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Abstract. Proximal colour imaging is the most time and cost-effective automated technology to 
acquire high-resolution data describing accurately the trellising plane of grapevine. The available 
textural information is meaningful enough to provide altogether the assessment of additional 
agronomic parameters that are still estimated either manually or with dedicated and expensive 
instrumentations. This paper proposes a new framework for the classification of the different 
organs visible in the trellising plane. The proposed method is an implementation of a Bayesian 
decision process based on a joint parametric representation of Local Structure tensors and color. 
The purpose is to obtain a pixel-wise description of grapevine images based on joint structural 
and colorimetric features. In this paper, a representation of colour extended structure tensors 
mapped into the log-Euclidean metric space is introduced. This new feature is used for the 
description of the textural properties of grapevine organs in multivariate Gaussian models. The 
final classification is performed by Bayesian MAP estimation based on the models. The paper 
presents and compares different variants of the method which are applied to three key 
phenological stage: flowerhood falling, pea-sized and berries touching (BBCH 68, 75, 79). The 
resulting classification performances are measured in terms of recall and precision that reached 
overall between 80% and 90% depending on the stage. These results are produced with leave-
one-out cross validations where models are estimated from 15 images per stage containing about 
1.5e6 samples. The achievement of a reliable classification of the leaves, flowers and berries for 
each vinestock is an integral step toward the estimation of leaf area index, leaf porosity, 
fruitfulness, cluster structuration and yields. These are key parameters for the monitoring and 
evaluation of main field works such as fertilisation, irrigation, and trimming, defoliation, trimming 
and thinning. In addition the modeling of healthy grapevine organs is also preliminary to achieve 
a modeling and classification of grapevine major fungal diseases. 
 
Keywords. Proximal sensing, parametric classification, structure tensor, grape and foliage 
detection.  



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 2 

Introduction 
The development of Precision Viticulture (PV) applications has considerably improved the 
efficiency of vineyard management strategies in terms of productivity, quality and environmental 
impact (Bramley, 2010). With adequate technologies and innovative cultivation systems, essential 
field operations such as fertilization, irrigation, pruning, defoliation, trimming, thinning and harvest 
can be optimized with local and Variable Rate Applications (Tisseyre et al., 2007). The efficiency 
of these PV applications relies mostly on the abundance, reliability and resolution of in-vivo 
measurements of basic agronomic parameters (Taylor et al., 2007). In this context, image 
processing has been proven one of the most promising automated and non-intrusive techniques. 
It enables the observation of local variations of vine properties for large acreage, with relatively 
low costs in terms of instrumentation, labour and time duty. Image processing has already been 
successfully applied to in-field yield estimations (Keresztes et al., 2014; Liu et al., 2013; Nuske et 
al., 2012). However, current methods are dedicated to late fruiting phenological stages around 
the ripening season. In addition, the most thorough and advanced methods rely on heavy machine 
learning processes and abundant databases. Authors previously proposed a colour and texture 
based machine learning method, able to detect inflorescences and grape clusters at early fruiting 
stages (Abdelghafour et al., 2017). While producing valuable results at these stages, this method 
has shown to be difficult to tune and adapt to other phenological stages. In this paper a new 
method is proposed for the classification of all organs present on the trellising plane and 
throughout different phenological stages thanks to on-board colour imaging. The results can serve 
the assessment of additional agronomic parameters such as Leaf Area Index (LAI), canopy 
porosity, fertility and bud fruitfulness which are essential to new PV strategies (Bramley et al., 
2011). In addition, it could provide feedback for operations such as trimming and defoliation and 
an effective tool for the assessments of seasonal damage to the crop such as hail, frost, coulure, 
millerandage and fungal diseases.  

The proposed method is based on parametric models describing jointly structural and colorimetric 
information. It combines a log-Euclidean representation of local structure tensors with RGB data 
into a vector representation within joint multivariate Gaussian models. The distribution models are 
learnt on a collection of image patches of various organs of the grapevine. The eventual pixel-
wise classification is performed by Bayesian MAP estimation (Maximum a posteriori probability) 
based on the previously learnt model's parameters. This decision process results in a 
classification map that can be further regularized both by probabilistic relaxation and by 
morphological filtering.  

