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Abstract. To increase the utilization of satellite remote sensing data in precision agriculture, it is 
necessary to retrieve the most relevant variables from the satellite signals so that the retrievals 
can be directly utilized by agricultural management entities. The variables that make up the state 
vector description of existing crop growth models provide inherent relevance to on-farm decision 
making because they can be used to predict future crop status based on changing farm inputs. In 
this study, the information content of MODIS spectral surface reflectance measurements with 
respect to the state variables in the STICS crop growth model for maize is analyzed. Specifically, 
it is shown that the MODIS measurements can predict the state variables of an ensemble average 
of STICS crop growth simulations with R2 values of up to 0.75 using a bidirectional long short-
term memory (BLSTM) network. The analysis is performed using a training, validation, test data 
division scheme typical in machine learning using county-median measurements from 36 counties 
across the United States; data from 2006, 2008, 2010, 2012, and 2014 is used for training, data 
from 2005, 2009, and 2011 is used for validation and data from 2007 and 2013 is used for testing. 
Significant correlation of the harvested organ biomass, subsurface soil water, and phenological 
stage state variables with the MODIS measurements is shown in this study, implying that the 
remote sensing signal can be used for significantly more than for retrieving the leaf area index. 
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Introduction 
Coupling remote sensing measurements with crop growth models (CGMs) has long been an 

objective of the agronomy and remote sensing communities (Yuping, et al., 2008) (Ines, Das, 
Hansen, & Njoku, 2013) (Fang, Liang, Hoogenboom, Teasdale, & Cavigelli, 2008) (Weiss, et al., 
2001) (Machwitz, et al., 2014) (Thorp, et al., 2012) (Zhang, et al., 2016) (Lobell, Thau, Seifert, 
Engle, & Little, 2015) (Jin, Azzari, & Lobell, 2017). Incorporating crop growth modelling into 
remote sensing retrievals has the potential to reduce the uncertainty in the retrievals by 
introducing the constraints on the growth dynamics imposed by the biology. Further, the 
description of the vegetation state retrieved by coupling crop growth models is potentially more 
useful to the precision agriculture community because it can be directly used in a CGM to model 
the response of the crop to changes in the agromanagment practices and climate. Unfortunately, 
there have been difficulties in coupling remote sensing measurements with CGMs because: 

a.) Canopy radiative transfer inversion algorithms have great challenges retrieving variables 
beyond the leaf area index (LAI) from the top-of-canopy solar reflectances, and 

b.) It is difficult to construct a model that relates the CGM state variables and the top-of-
canopy solar reflectances, and 

c.) Microwave-based measurements, such as those of surface soil moisture, generally have 
a very coarse pixel size (tens of kilometers) or very low revisit times that limits their 
precision agriculture applications 

The difficulty in retrieving more variables than the LAI occurs because the level of ill-
posedness in the canopy radiative transfer (RT) inversion problem rises quickly as one attempts 
to retrieve more variables (Baret, Houlès, & Guérif, 2007) (Combal, et al., 2003) without the 
mechanistic constraint of the growth dynamics. As a result, the LAI is often the only solar-reflective 
remote sensing retrieval coupled to the crop growth models (Ines, Das, Hansen, & Njoku, 2013) 
(Fang, Liang, Hoogenboom, Teasdale, & Cavigelli, 2008). While some studies have used complex 
regularization techniques to expand the inversion of the canopy RT models to other variables, 
such as leaf chlorophyll content (Houborg, et al., 2015), there are large uncertainties in these 
retrievals and even with these additional variables it is still difficult to form a complete 
understanding of the vegetation state to perform a simulation in a CGM from these parameters 
alone.  
To incorporate more variables into the coupling between remote sensing measurements and 
CGMs, it is necessary to robustly relate the CGM state variables and the top-of-canopy solar 
reflectances. In the literature, attempts to do so have been made by using empirical relationships 
to connect CGM state variable and canopy RT model inputs; the field-derived linear relationship 
between leaf chlorophyll content and leaf nitrogen content is one example of a relationship that 
can be used for this coupling (Schlemmer, et al., 2013). Several studies (Machwitz, et al., 2014) 
(Weiss, et al., 2001) (Thorp, et al., 2012) (Zhang, et al., 2016) have attempted to perform coupling 
using similar empirical relationships; however, these approaches suffer from both the 
inaccuracies in the empirical relationships and the need to use estimated a priori values for some 
of the canopy RT inputs that cannot be determined from the CGMs. This limits the generalizability 
and global applicability of these model couplings because the amount of field data used to 
construct these empirical relationships is inherently limited by cost and, as a result, the 
relationships may significantly vary from site-to-site, potentially causing large errors in the CGM-
canopy RT model coupling. 

