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Abstract  
Conventional techniques (e.g., intensive soil sampling) for site-specific management zones (MZ) 
delineation are often laborious and time-consuming. Using drones equipped with hyperspectral 
system can overcome some of the disadvantages of these techniques. The present work aimed 
to develop a drone-based hyperspectral imagery method to characterize the spatial variability of 
soil physical properties in order to delineate site-specific MZ. Canonical correlation analysis (CCA) 
was used to extract the most related wavelengths to the soil physical properties based on 
hyperspectral imagery. The selected spectral bands were 540, 704 and 816 nm. These bands 
were processed using an object-based image analysis (OBIA) technique to delineate two 
homogenous zones. A Student’s t-test at the 5% significance level showed that these zones are 
statistically different in the physical soil properties. Also, a comparison between the extracted 
zones with the MZ obtained from the apparent soil electrical conductivity stratification yield very 
similar results. The results of this study suggested that MZ delineation using drone-based 
hyperspectral data can be a promising alternative to conventional techniques such as intensive 
soil sampling grid and soil proximal sensors. 
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Introduction 
The delineation of site-specific management zones (MZ) is considered as a key practice to 
manage the precision agriculture operations. The identification of these zones within a field can 
be made using different techniques, such as yield maps and soil sampling (Cambouris et al. 
2006). The last decades have seen a growing interest in proximal spectroscopy which can 
characterize soil properties, accurately and less expensive than conventional laboratory methods 
(Rossel et al. 2017). However, the majority of studies on the application of spectroscopy for soil 
properties analysis were carried out under laboratory controlled conditions using soil samples 
from the field (Bilgiliet al. 2011; Hermansen et al., 2017; Vašát et al., 2017). This method is as 
laborious and time-consuming as conventional soil property analysis due to the need to collect 
soil samples, and to analyze them separately. Using drones equipped with a light-weight 
hyperspectral system can overcome some of the disadvantages of the current soil proximal 
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spectroscopy techniques. Drones have the advantages of the ability to cover a large area in 
relatively short time. The use of a drone-based hyperspectral remote sensing to characterize soil 
would increase the speed and efficiency of the process while decreasing the labor and the lack 
of spatial coverage associated to proximal soil spectroscopy. Furthermore, drone-based 
hyperspectral imagery provides high spectral and spatial resolution images while facilitating large-
scale monitoring and analysis (Adão et al. 2017). They allow many more measurements so that 
the data can adequately characterize the spatial and temporal variability of many soil properties. 
Finally, measurements are made directly in the field so that the data better represent the soil 
under field conditions. The main goal of the present work was to characterize the variability of the 
physical soil properties using drone-based hyperspectral data in order to delineate site-specific 
MZ.  

Material and methods 

Site characteristics 
The study was conducted during 2015 and 2016 in a 12-ha sandy soil field located in Sainte-
Catherine-de-la-Jacques-Cartier, near Quebec City, Canada (46°49'39"N, 71°40'38"W). The soil 
series was Pont-Rouge and was classified as Humo-Ferric Podzols (Soil Classification Working 
Group, 1998). The irrigated commercial potato (Solanum tuberosum L.) field was under Russet 
Burbank cultivar during both years.  

Soil sampling and apparent soil electrical conductivity measurements 
Sampling of the soil surface layer (0-20 cm) was done in fall 2015 with an intensive triangular 
sampling grid of 12 points per hectare (Figure 1). Physical [clay, silt, sand content and soil organic 
matter (SOM)] soil properties were analyzed in laboratory using the pipette method (Kroetsch & 
Wang, 2007) to determine particle size distribution and by combustion method for the SOM 
(Skjemstad & Baldock, 2007). In addition, apparent soil electrical conductivity (ECa) was 
measured in fall 2016 over the field, following the potato harvest, using the Veris 3100 soil-
mapping system (Veris technologies, KS, USA). This sensor measures the ECa in mS m-1 to a 
depth between 0-30 cm (EC30) and 0-100 cm (EC100). Each soil ECa measurement was 
georeferenced using a GPS receiver which allows measuring the soil elevation. The descriptive 
statistics of the measured soil properties are shown in Table 1. 