Material and methods 

Experimental setup  
An image database has first to be constructed for the learning and validation steps of the proposed 
approach. Images should preferably present homogeneous properties in terms of resolution, 
distance and angle of capture and also in terms of illumination. Indeed, a consistent database 
results in more coherent models and better performances. The achievement of such prerequisites 
is not so trivial in uncontrolled and highly variable outdoor environments. Therefore, 
instrumentation and acquisition methods are designed to minimize the impact of natural light and 
atmosphere on the levels and variations of illumination in images in order to preserve their intrinsic 
textural properties. 

The authors are solely responsible for the content of this paper, which is not a refereed publication. Citation of this work should state that it 
is from the Proceedings of the 14th International Conference on Precision Agriculture. Abdelghafour F., Rosu, R, Keresztes, B., Germain, C. 
& Da Costa J.P. (2018).  Joint structure and colour based parametric classification of grapevine organs from proximal images through several 
critical phenological stages. In Proceedings of the 14th International Conference on Precision Agriculture (unpaginated, online). Monticello, 
IL: International Society of Precision Agriculture.  
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Image aqcuisition: plant material and instumentation 
The plant material is composed of two 0.2 ha plots with 120cm row-spacing and planted with the 
red wine grape variety Merlot Noir in “Le Domaine de la Grande Ferrade”, a public experimental 
facility in Bordeaux area (INRA, French National Institute of Agricultural Research). Between May 
and September 2017, the two plots were extensively photographed weekly. The resulting image 
database contains more than 30 000 images covering phenological stages ranging, as described 
by Lorenz et al. (1995), from “inflorescence swelling” to “half-ripening” (BBCH 53 to 83). The 
device used for image acquisition is composed of a 5 Mpx industrial Basler Ace (acA2500-14gc 
GigE) RGB camera with a 55° horizontal field of view lens, a high-power 58GN xenon flash 
(Neewer sppelite 750ii) with short exposure time (250-300𝜇𝑠𝑒𝑐), a 12 V battery and an industrial 
computer (built around a low consumption 4-core ARM chip), all placed in a compact and 
watertight case (Fig. 1b). The device is completed with a GNSS receiver (G-star IV) for 
georeferencing and an ultrasonic sensor which provides the distance between the camera and 
the trellising plane, allowing to compute pixel size. The device is embedded on a vineyard tractor 
at 70cm above ground and at 50cm from the target (Fig 1a). Each image covers an area including 
a full vine stock and its canopy with a resolution of 2592*2048 pixels and around 3 px.mm-1. 
Acquisitions are adapted for the work-rate in vineyards (3-8 km.h-1) 
 

 
(a) (b) (c) 

Figure 1- Instrumentation: embedding on a vineyard tractor (a), device compounds (b) and example of a resulting image (c) 

Image processing methodology 
The purpose of the proposed method is to provide a segmentation of grapevine colour images 
into the different classes of organs which are visible in the trellising plane. The process consists 
in classifying pixels into one of the following classes: foliage, stem or reproductive organs (i.e. 
berries, flowers or buds depending on phenological stages).  
The classification process is based essentially on the estimation of the likelihood of the local 
properties of the pixel and its close neighborhood with parametric models describing classes. The 
maximum likelihood obtained for a class determines the eventual affiliation of the pixel to this 
class. This process is based on a parametric modelling of local pixel properties such as structure, 
anisotropy and colour. These properties are captured by an extended form of the Local Structure 
Tensor (LST). The following sub-parts aim at describing the different steps of the processing chain 
implementing the proposed method (Fig. 2).  