Overview 
In order to fully utilize solar reflective remote sensing measurements of crop growth for 

precision agriculture, it is desirable to have a way of directly connecting the top-of-canopy 
reflectance measurements to the state vector of a CGM. It is critical for this relationship to be 
broadly applicable over multiple regions and different growing season conditions in order to allow 
it to be broadly used in precision agriculture. Machine learning is well-suited to solve these types 
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of problems where a generalizable relationship needs to be learned from large amounts of existing 
remote sensing data. In this study, it is sought to show that it is feasible to learn a relationship 
between the CGM vegetation state vector and the remote sensing reflectances via machine 
learning techniques. To do so, the STICS CGM agromanagment parameters are varied to 
generate an ensemble average of maize simulations in 36 different counties in the United States 
between 2005 and 2014. Then, MODIS county-median maize surface reflectances for the county-
years simulated with STICS are obtained and bidirectional long short-term memory (BLSTM) 
networks are used to understand how well the MODIS surface reflectances can predict the 
ensemble average of the state variables of the STICS simulations.   

Data 
The MCD43A4.005 BRDF-adjusted nadir surface reflectance product is used to obtain surface 

reflectances in seven 500 meter MODIS solar-reflective bands: 620 – 670 nm, 841 – 876 nm, 545 
-565 nm, 1230 – 1250 nm, 1628 – 1652 nm and 2105 – 2155 nm. Only pixels that are more than 
90 % covered by maize are considered in this study; the 30 m USDA Crop Data Layer is analyzed 
using the gdalwarp (McInerney & Kempeneers, 2014) command-line utility to identify MODIS 500 
m pixels that are more than 90 % covered in maize. The daily county-level median of each MODIS 
surface reflectance bands is used in the BLSTM-based analysis for county-years that have more 
than fifty 500 m MODIS pixels that are more than 90 % covered in maize.  

The counties used in this study were randomly selected from those that had more than 80,000 
acres of maize harvested and less that 15 % of maize irrigated according to the USDA NASS 
Farm and Ranch Irrigation Survey from 2007 (National Agricultural Statistics Service, 2017), 
accessed through the QuickStats service (quickstats.nass.usda.gov). Only counties that were 
predominantly non-irrigated were used to remove the unknown irrigation agromanagment 
parameter from the CGM simulations; it is assumed that these counties are rainfed and the 
irrigation value is thus set to zero in the CGM. Data is obtained from 2005 to 2014; however, the 
USDA Crop Data Layer did not have national coverage until the 2008 season, so fewer counties 
are used before 2008. Figure 1 illustrates the counties selected and the number of points per 
county. 

 
Fig 1. Counties used for analysis and number of years of MODIS data used per county 

The data was divided into training, validation, and test divisions by year for analysis by the 
BLSTMs, as will be described further in section V. The years for each data division and number 
of county-years per division are listed in Table 1. The number of county-years represents the total 
number of different growing seasons in each data division; if 5 years of data for 2 counties were 
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used, this would represent 10 county-years of data.  
Table 1. Number of county-years in each data division 

Data Division Years Number of county-years 
Training 2006, 2008, 2010, 2012, 2014 157 
Validation 2005, 2009, 2011 77 
Test 2007, 2013 66 

In order to run the crop-growth model simulations, the 1-degree NASA POWER 
agroclimatology dataset (Stackhouse, Westberg, Chandler, Zhang, & Hoell, 2017) is used.  The 
dataset contains all the necessary agrometeorological data to run the STICS CGM. Furthermore, 
in order to validate the methodology of using the CGM to generate an ensemble of vegetation 
state variables, the yields predicted by it are compared against the annual county-level yields 
determined through National Agricultural Statistics Service surveys, also accessed through the 
QuickStats service. 

