Parameter Estimates (CPSE) and Variable Importance 
Plot (VIP) scores for sensor parameters considered for model inclusion. 
Height Sensor 1 (H1) Height Sensor 2 (H2) Height Sensor 3 (H3). 

 
Sensor Measurement CPSE VIP 
           Dry Matter 
H1 0.33 1.37 
H2 0.18 1.32 
H3 0.02 1.11 
NDVI -0.07 1.10 
690 nm -0.26 0.90 
650 nm -0.09 0.83 
590 nm 0.10 0.74 
450 nm -0.06 0.72 
520 nm 0.08 0.71 
570 nm 0.04 0.70 
530 nm 0.07 0.69 

 
      Canopy Height 

H1 0.25 1.08 
H2 -0.40 1.01 
H3 0.16 0.95 

 
Statistical Analysis and Modeling 

 
and Zhu, 2013; Luo et al.,2014; Wuerschum et al.,2014). The PLS procedure was 
also selected as cross validation and model training can be used to optimize 
estimation accuracy. Parameters included in biomass and canopy height 
estimation models were selected by evaluation of Variable Importance Plot (VIP) 
values and Centered Scaled Parameter Estimate (CSPE)  values (Mehmood et al., 
2012) (Table 1). This strategy was adopted in order to achieve an acceptable 
balance in estimate accuracy and model /sensor system complexity by excluding 
less contributive variables and equipment from the system. Approximately two-
thirds of the total data (approximately 2300 samples) were used for construction 
of non-species specific (“ALL”) estimation models for biomass, 1095 samples for 
sensor-based canopy height estimates. The remaining one-third was employed as 
validation data.  Alternatively, smaller calibration/ validation data sets were used 
for by species modeling. Four sensor models, two physically-measured height 
models, and one plate meter model for biomass estimation as well as two models 
for canopy height estimation were generated for estimation performance 
evaluation (Table 2). Regression analyses were performed to evaluate 
relationships between measured and estimated values for biomass and canopy 
heightusing SAS PROC REG for samples from the validation data only (SAS, 
2012). Additionally, accuracy of estimation models was evaluated on a percent 
basis by examining the mean of the percent difference from each sample 
measurement and its associated modeled estimate (Equation 1). Agreement of 
measured and estimated values and variation in repeatability were examined using 
limits of agreement analysis (LOA) for bermudagrass plots only (113 pairs of 
plots). Only bermudagrass plots were used in this analysis due to the fact that 
plots were homogenous and side by side such that an expectation of replication 
was appropriate and is a requirement for the LOA analysis (Bland and Altman,  



Table 2. Dry biomass and canopy height estimation model label key for sensor 
and physical measures.  

Model Number Estimate Species Specific Number Of Sensors 
1 Dry Biomass Y 3 
2 Dry Biomass N 3 
3 Dry Biomass Y 2 
4 Dry Biomass N 1-2 
5 Dry Biomass Y Meter Stick 
6 Dry Biomass N Meter Stick 
7 Dry Biomass N PlateMeter 
8 Canopy Height Y 2 
9 Canopy Height N 2 

 
Equation 1. Calculation of Mean Percent Error 

ݎ݋ݎݎܧ ݐ݊݁ܿݎ݁ܲ ݊ܽ݁ܯ = ෎݊ܽ݁ܯ |Estimate െ Measured|
ݏݏܽܯ ݕݎܦ ݀݁ݎݑݏܽ݁ܯ

ଵ

௡

 

 
1995). To address competing indications of model performance, an Error, 
Consistency, and Mean Agreement (ECMA) score was calculated for ranking 
estimation effectiveness of each model. The score equally weighted the model 
error consistency (standard deviation of percent error), accuracy (mean of percent 
error), and the agreement of the mean of measured to estimated values (R2 of 
estimate to measured, as well as difference in mean of estimate and measured) 
(Equation 2; Table 3).LSD mean estimate groupings were examined as a post hoc 
analysis ofaccuracy for biomass estimates as well as canopy height using 
validation samples only. This was done to illustrate the efficacy of using biomass 
or canopyheight estimations calculated from sensor readings in place of 
destructive harvesting methods or physical height measurements for research trial 
evaluations. Biomass comparisons groups were delineated based on destructively 
measured biomass in 1000 kg ha-1 increments from 0-6000 kg ha-1. Canopy height 
comparisons were based on ten physically-measured canopy height classes at 10 
cm increments. These comparisons were performed using PROC MIXED (SAS, 
2012) in combination with the PDMIX800 macro (Saxton, 1998; Lauriault et al., 
2013). 