 
Figure 2- Processing chain 
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Pre-processing: thresholding non-vegetal objects 
The pre-processing aims at narrowing down areas of interest by removing irrelevant parts of 
images, i.e. pixels not belonging to the canopy (sky, ground, trellising wires, poles, grass, wood 
stem). 
Indeed, the classification process is based on a finite number of statistical models, in order to 
concentrate the subsequent classification on objects of interest. It is especially true when dealing 
with high resolution images and high dimension descriptors inducing heavy storage and 
computation power. Such areas can be easily discarded by simple filtering processes. Authors 
propose a simple thresholding in the HSV colour space followed by simple morphological 
operations. Hue and saturation channels enable to discard easily objects with colours which are 
implausible for plants, while the Value channel enables to discard objects whose illumination does 
not correspond to flora or where the proper structural patterns are not visible. In order to smooth 
results, avoid sporadic decisions and gaps, simple morphological operations (closing and 
opening) are implemented on raw thresholding results. 

Features extraction  
Organs are not only characterised by their colour variations but also by geometric properties like 
the anisotropy of their contours or textural properties. These particular properties can be extracted 
thanks to the structure tensor that can be extended so that it also includes colour information. 
Local Structure Tensor 

The LST is a reference tool developed by Knutsson (1989) that extracts geometric information 
and orientation trends in local patterns within grayscale images. It is commonly defined as the 
local covariance of gradients (Bigün et al., 1991; Rosu et al., 2016). The computation of LST's is 
a two-step process, starting with estimating local gradients in the neighborhood of every pixel in 
an image. Given an image I of size [M*N], the gradient image ∇𝐼 is estimated as: 
 

∇''⃗ 𝐼 = 	 [Ix, Iy]1 	= 2I ∗ G5, I ∗ G67, (1) 

where t denotes the matrix transpose operator, ∗  denotes convolution, Ix and Iy represent 
respectively estimates of the horizontal and vertical derivatives of image I obtained by applying 
Gaussian  derivative kernels Gx and Gy. 

LST is then estimated by smoothing the product 	∇'''⃗ 𝐼	∇'''⃗ 𝐼1 with a Gaussian filter WT with a standard 
deviation  𝜎9 : 

𝑌 = 𝑊9 ∗ 	∇'''⃗ 𝐼	∇'''⃗ 𝐼1 = 	𝑊9 ∗	<
𝐼5. 𝐼5 𝐼5. 𝐼6
𝐼5. 𝐼6 𝐼6. I6

>. (2) 

 

Thus, for every pixel of coordinates (𝑖, 𝑗)  in the image   (𝑖 ∈ [1, N]; 	j ∈ 	 [1,M])   there is a 
corresponding local structure tensor 𝑌(𝑖, 𝑗), in the form of a 2 by 2 symmetric matrix: 
 

𝑌(𝑖, 𝑗) = I
𝑦55(𝑖, 𝑗) 𝑦56(𝑖, 𝑗)
𝑦56(𝑖, 𝑗) 𝑦66(𝑖, 𝑗)

K.  (3) 

 
Log-Euclidean metric space mapping of  structure tensors 

Structure tensors being covariance matrices, they belong to the Riemannian manifold of 
Symmetric Positive-Definite (SPD) matrices. The use of standard tools of Euclidean geometry 
and Gaussian statistics on such variables is not straightforward. For instance, computing a centre 
of mass or fitting a probabilistic distribution such as a multivariate Gaussian are not trivial tasks 
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and should be carried out by considering the properties of the Riemannian manifold. Saïd et al. 
(2017) proposed several methods and parametric models adapted to the geometry of LST and 
notably Riemannian Gaussian distributions for strictly positive definite matrices. A more simple 
and convenient way to handle LST's is to map them into the Log-Euclidean space and then to 
apply standard probabilistic models (Rosu et al., 2017) or geometric tools (Arsigny et al., 2006).  
Rosu et al. (2017) successfully applied these methods to the classification of remote sensing 
images of forests and oyster fields. Experimental comparisons between different models proved 
that the LE metric lead to equivalent or better results with a significant decrease in computation 
time. Therefore these contributions motivate authors’ choice of focusing on LE approaches for 
tensor field modelling.  
 The mapping of a tensor Y onto the LE space is achieved by computing its matrix logarithm, YLE: 

𝑌LM = 𝑙𝑜𝑔Q(𝑌) = 	 <
𝑌LM55 𝑌LM56
𝑌LM56 𝑌LM66

>, (4) 

 

Let consider the factorization 𝑅𝐷𝑅TU   where D is the diagonal matrix of Y, 𝜆U  and 𝜆W  are the 
eigenvalues of Y and R is the rotation matrix composed of unitary eigenvectors of Y.     