Table 1. Descriptive statistics of the measured soil properties  
 Mean Std. Deviation Coefficient of variation (%) 

Clay (g kg-1) 74.0 14.0 19 
Silt (g kg-1) 130.0 51.0 39 
Sand (g kg-1) 796.0 59.0 7 
SOM (g kg-1) 61.0 10.0 16 
EC30 (mS m-1) 1.7 0.6 35 
EC100 (mS m-1) 1.4 0.7 50 
Elevation (m) 151.8 2.5 2 
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Figure 1. Performed soil sampling grid in the experimental field 

Drone-based hyperspectral imagery acquisition 
A vertical take-off and landing (VTOL) hexacopter platform, model Hydra-12 (Altigator, Waterloo, 
Belgium), was used to collect hyperspectral data (Figure 2). This drone is equipped with 12 
brushless motors powered by a set of two batteries and can lift until a 12-kg payload. The flight 
time can reach 25 minutes (without payload).The flights can be done manually or autonomously 
based on predefined waypoints.  

 
Figure 2. Drone used in the study (Hydra-12, Altigator) 

Two pushbroom hyperspectral imaging sensors manufactured by Resonon (Bozeman, MT, USA) 
were used. The first one, Pika II, collects data on 240 spectral bands in the visible-near-infrared 
(VNIR) spectral range (400-900 nm) with a 3-nm spectral resolution. The second one, Pika NIR, 
collects data on 148 spectral bands in the near-infrared (NIR) and the shortwave infrared (SWIR) 
spectral range (900-1700 nm) with 6-nm spectral resolution. Adding to the sensor, the 
hyperspectral imaging system includes an integrated GPS, an inertial navigation system (INS) 
unit (SBG Ellipse-N, SBG-Systems, Paris, France), a spectrometer (Ocean Optics, Largo, FL, 
USA) for measuring the downwelling irradiance spectrum and a flight computer. The whole 
hyperspectral imaging system weights approximately 5 kg for the Pika II sensor and 9 kg for the 
Pika NIR sensor. 
The drone flights were carried out at 100-m altitude above ground level over bare soil field on 
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October 2016 after potato harvest. Three flights were completed for each hyperspectral sensor at 
25% side-lap aiming to cover the whole field. The spatial resolutions of the collected hyperspectral 
data were 6 cm and 12 cm for the Pika II and the Pika NIR sensors, respectively.  

Hyperspectral data pre-processing 
Digital numbers (DN) obtained with the hyperspectral imaging system were converted to radiance 
units using calibration coefficients provided by the manufacturer. A 12% reflectance calibration 
tarp was used to convert the radiance data to reflectance. The georectification procedure was 
carried out using Spectronon© software (developed by Resonon). The georectified datasets were 
then resampled to 1-m spatial resolution and a mosaic was created using the Seamless Mosaic 
functionality implemented in the ENVI 5.5 software (Harris Geospatial, Broomfield, CO, USA) 
(Figure 3). 

 
Figure 3. True color hyperspectral data mosaic of the studied field (spectral bands: 640 nm, 550 nm, 460 nm) 

Two commonly used spectral preprocessing techniques were applied on the obtained 
hyperspectral mosaic: 1- Savitzky-Golay filter (Savitzky & Golay, 1964) which reduced the noise 
in the data and 2- Standard Normal Variate transformation (SNV) (Barnes et al. 1993) which 
removed arbitrary offsets and multiplicative effects (Jakob et al. 2017; Schläpfer & Richter, 2011; 
Žížala et al. 2017). 

Hyperspectral data processing 
Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA) (Hotelling, 1936) is a multivariate statistical analysis 
technique which measures the linear dependency between two variable sets (e.g. X and Y) 
obtained from two separate data sources. The CCA aims to find two projection vectors a and b 
for X and Y, respectively such that the correlation (ρ) between the two new variable sets is 
maximized (Eq. (1)). In order to maximize this correlation, the derivatives of ρ with respect to a 
and b are set to zero.  