 
RESULTS AND DISCUSSION 

 
All height sensor parameters were associated with VIP values greater than 

the exclusionary threshold of 0.8 for both biomass and canopy height. Normalized 
Difference Vegetation Index was selected as the spectral component for inclusion 
in biomass model construction based on greater Pearson coefficients and VIP 
values as compared to other spectral data. It must also be noted the CPSE 
associated with NDVI was not furthest from zero for all spectral data examined 
(Table 1).With the exception of alfalfa, sensor estimation models consistently 
offered higher percent DVV explanation for both biomass and canopy height than 
other forms of measure (Table 4). Limits of agreement analyses illustrated the 
variation in the standard method of destructively sampled measurement to be -
1517 to1517 kg ha-1. The variation of the two sensor model estimation was -1558 



Equation 2.Calculation of Error, Consistency, and Mean Agreement (ECMA) 
Score  

ܣܯܥܧ =
݀݁ݎݑݏܽ݁݉ ݕܾ ݁ݐܽ݉݅ݐݏ݁ ݎ݋݂ ݊݋݅ݐܽ݊݅݉ݎ݁ݐ݁݀ ݂݋ ݐ݂݂݊݁݅ܿ݅݁݋ܥ)

݊ܽ݁݉ ݁ݐܽ݉݅ݐݏ݁| െ݉݁ܽ݀݁ݎݑݏ ݉݁ܽ݊| )
ݎ݋ݎݎ݁ ݐ݊݁ܿݎ݁݌ ݊ܽ݁݉ כ  ݎ݋ݎݎ݁ ݐ݊݁ܿݎ݁݌ ݂݋ ݊݋݅ݐܽ݅ݒ݁݀ ݀ݎܽ݀݊ܽݐݏ

 
Table 3. Highest ranked sensor models based on Error, 

Consistency, and Mean Agreement Score 
(ECMA) 
Forage Type Model ECMA Score 
                            Dry Matter (kgha-1) 
ALL 4 0.057 
Alfalfa 1 0.150 
Bermuda 3 0.069 
Wheat 1 0.013 
MIX 4 0.174 
                               Canopy Height (cm) 
ALL 9 0.99 
Alfalfa 9 0.04 
Bermuda 8 4.05 
MIX 9 0.88 

 
to 1582 kg ha-1. The combination sensor model produced the most repeatable 
results with a variation residual of 106. Subsequently, estimation models 
implemented for biomass based on destructively harvested values would likely 
not produce estimates with greater precision than that of the destructively 
harvested measures. Sensor models consistently overestimated low biomass 
values and underestimated high values. The LSD values for all estimation models 
were greater than those for the measured values. This indicated more variation 
within estimates which is most likely also influenced by the fact the classes were 
derived from sorted measured values. Subsequently, overlapping of mean 
estimate groups occurred due to greater LSD values for the estimated biomass as 
compared to measured. Additionally, sensor estimates for biomass had a larger 
range than that produced from measured height based models although neither 
modeling strategy duplicated measured biomass. Models were though effective in 
grouping biomass estimates for measured classes almost exactly the same as the 
measurements themselves dictated. The only exceptions to this occurred in the 
mixture and the ALL forage category, and occurred only at the highest biomass 
levels (Table 5).  
 

CONCLUSION 
 

Using mobile sensor systems for biomass estimation can enable a greater 
rate of data acquisition providing an appropriate software option for acquisition is 
employed. Results from this study illustrate modeling biomass from height sensor 
derived data alone can provide estimates accurate enough for most management 
and research applications. This is an important distinction as the cost associated 
with an approximately 1% increase in DVV explanation was facilitated by 



spectral components. This would come at a cost of US $4000in addition to the 
US$1500 cost for the basic system without spectral components. Time savings of 

 
Table 4. DVV explaination for dry biomass and canopy height by sensor and 

measured estimation models and model equations. 
Dry Matter (kgha-1) 
 Canopy Height Plate Meter H2 H1 
Alfalfa 68.5% 18% 55% 64% 
Bermuda 69% 23% 75% 78% 
Wheat 