𝑌 = 𝑅𝐷𝑅TU			; 						𝐷 = <𝜆U 0
0 𝜆W

>. (5) 

 
The matrix logarithm of Y can be easily obtained by: 

𝑙𝑜𝑔Q(𝑌) = 𝑅(log(𝐷))𝑅TU			; 				 log(𝐷) = <log	(𝜆U) 0
0 log	(𝜆W)

>.

  (6) 

As mentioned in (Arsigny, 2006), a more convenient way to handle the matrix 𝑙𝑜𝑔Q(𝑌) is to 
express it in the vector form: 

𝑌'⃗LM = (𝑦LM55, 𝑦LM66,√2𝑦LM56),  (7) 

which ensure that ^𝑌'⃗LM^W = ‖𝑌LM‖W . 

The mapping to the LE space allows the use of classical Euclidean geometry and probabilistic 
tools for tensor modelling while preserving the main properties of the tensor space. The reverse 
mapping is obtained by applying the matrix exponential. The distance between two tensors 𝑌U and 
𝑌W   can simply be computed as the Euclidean distance between their equivalent vector 
representations on the LE space  𝑌LMU and  𝑌LMW. 
 
Extended Structure Tensors, including colour information 

De Luis-Garcia et al. (2008) proposed a method to join structural and colorimetric information into 
a single descriptor. The method consist in computing the structure tensor from an extended 
gradient where RGB intensity values are (concatenated) to the two directional derivatives to 
obtain a colour Extended Structure tensor 	𝑌 a = 𝑊9 ∗ [∇''⃗ 𝐼 a∇''⃗ 𝐼 a

1
], where : 

∇''⃗ 𝐼 a = [𝐼5, 𝐼6, 𝑅, 𝐺, 𝐵]	.  (8) 

The resulting structure tensor Yce is then a 5x5 SPD matrix representing the covariances of colour 
extended gradients. Alike the common LST, the colour extended structure tensor can be mapped 
into the LE metric-space thanks to the matrix logarithm transform. The resulting vectorised form  
𝑌'⃗LMMd9  is then a 15 dimensions descriptor. This representation will be referred further as the 
LEEST representation for Log-Euclidean Extended Structure Tensor. LEEST representation is a 
vector containing the spatial covariances between gradients and colour.  
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Decision process : classification of  pixels 
Maximum a posteriori probability estimation (MAP) 

The purpose of this step is to determine from the observation of a structure tensor 𝑌 that describes 
a pixel, to which class 𝜆 this pixel belongs to. This decision is based on a MAP estimator, a 
Bayesian method based on the maximization of 𝑝(𝜆	|𝑌), i.e. of the probability of 𝜆 knowing 𝑌. 
 According to Bayes theorem: 

𝜆gh1 = arg𝑚𝑎𝑥
n∈L

𝑝(𝜆	|𝑌) = arg𝑚𝑎𝑥
n∈L

o(p|n)h(n)
o(p)

= arg𝑚𝑎𝑥
n∈L

𝑓(𝑌|𝜆)𝑝(𝜆),  (9) 

where 𝑓(𝑌|𝜆) is the likelihood resulting from the Probability Density Function (PDF) f describing 
the distribution of  a subset of structure tensors 𝑌 in the class 𝜆, and 𝑝(𝜆) is the a priori probability 
of class 𝜆. Both 𝑓(𝑌|𝜆) and 𝑝(𝜆) can be modelled thanks to representative samples of structure 
tensors in each class. 
 
A priori probabilities 

Three different assumptions can determine the possible values of 𝑝(𝜆): 

- Even distribution of classes: 𝑝(𝜆r) = 	
U
s
 , where K is the number of classes. 