Methods 

STICS crop growth model simulations 
For each county-year, an ensemble of vegetation state variables are simulated using the 

STICS CGM (Brisson, et al., 2002) by varying the agromanagment parameters and using the local 
meteorology from the NASA POWER dataset. The varied parameters are listed in Table 2; all 
combinations of parameters are simulated, leading to a total of 320 simulations per county-year. 
The values simulated for variety planted represent all 16 maize varieties prepackaged with the 
STICS models, while only one value (the STICS default) was simulated for fertilizer applied 
because the STICS default soil properties (as opposed to a soil survey data) are used and it would 
be difficult for the model to truly simulate nitrogen processes in the soil without knowing the true 
soil properties. The sowing dates and planting densities simulated are similar to those used in a 
recent maize remote sensing study (Lobell, Thau, Seifert, Engle, & Little, 2015), which uses a 
similar approach to generating an ensemble average of crop simulations (albeit for a different 
purpose).  

After performing the simulations, the average of the state variables of the simulations for 
each county-year is calculated to find an ensemble state vector. For all variables except the 
phenology, this is done by simply take the numerical mean for each variable for each day for each 
county year. For the phenology state variable, which stores the phenological state of the crop in 
the simulation, the percentage of simulation runs in each phenological state for each day for each 
county year is calculated instead; this makes the discrete phenological state variable amiable to 
analysis by machine learning classification approaches. 

Table 2. Agromanagment parameters varied to generate ensemble of STICS CGM simulations for each county-year 
Parameter Name Units Values Simulated 
Variety planted N/A Clarica, Magrite, Banguy, DK240, DK312, Anjou285, DK300, Nobilis-DE, DK604, 

Cecilia, Volga, Dunia, Furio, Cherif, Pactol, DK250 
Fertilizer Applied kg N/ha 220 
Sowing Date Days Since 

January 1st 
105 (April 14-15), 115 (April 25-26), 125 (May 4-5), 135 (May 14 -15), 145 (May 24 
– 25) 

Planting Density Plants per m2 4.5, 6, 7.5, 9 

BLSTMs 
Long short-term memory networks (LSTMs) are recurrent neural networks that can be used 

to predict an output time series of any number of variables from an input time series of any number 
of variables; these networks have proven to be extremely valuable (Greff, Srivastava, Koutník, 
Steunebrink, & Schmidhuber, 2017) for time series machine learning. In this study, a variant of a 
bidirectional variant of LSTMs, called BLSTMs (Weninger, Bergmann, & Schuller, 2015), is used 
to perform the analysis; this variant has the advantage of being able to use information from both 
the future and the past to make predictions. To understand how well remote sensing 
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measurements can be connected the CGM state variables, two BLSTMs are trained to predict 
the ensemble CGM state variable mean from the MODIS surface reflectances: one BLSTM is 
used to predict the phenological state variables and another is used for all other state variables. 
Two separate BLSTMs are used because different cost functions and layers need to be used for 
physical quantities and phenological class member probabilities. A sum of square error cost 
function is appropriate for physical quantities while a cross-entropy cost function is appropriate 
for probabilities, which also leads to the choice of a linear output layer (which allows for any value 
of the outputs) for the physical quantities and a softmax output layer (which guarantees that the 
outputs are probabilities that sum up to 1) for the phenological class member probabilities.  

The structure of the two networks is illustrated in Figures 2 and 3. Both networks have inputs 
of the MODIS BRDF-adjusted nadir surface reflectance in seven bands; however, the 
phenological BLSTM (Figure 3) also has two meterological variables (the normalized thermal time 
and the incoming solar radiation) as inputs due to the critical dependence of the phenological 
state on meterological conditions. The incoming solar radiation is taken directly from the NASA 
POWER dataset while the normalized thermal time is calculated as  
 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑇ℎ𝑒𝑟𝑚𝑎𝑙	𝑇𝑖𝑚𝑒(𝑡) = 𝑇𝑇(𝑡)/𝑇𝑇(𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟	31𝑠𝑡)  (1) 

                                          𝑇𝑇(𝑡) = ∫ max =>?@A(BC)D>?EF(BC)
G

− 6,0L 𝑑𝑡′B
N  (2) 

where t is in days since February 15th, 𝑇OPQ is the daily maximum temperature, and 𝑇ORS is the 
daily minimum temperature. 𝑇OPQ and 𝑇ORS are taken from the NASA POWER dataset.  