𝜌 = 𝑐𝑜𝑟𝑟{𝑎(𝑿, 𝑏(𝒀} = ./0123𝑿,43𝒀5

6027(23𝑿):27(43𝒀)
= 	

23𝑪𝒙𝒚4

623𝑪𝒙𝒙2643𝑪𝒙𝒙4
                         Eq. (1) 

Where Cxx is the dispersion matrix of the first set (X), Cyy is the dispersion matrix of the second 
set (Y) and Cxy is the covariance matrix between X and Y. 
The output of CCA is two new variable sets U = aTX and V = bTY having the same dimension d. 
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d is less than or equal the minimum dimension of the two original data sets. The first pair of 
canonical variates (CV) (U1, V1) has the maximum mutual information (the largest correlation). 
The canonical correlations decrease in the higher order CVs. 
Using CCA allows to reduce the data dimensionality and to explain covariation between two sets 
of variables. The CCA is also useful in finding features that are important for explaining covariation 
between sets of variables. 
In this study, before applying the CCA, the spectra corresponding to the soil sampling points were 
extracted from the hyperspectral data. So, the first group of variables (X) corresponds to the 
hyperspectral spectra (spectral variables) and the second group of variables (Y) correspond to 
the physical soil properties (soil variables) (Table 2). The clay was not included in the soil variables 
because it is related to the sand and silt information (i.e. redundant information). The output of 
the CCA is the canonical variables U (related to the spectral information) and V (related to the soil 
information). The most correlated spectral bands to the canonical variable U were extracted using 
the Pearson correlation (r) and then segmented using an Object Based Image Analysis. 

Table 2. Input variables for the CCA : X corresponds to the spectral variables and Y to the soil variables 
 Spectral Variables (X) Soil Variables (Y) 

λ1 λ2 … λn Sand Silt SOM 
Sample 1 x

1,1
  x

1,2
  …  x

1,n
  Y

1,1
  Y

1,2
  Y

1,3
  

Sample 2 x
2,1

  x
2,2

  …  x
2,n

  Y
2,1

  Y
2,2

  Y
2,3

  
…  … …  …  …  …  …   … 

Sample p x
p,1

  x
p,2

  …  x
p,n

  Y
p,1

  Y
p,2

  Y
p,3

  
λ i refers to reflectance value corresponding to wavelength I and p refers to the number of samples 

Object-based image analysis 

Object Based Image Analysis (OBIA) techniques allow to segment images into adjacent pixels 
with homogenous spectral information. These groups of pixels, called objects, are then used to 
do the classification (Peña et al. 2013). OBIA integrates spatial, spectral and contextual 
information in order to do the segmentation. 
In this study, a multiresolution segmentation algorithm (MRSA) (Baatz & Schäpe, 2000) was used 
to segment the selected spectral bands in the previous step. This algorithm is implemented in 
eCognition Developer 8 software (Trimble GeoSpatial, Munich, Germany). MRSA is a bottom-up 
segmentation method based on a pairwise region-merging technique. Segmentation begins with 
single-pixel objects. These objects are merged through an iterative process with neighboring 
pixels until the object's internal heterogeneity exceeds the maximum allowed heterogeneity 
criterion set by the user through a scale parameter. This parameter controls of the size of the 
objects, the use of bigger scales results larger objects. The object homogeneity criterion is defined 
by a combination of spectral values (color) and geometrical properties (shape), based on 
compactness and smoothness criteria (Torres-Sánchez et al. 2015). After the segmentation 
procedure, the generated homogenous objects were classified according the mean spectral 
brightness of each object. A Student’s t-test was used to determine whether there was a 
statistically significant difference between the obtained zones. 