- Uneven distribution classes : 𝑝(𝜆r) 	= 		𝜋r, the statistical frequency of the class k 
- Heterogeneous distribution classes: 𝑝(𝜆r) 	= 		 𝜋r(ℎ), a function of space i.e. the a priori 

probability depends on the location of the pixel in the image. 
The most genuine assumption is the latter, indeed, images of grapevine plants are spatially 
structured, within such images, the different type of objects and organs are not homogeneously 
distributed. Indeed, it is more likely to observe grapes and inflorescences in the lower part of the 
canopy with fewer leaves, when its core is more abundant with dense foliage partially occulting 
stems and its upper part contains only thin foliage showing stem's apexes and no fruits.  It is then 
judicious to consider a priori probabilities as functions of the height at which pixels are located. 
Authors propose to vertically divide images into 3 parts of equal heights. Where for each part a 
different value of 𝜆 per class is estimated thanks to the average proportions observed on labelled 
images. 
 
Probability Density Functions , parametric models 

The distributions of structure tensors are represented by Gaussian multivariate distributions and 
Gaussian multivariate mixtures (Rosu et al., 2017). 
A Gaussian multivariate distribution can be expressed with only 2 parameters, a Covariance 
matrix  Σ and a centre of mass vector 𝜇⃗.  

Every class 𝜆 of organs can then be described by a Gaussian multivariate model: 

𝑓nw𝑌'⃗LMx𝜇⃗LM, ΣLMy =
U

Wz{/}|~�|�/}
exp	(− U

W
(𝑌'⃗LM −	 𝜇⃗LM)1Σn

TU(𝑌'⃗LM −	 𝜇⃗LM).  (10) 

where Σr	and 	𝜇⃗r are respectively the covariance and the mean of LEESTs, estimated from a 
group of labelled images. 
The chosen class 𝜆 is determined by the maximum value obtained with the MAP estimator among 
all k-classes. 
Given an image containing the same classes of organs at a similar phenological stage and a given 
pixel within this image, it is possible to determine to which class this pixel most probably belong 
to by computing  the maximum likelihood that is obtained for the different possible models.  
Gaussian mixtures: 
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The classes of interest are not necessarily uniform in terms of texture, for instance leaves 
sometimes present different properties depending if it is the upper or lower side that is visible, a 
better representation of the distributions of structure tensors within diverse classes can be 
Gaussian mixtures. 
Gaussian mixtures are composed of independent Gaussian density functions each representing 
a sub-part of the whole distribution. A mixture of K Gaussian probability density functions is given 
by: 

𝑓w	𝑌'⃗LMx(𝜔r, 𝜇⃗r, Σr)) = ∑ (𝜔rs
r�U . 𝑝r(𝑌'⃗LM|𝜇⃗rΣr),  (12) 

the parameters 𝜔	r > 	0	  are the weights of sum equal to 1. The mixture model parameters  
𝜔r, 𝜇r, 𝑎𝑛𝑑	Σr    are estimated by employing the expectation-maximization (EM) algorithm 
(Titterington et al., 1985). 
Learning phase, extraction of study samples and ground-truth for models estimation 

Ground-truth labelling is a process where a set of n sites 𝑆� =	 {𝑠U(𝑥U, 𝑦U), . . . , 𝑠�(𝑥�, 𝑦�)}  is 
assigned a set of n labels 𝐿 = 	 {𝜆U, 	𝜆W, . . . . , 𝜆�}, the serial numbers for K classes, 	and assigned a 
set of n descriptors (LST), 𝐷	 = 	 {	𝑌'⃗LMU, . . . , 𝑌'⃗LM�}. Eventually this process provides a database with 
samples whose position, class and properties are known. As there is no existing coherent 
database of labelled vine grapevines images, authors manually labelled images acquired for the 
study. LST's were then computed with a specially designed algorithm. So that models can include 
the various morphologies and textures and describe most accurately their variability, points of 
interest have been sampled with respect of the proportions and disparities encountered. The 
labelled samples then provide material to learn models and also material to compare decisions 
resulting from the proposed models to the ground-truth. 