 
Fig 2. BLSTM for physical state variables 

 

 
Fig 3. BLSTM for phenological class member probabilities state variables 

The physical state variable BLSTM is trained to predict seven state variables selected from 
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the STICS model. The physical state variables selected are those that are most likely to be 
predicted accurately by a model using meterological information to simulate yield processes. The 
leaf area index was selected because of its importance in determining canopy light interception. 
The harvested organ biomass was selected because its value at the end of the season represents 
the crop yield and its in-season values represent the development of the yield. The aboveground 
biomass was selected because it provides a good representation of the overall growth of the plant 
and because CGMs are known to perform poorly on the harvest index-type stress calculations 
that go into calculating the harvested organ biomass (Jin, Azzari, & Lobell, 2017). The soil 
moisture variables were selected because they are connected to evapotranspiration and 
precipitation amounts in rainfed maize and thus their dynamic variability can be captured by a 
mechanistic crop model driven by meterological information (although without soil data, the 
features in the variability of these variables caused by differences in soil water retention capacity 
cannot be captured). 

Table 3. Phenlogical Stages Predicted by STICS Model During Growing Season, adapted from (Lancashire, et al., 1991) 
BBCH Code Description 
BBCH 09 Emergence 
BBCH 35 5 nodes detectable (Stem elongation) 
BBCH 55 Middle of tassel emergence 
BBCH 71 Beginning of grain development, kernels at blister stage 
BBCH 89 Fully ripe, post maturity 

The phenological state variable BLSTM is trained to predict the probabilities of all the 
vegetation states predicted by the STICS model during the growing season. The phenological 
dates predicted by the STICS model are based on a subset of the BBCH system for maize 
(Lancashire, et al., 1991) and are summarized in Table 2.  

Both BLSTMs are trained and evaluated according to the standard training, validation, test 
data division scheme. Under this scheme, training data is used to train the BLSTM by gradient 
descent, validation is used to prevent overfitting by stopping the training when the network ceases 
to improve its performance on the validation data, and test data, which is never exposed to the 
network in the training phase, is used to evaluate the network’s performance and generalization 
to new data. As indicated in Table 1, each year is only assigned to one of the three data divisions 
to ensure that the network is generalizable and not over fit.  

Results and Discussion 

Accuracy of STICS ensemble crop growth model simulations 
Prior to analyzing the relationship between the STICS ensemble-average state variables and the 
MODIS measurements, it is important to consider the accuracy of the STICS simulations and the 
effects on this study. To do so, the ensemble-average county-level crop yield and crop yield 
anomaly simulated by STICS are plotted against ground truth values from the USDA NASS 
county-level crop yields obtained from field surveys. The simulated yield anomaly is calculated by 
subtracting the simulated yield from the 2005-2014 average of simulated yields for the county, 
while the actual yield anomaly is calculated by subtracting the actual yield from the 2005-2014 
average of simulated yields for the county. The scatterplots for simulated versus actual yield and 
yield anomaly are shown in Figure 4a-b; all county-years for which the STICS model was run for 
2005-2014 are used in the analysis. 
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(a) (b) 

Fig 4. STICS ensemble average simulated versus actual USDA NASS (a) yield and (b) yield anomaly in bu/acre. Colorbar 
represents number of points per pixel 