Results and discussion 

CCA and wavelengths selection  
Three CVs were obtained for each canonical variable (U and V) after the application of the CCA 
on the hyperspectral data and the studied physical soil properties. The three most correlated 
spectral bands to the canonical variable (U) were selected. These bands correspond to the 
wavelengths 540, 704 and 816 nm. The table below (Table 3) shows the correlation between the 
input variables (spectral and soil) and the obtained ones (U and V). The wavelengths 540 and 
704 nm were significantly correlated to the silt and SOM content while the wavelength 816 nm 
was significantly correlated to the sand content. 
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Table 3. Correlation (r) between physical soil properties, soil reflectance corresponding to selected bands and the 
canonical variables (U and V) 

  U  Soil properties 
  U1 U2 U3  Sand Silt SOM 

V V1 0.87*** 0.00 0.00  -0.21*  0.18 -0.95*** 
V2 0.00 0.82*** 0.00   0.81*** -0.92***  0.30** 
V3 0.00 0.00 0.61***   0.54*** -0.34*** -0.05 

         
Wavelength 

(nm) 
540  0.71***  0.05 -0.28**  -0.19*  0.13 -0.57*** 
704  0.23*  0.60*** -0.11   0.32*** -0.40*** -0.04 
816 -0.08 -0.60*** -0.11  -0.42***  0.46*** -0.08 

* P-value < 0.05; ** P-value < 0.01; *** P-value < 0.001 

The selected wavelengths are located in the VNIR spectral range. Similar results were obtained 
in many studies (Ben-Dor et al., 2002; Galvao & Vitorello, 1998; Krishnan et al. 1980; Nocita et 
al. 2013; Pinheiro et al. 2017). Pinheiro et al. (2017) suggested that the spectral range from 400-
830 nm was the most relevant to characterize sand content. Galvao & Vitorellon (1998) and Nocita 
et al. (2013) found that the spectral range between 550-700 nm showed absorption features of 
SOM. Krishnan et al. (1980) found out that the spectral band 564 nm was useful to predict the 
SOM. Using an airborne hyperspectral imaging Ben-Dor et al. (2002) developed a model , using 
the 705-nm wavelength to predict SOM. 

Multiresolution Segmentation 
The MRSA applied on the selected bands resulted in two homogeneous zones (Figure 4.a). The 
mean sand content in the first zone was 840 g kg-1 and for the second one, it was 765 g kg-1. The 
comparison of these zones with the MZs obtained from the application of the MRSA on the ECa 
showed similar results (Figure 4.b).  

   
Figure 4. Management Zones obtained using a) Drone-based hyperspectral data b) Soil electrical conductivity 

In order to validate the zones obtained from the segmentation of the drone-based hyperspectral 
data, a Student’s t-test (p-value > 0.05) was conducted between the two zones along with the 
following soil properties: clay, silt, sand, SOM, EC30, EC100 and elevation. The obtained results 
show that there is a significant difference between the two delineated zones in the texture, SOM, 
EC100 and elevation (Table 4). 

Table 4. Results of the Student t-test for MZ delineated using drone-based hyperspectral data 
 Mean T-stat P-value 
 MZ1 MZ2 

Clay (g kg-1) 68.1 77.8 -4.0 <0.001 
Silt (g kg-1) 91.9 156.9 -8.5 <0.001 
Sand (g kg-1) 840.0 765.2 8.7 <0.001 
SOM (g kg-1) 56.8 63.8 -4.0 <0.001 
EC30 (mS m-1) 1.5 1.6 -1.4 >0.05 
EC100 (mS m-1) 1.5 1.2 4.2 <0.001 
Elevation (m) 150.8 153.2 -7.6 <0.001 

(a) (b) 
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Conclusions 
Drone-based hyperspectral imagery was used in this study to characterize the spatial variability 
of soil physical properties (sand, silt, SOM) in order to delineate site-specific MZ. Firstly, the CCA 
algorithm allowed the reduction of the dimensionality of hyperspectral data while maximizing the 
correlation with the soil properties data. The most relevant wavelengths were selected in the VNIR 
spectral range (540, 704, 816 nm). The OBIA conducted on the reflectance data corresponding 
to the selected wavelengths has shown a great potential for MZ delineation. The delineated zones 
were significantly different along with the texture, SOM, ECa and elevation. These results will be 
validated using drone-based hyperspectral imagery acquired during 2016 and 2017 above three 
other fields.  
This study has shown that the soil surface reflectance can reflect the spatial variability of the 
physical soil properties at the field scale and serves to delineate MZ. The obtained results 
suggested that MZ delineation using drone-based hyperspectral data is a promising alternative to 
conventional techniques such as intensive soil sampling grid and soil proximal sensors. 
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