Post-processing : spatial regularisation 
Markovian method : ICM algorithm (iterated conditional modes) 

The classification method employed is a probabilistic decision made independently for each pixel, 
without considering the decisions reached for its neighbors. Nevertheless, flora images naturally 
present spatial organisations into arrangement of organs having locally homogeneous structural 
properties. Therefore, it is very unlikely to observe sparse distributions of labels within continuous 
regions. However, the proposed method can produce such erratic results. In order to enhance 
the efficiency/veracity of the segmentation, authors propose a spatial regularisation based on an 
ICM algorithm. In this process classification results (i.e. field of labels) are considered as Markov 
Random Fields (MRF) where each label depends only on the labels of its direct neighbors (8-
connectivity cliques).  ICM algorithm is a simple optimisation algorithm designed to reach the most 
stable field of labels regarding the underlying parametric model and local dependencies of labels 
Besag, 1986). It is essentially a trade-off between statistical classification and spatial coherence. 
It usually results smoother segmentations. 
Mathematical morphology 

This regularization process aims also at discarding sparse distributions, but for larger objects 
(connected components), i.e. misclassified groups of labels whose neighbors are also 
misclassified. In practice this consists in filling gaps and holes in continuous regions and removing 
small connected components that differ from the main region thanks to morphological opening 
and closing operations (Serra, 1982). 
 
 

Analytical protocol 
Different methods are proposed for each step of the processing chain. The purpose of this 
analysis is to compare different combinations of these methods in terms of classification 
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performances. RGB, LST and LEEST representations are compared for decisions based either 
on Gaussian MultiVariate (mvG) PDF or on Gaussian mixtures (mvGM) with various 
managements of a priori probabilities and regularisations. The analysis is conducted for three 
phenological stages: flowerhood falling (BBCH 68), pea-sized berries (BBCH 75) and majority of 
berries touching (BBCH 79). For each stage four classes are considered:  leaf core, leaf edges, 
grape bunches / inflorescence and stems (leaf edges are differentiated in the modelling process 
from leaf core so that some external parts of the foliage are not confused with stems because 
both objects are a sort a frontier between  foreground and  background.  For each stage, 16 
manually labelled images with around 105 sample sites manually selected per image per class 
are used for the estimation of models. There is then one model per class for each stage that is 12 
probability density functions to be estimated. Performances are evaluated with a leave-one-out 
cross-validation process where, for each batch, performance metrics are computed from 
confusion matrices. Two metrics are used to describe performances for each class, Precision and 
Recall. Precision represents the fraction of relevant instances among the retrieved instances.  
Recall represents the fraction of relevant instances that have been retrieved over the total amount 
of relevant instances.  

Results 

Optimal scale for the extraction of structural properties 
The computation of Structure tensors as defined in equation (1) depends on two scale 
parameters: 𝜎� and 𝜎1 . 𝜎�	is a parameter that determines the scale at which image gradients are 
computed. 𝜎1	is a parameter that determines the scale at which structure information within a set 
of gradients is pooled into a structure tensor. While the former should be chosen accordingly to 
the size of the elementary observable patterns or edges, the choice of the latter should be related 
to the scale at which texture (i.e. local organisation of patterns) is observable. The choice of these 
two scale parameters may thus affect the descriptive capabilities of the structure tensor and may 
differ according to the class of interest or the vegetative stage. 
For example, at small scales, it is the granular appearance of leaves with sparse veinlets that is 
described, when at larger scales the structure tensors describe a smoother pattern. Similarly, 
small scales describe textural properties within a berry or a flower when larger scales describe a 
more entropic pattern of fruits, stalks and peduncle. 
It is then not so obvious to determine the scale at which textural properties are robust to local 
noises, describe and discriminate classes to obtain the best classification performances. 
It is then necessary to determine analytically for each phenological stage, the optimal couple 
(𝜎�	, 𝜎1) that offers the best trade-off in terms of performance for all classes. Scale parameters 
should be chosen to maximize the performances for the classes of primary interest (leaf cores 
and fruits) while ensuring reasonable performances for the classes of secondary interest (leaf 
edges and stems). 
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Fig.4 presents the relative performances obtained for varying values of scale parameter 𝜎1 given 
a fixed value of gradient (𝜎� = 3.5). Results are presented only for the stage berries touching 
(BBCH 79), they are obtained with the LEEST representation for mvG without any regularisation. 
 