In figure 4, one can see that STICS ensemble average is correlated with the actual USDA 
NASS yield with an R2 value of 0.38 and the actual USDA NASS yield anomaly with an R2 value 
of 0.36. While these R2 values appear low, it is important to note that it is difficult to use a crop 
growth model to accurately simulate the yield in the absence of knowledge of the local 
agromanagment parameters. For example, a recent study (Morell, et al., 2016) that attempted to 
use estimates of regional agromanagment parameters and soil properties from available data 
sources and expert knowledge by local agronomists to predict the crop yield using the 
HybridMaize CGM was only able to predict the county-level crop yield with an R2 of 0.52 for the 
yield anomaly. The R2 compares favorably to the performance of this study considering that this 
study avoids making any estimates of the regional agromanagment parameters because of their 
very large uncertainties. Therefore, it is difficult to obtain a large dataset of collocated 500 m 
MODIS observations and CGM simulations at significantly higher level of simulation accuracy, 
although we plan to address this issue in future work using agromanagment data from university 
and government research plots along with high resolution Landsat data. The results of this study 
are important to establish the feasibility of retrieving the CGM state variables from solar reflective 
multispectral satellite data and encourage collaborations to collect more geolocated 
agromanagment data to train, validate and test such algorithms.  While the STICS ensemble 
average can only be thought of as an estimate of the vegetation state, identifying a robust 
correlation between the ensemble and the MODIS measurement that holds outside of the years 
in which it was identified strongly implies that the physical forcing applied by the meteorology on 
the crop is detectable in the top-of-canopy reflectance signal.   

Ability of MODIS measurements to predict STICS ensemble average 
In this section, the ability of the MODIS measurements to predict the STICS ensemble 

average is evaluated. To do so, the performance of the two BLSTMs described in section V on 
test data, namely the county-years from 2007 and 2013, is evaluated. In figure 5, the performance 
of the BLSTM for the non-phenological state variables for the test data is displayed. In figure 5a, 
the R2 coefficient between the actual STICS state variable value and the BLSTM predicted state 
variable is shown at each normalized thermal time (normalized thermal time is defined in equation 
1).The R2 coefficients are calculated for each state variable by interpolating the daily actual STICS 
state variables and BLSTM predictions to a normalized thermal time grid and then calculating the 
R2 coefficient between the actual value and prediction at each discrete grid point (100 discrete 
points between normalized thermal times of 0.01 and 0.99). Calculating the R2 coefficients 
independently at each normalized thermal time serves to remove the effects of the mean training 
dynamics from the calculation and only analyze the intersite retrieval performance (a significantly 
more challenging task than retrieving the mean dynamics).  In figure 5b, the root mean square 
error (RMSE) of the BLSTM predicted state variable at each normalized thermal time is displayed 
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as a percentage of the standard deviation of the actual STICS state variable at that normalized 
thermal time across all test sites. The interpolation on the normalized thermal grid is done 
identically as in Figure 5a. The limits of the color bar in figure 5 are set such that only percentages 
below 100 % are displayed in a color other than dark red; the segments not in dark red represent 
the times at which individual state variables are well retrieved by the BLSTM. 

  
(a) (b) 

Fig 5. Performance for BLSTM for non-phenological state variables on test dataset (2007 and 2013) as measured by (a) 
the coefficient of determination – R2 and (b) RMSE as a percentage of standard deviation 

In figure 5, the harvested organ biomass is seen to be the variable best retrieved by the BLSTM. 
Its predictions by the BLSTM are seen to be correlated across all test sites with an R2 coefficient 
above 0.6 for a significant portion of the growing season and the RMSE of its prediction is often 
below 75 % of the mean during this time. The LAI is the next best retrieved variable, with an R2 
coefficient around 0.6 for a decent amount of time in the growing season, but significantly less 
than the harvested organ biomass. While it may seem surprising that the harvested organ 
biomass is better correlated than the LAI despite the focus on retrieving the LAI in canopy RT 
inversion studies, one needs to consider both that MODIS measurements have been found to be 
significantly correlated with the crop yield in previous studies (Sakamoto, Gitelson, & Arkebauer, 
2013) (Johnson, 2016) and that the performance of the retrievals in this study are being assessed 
after the mean dynamics have been removed. Canopy RT inversion studies generally calculate 
their retrieval performance statistics using one scatterplot for all times; however, a significant 
portion of the variability of LAI is explained by the mean LAI dynamics (Koetz, Baret, Poilve, & 
Hill, 2005) and this study seeks to assess the performance of retrieving LAI once the mean 
dynamics have been removed. In addition, the soil water in the root zone are seen to be 
significantly correlated with the measurements in Figure 5 with R2 coefficients between 0.4 and 
0.5; this can be seen as the effect of the effects of the meteorology (precipitation, potential 
evapotranspiration, etc.) on the water status of the entire plant-soil system that has an effect on 
both the STICS simulations and the MODIS measurements, causing a correlation between the 
soil water state variables and the MODIS measurements. The correlation of soil moisture agrees 
with previous studies that found correlation of soil moisture below maize canopies to the plant 
vegetation indices, and consequently to the top-of-canopy reflectance signal (Swain, Wardlow, 
Sunil, Rundquist, & Hayes, 2013).  
We now turn to analyzing the performance of the BLSTM for retrieving the STICS ensemble 
average phenology from the MODIS reflectances. First, in figure 6, using the same methodology 
as for Figure 5a, the coefficient of determination (R2) between the BLSTM-predicted phenological 
class membership probabilities and the actual STICS ensemble average class membership 
probabilities is plotted. 
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Fig 6. Coefficient of determination (R2) for BLSTM for phenology state variables on test dataset (2007 and 2013) 