  
72% 74% 

MIX 67.8% 19% 73% 73% 
ALL 64.4% 17% 62% 58% 
 3 Sensor Model 3 Sensor Equation 2 Sensor Model 2 Sensor Equation 
Alfalfa 
 

65.7% 
 

(46.22*H1+ 
47.83(H2*NDVI) 

65.5% 
 

(46.9*H1)+ 
(43.13*H2) 

Bermuda 
 

80.5% 
 

(65.3*H1)+ 
58.3(H2*NDVI) 

81% 
 

(65.7*H1)+ 
(49*H2) 

Wheat 
 

75% 
 

(118*H1)+ 
108(H2*NDVI) 

74% 
 

231*H1 
 

MIX 
 

78.9% 
 

70.5(H1*NDVI)+ 
63.7(H2*NDVI) 

78.5% 
 

(61.3*H1)+ 
(53.9*H2) 

ALL 
 

65.8% 
 

1.6(H1*H2)+ 
(2624*NDVI) 

64.5% 
 

(53.5*H1)+ 
(50*H2) 

Canopy Height (cm) 
  Plate Meter H2 H1 
Alfalfa  <0% 57% 69% 
Bermuda  <0% 67% 77% 
MIX  <0% 54% 61% 
ALL  6.1% 55% 64% 
   2 Sensor Model 2 Sensor Equation 
Alfalfa 
   

70% 
 

(0.46*H1)+ 
(0.42*H2) 

Bermuda   77% 1.02*H1 
MIX   64% 0.017(H1*H2) 
ALL 
   

65% 
 

(0.74*H1)+ 
(0.2*H2) 

 
a factor of 60 in the field and a factor of 10 for data processing were also 
observed when using this system. In order for the greatest level of precision to be 
obtained, it is likely necessary to implement specific models for predominant or 
monoculture species though a general estimation model can produce acceptable 
estimates. It may also be possible to stratify implementation of models based on 
height measurement. Enabling evaluation of biomass production without exerting 
influence on the system by vegetation removal would be useful in research 
scenarios where removal could negatively impact the longevity and homogeneity 
of trials. Ultimately real-world production management decisions could be made 
in a much more rapid manner such as stocking rate adjustments or forage 
harvesting intervals. Further examination of spectral data as model components 
will be necessary as there will likely be scenarios where these data will be more 
contributive than the observations made during this study. Future examination of 
additional species is necessary to develop an optimally robust collection of  



Table 5. Mean estimates for destructively measured Dry Matter (DM), 
sensor estimates and measured height estimates derived from 
superior models indicated in table 3. 
Forage 
Class 

DM 
Class 

Measured 
kgha-1 

Sensor 
Estimates  

Measured Height 
Estimate 

Alfalfa 1 780E 1170D 1074D 
Alfalfa 2 1500D 1689C 1567C 
Alfalfa 3 2474C 2420B 2170B 
Alfalfa 4 3266B 2964A 2767A 
Alfalfa 5 4432A 3460A 3185A 
LSD 

 
202 401 425 

Bermuda 1 612F 1321E 1470E 
Bermuda 2 1545E 1795E 2522D 
Bermuda 3 2692D 2624D 3208C 
Bermuda 4 3425C 3448C 4400B 
Bermuda 5 4529B 4720B 5110AB 
Bermuda 6 6332A 5617A 5850A 
LSD 

 
489 686 881 

MIX 1 759G 1244F 2024F 
MIX 2 1468F 1480E 2616E 
MIX 3 2430E 2319D 2966D 
MIX 4 3446D 2816C 3238C 
MIX 5 4466C 4102B 4961B 
MIX 6 5583B 4527A 5406A 
MIX 7 6410A 4031B 4885AB 
LSD 

 
145 227 328 

Wheat 1 709F 1376D 
 Wheat 2 1425E 1631D  

Wheat 3 2505D 2553C  
Wheat 4 3494C 3934B  
Wheat 5 4441B 4520A  
Wheat 6 5676A 4977A  
LSD 

 
248 486  

All 1 753G 1241E 1768F 
All 2 1468F 1495D 2336E 
All 3 2460E 2316C 2742D 
All 4 3442D 2719B 3087C 
All 5 4465C 3931A 4519B 
All 6 5725B 4188A 4895A 
All 7 6410A 4031A 4348B 
LSD 

 
130 256 299 

 
models for estimating DM across different environments and for a variety of 
research and production systems.  
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