 

 
𝜎1   𝜎1 

 
Figure 3 - Influence of	𝝈𝒕  scale for optimal value of 𝝈𝒈 on precision and recall metrics for stage BBCH 79 

 
For all classes except leaf edges, the precision metric is very stable to variations of tensor scales 
(𝜎1)	given a fixed scale of gradient (𝜎�). 

Leaf edges being the smallest structures (<4px), it is then very difficult to extract its properties for 
scales larger than their size. In practice the proportion of leaf edges classified as leaf core is 
higher with growing values of and 𝜎1. The chosen gradient value (𝜎� = 3.5) results in precisions 
reaching up to 80% for berries, which is also the scale that maximize the precision for leaf cores 
that reached 98% while ensuring a minimum of 80% for stems. 
Recall rates are less stables, they tend to decrease by around 5 % for stems and leave cores for 
increasing values of 𝜎1 while increasing about the same amount for berries. A compromise has to 
then be determined to ensure maximizes altogether recall rates for both primary classes. Such a 
compromise can be found at the intersections of the berry curves and the leaf core curves for 
𝜎1 ∈ [5.0	; 5.5]. 
A similar analysis was conducted to determine the optimal value of 𝜎� given fixed values of 𝜎1. 
Eventually the optimal couple is found for the couple (	𝜎� = 3.5	; 	𝜎1 = 5.5) that both maximize 
recall for berries (88%) while ensuring recall above 88% too for leaf cores. The best optimal 
parameters are then the same for both precision and recall metrics. In the following, performance 
tests are conducted with the couple	(	𝜎� = 3.5	; 	𝜎1 = 5.5). 
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Comparison of features representations, decision and regularisation methods 
Table 1 - comparison of features and of the different methods for LEEST representation at stage BBCH 79 

Methods Precision Recall 
Representation Decision PP leaf    berries          stems     edges leaf  berries stems     edges 

RGB mvG Ø 0.48 0.37 0.29 0.17 0.69 0.51 0.43 0.22 
LST mvG Ø 0.96 0.61 0.68 0.27 0.79 0.74 0.53 0.55 

LEEST 

mvG Ø 0.95 0.79 0.80 0.45 0.86 0.79 0.81 0.75 
mvG + sprob Ø 0.90 0.80 0.85 0.57 0.91 0.83 0.78 0.55 
mvG + sprob ICM 0.95 0.82 0.82 0.71 0.86 0.84 0.80 0.82 

mvGM Ø 0.97 0.80 0.81 0.71 0.83 0.81 0.84 0.85 
mvGM + sprob Ø 0.93 0.83 0.87 0.77 0.90 0.96 0.81 0.81 
mvGM + sprob ICM 0.93 0.87 0.89 0.79 0.92 0.90 0.81 0.82 

mvGM + sprob ICM + 
Morph 0.95 0.91 0.81 0.86 0.92 0.90 0.85 0.79 

 
Alone, colorimetric information is not sufficient to describe and discriminate the grapevine organs, 
it results in random classifications. The pure structural information provided by LST's better 
describes the textural properties encountered, however it is also insufficient to achieve a satisfying 
classification (recall rate <80%, precision <65% for berries). The colour extension of structure 
tensor is essential to capture the distinctive properties of the textures appearing on grapevine 
images. LEEST representations improve the classification performances with recall rates always 
above 80% for primary classes. 
The proposed method for regularisation and for the management of a priori probabilities tend to 
improve selectively the performances for some classes while slightly decreasing performances 
for other classes. However the combinations of these propositions improve results in all classes. 
The use of multivariate Gaussian mixtures results in better performances for all classes. When 
combining all propositions with mvGM, performances metrics are above 90% for the primary 
classes. 
 