In figure 6, it is shown that four (BBCH 35 to 55, BBCH 55 to 71, BBCH 71 to 89, and After BBCH 
89) of the BLSTM-predicted phenological class membership probabilities are well correlated with 
the actual probabilities, often with an R2 value above 0.6. Because figure 6 is on a normalized 
thermal time grid and the R2 values are calculated independently at each normalized thermal time, 
the results show that the BLSTM outperforms using the mean training phenological stage for a 
particular normalized thermal time with quite large R2 values.  
The overall classification accuracy provided by the BLSTM is shown in Figure 7, which shows the 
confusion matrix for the test dataset on a daily basis. The y-axis represents the BLSTM predicted 
class, while the x-axis represents the actual STICS ensemble average class. Each box shows the 
number and percentage of actual classes that were given a particular prediction; as a result, 
boxes on the green diagonal represent correct classifications while boxes off the diagonal 
represent incorrect predictions. The percentages in the gray row at the bottom of the figure 
represent the combined accuracy of making a prediction of a particular actual class, while the 
gray column represents the combined accuracy of a prediction of a given class. The overall 
prediction accuracy is given in the purple box. 
As seen from figure 7, overall 90% of the days between February 15th and January 1st are 
classified correctly by the BLSTM, which implies that about 5 days are misclassified per class, 
which compares favorably to the 6.7 to 7.6 day average error in retrieving the actual phenological 
dates (rather than the class membership) in (Sakamoto, Gitelson, & Arkebauer, 2013). The 
retrieval accuracies for the individual classes are also seen in figure 7 and they vary significantly; 
however, it is notable that even for some classes that have lower accuracy, the correlations in 
Figure 6 are still high, indicating useful information about the probability of class membership is 
being retrieved by the BLSTM. 
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Fig 7. Confusion matrix for BLSTM for phenology state variables on test dataset (2007 and 2013)) 

Conclusion 
Overall, this study showed that the forcings in the STICS crop growth model are captured in 
MODIS top-of-canopy measurements and that the MODIS measurements consequently have 
significant potential in being used to retrieve information for assimilation into crop growth models 
beyond the existing state of the art. Specifically, it was shown that a BLSTM can be used to predict 
several state variables in the ensemble average of STICS crop growth model simulations run with 
different agromanagment parameters from the BRDF-adjusted MODIS surface reflectance 
measurements at the county level. This provides evidence that machine learning can be used to 
obtain a more complete description of the crop vegetation state than the commonly retrieved leaf 
area index. Specifically, the harvested organ biomass, the phenological state and plant water 
status seem to be good candidates to be retrieved from remote sensing in addition to the leaf 
area index. Further work needs to be done to improve the accuracy of the STICS crop growth 
simulations by obtaining ground truth datasets of agromanagment parameters in order to build a 
more realistic machine learning predictor of these state variables; hopefully this current work 
illustrates the feasibility of such an approach and provides motivation for the community to 
increase data sharing to allow the potential of machine learning in agricultural remote sensing to 
be realized.  
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