Table 2- comparison of the best performances achieved with LEEST mvGM and full regularisation for three phenological 
stages BBCH 68, 75 and 79 

Metrics Precision Recall 

Phenological stages leaf    berries          stems     edges leaf  berries stems     edges 

Flowerhoods	falling	(BBCH	68) 0.90 0.86 0.89 0.84 0.92 0.87 0.83 0.79 
Pea-sized	berries	(BBCH	75) 0.84  0.82 0.89 0.73  0.82  0.90  0.75  0.81 

Berries	touching	(BBCH	79) 0.95  0.91  0.81  0.86  0.94  0.90  0.85  0.79 

 

LEEST method produces satisfying performances for the 3 key phenological stages. However 
classification performances tend to be lower for the earlier phenological stages. It could be 
explained by the greater variability of morphologies of the leaves and berries encountered during 
early stages which can present textural properties in between two transitioning morphologies. It 
has to be noted that the best performances obtained for stage BBCH 75 (pea-sized) are achieved 
without any spatial considerations for a priori probabilities. In this case, it tends to lower 
performances, it is mainly due to a higher variability of the spatial repartition of  grape bunches 
and stems that produces less coherent estimations of sprob : 	𝜋n(ℎ)	. 
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(a) – Original image BBCH 68 (b) – LEEST classification map BBCH 68 

 
(c) – Original image BBCH 75 (d) – LEEST classification map BBCH 75 
 

  
(a) – Original image BBCH 79 (b) – LEEST classification map BBCH 79 

 
Figure 4- Examples of images and classification maps obtained with the LEEST and mvGM based method with full 
regularization (ICM + Mathematical Morphology) implemented for stages BBCH 68 (a-b), BBCH 75 (c-d) and BBCH 79 (e-f).  
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Discussion 
The proposed framework was tested only for a limited number of pixel samples in a limited number 
of images. While the developed process can be applied to any number of images and provide 
complete classification maps, it is not possible to assess its performances for a more 
representative number of whole images without more abundant and thoroughly indexed database. 
Such a database could enable to compare the proposed method with reference classification 
methods such as SVM and Neural networks. 
The robustness of the method and its models to varying varieties of grapevine or different 
cultivation systems are not tested yet either. One of the major upcoming challenge is to transcript 
the statistical parameters that can be estimated from the classification results (Leaf area, number 
and size of grape bunches, gaps in the canopy etc.) into formal agronomic parameters. This 
integral step toward the development of innovative PV applications requires the acquisition of field 
data and direct measurements to establish correlations between what is estimated with image 
processing and what can be measured on the plots with well-acknowledge methods. 
 

Conclusion 
In order to solve common problems regarding the classification of objects within natural outdoor 
images of plants in proximal sensing, a new framework has been proposed. 
The proposed method is based on the parametric modelling of joint structure and colour. The 
purpose of this method is to overcome two major problems encountered in machine learning 
applications: availability of abundant and indexed data for learning processes and the 
determination of parameters for the settings / tunings of algorithms 
To do so, several variants of the framework were proposed: 
The vector representation LEEST, based on colour extended structure tensor mapped onto the 
log-Euclidean space was tested with Gaussian multivariate and Gaussian mixtures probabilistic 
models. In addition, a method of spatial management of a priori probabilities in the MAP estimator 
and two methods of spatial regularisation (ICM and mathematical morphology) were tested to 
improve the method. 
The work contributed to develop a descriptor joining essential information of structure and colour 
extracted with LEEST representation based on the colour extension of local structure tensors 
priorly mapped into the log-Euclidean metric space. LEEST representation, in comparison with 
the usual LST approach, produces descriptors respecting the Riemannian geometric properties 
of structure tensors with additional correlated colorimetric information. These properties enable 
the estimation of consistent parameters for the models that produce reliable classifications with 
reasonable learning samples. The MAP estimator based decision process includes management 
of a priori probabilities accordingly to spatial considerations that improves performances. In 
addition the decision system which is based on modelling requires few manual settings or tuning 
from users. The only parameters to be determined by user are mainly intuitive scale parameters 
highly correlated to texture sized. Moreover the LEEST method is quite robust to these scale 
parameters. The method is easily applied to different phenological stages with satisfying results 
in each case. 
The method was only applied to healthy vinestocks, as a perspective it could be considered to 
apply the same framework with plants presenting symptoms of fungal diseases such as powdery 
and downy mildew or Blackrot. However the proposed framework could be easily transposed to 
crops with similar structures such as fruit trees 
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