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Abstract. In Saguenay-Lac-St-Jean, there are nearly 27,000 ha of wild blueberries (Vaccinium 
angustifolium Ait.). This production is carried out in fields with heterogeneous growing conditions 
due to the local changes in topography, key soil properties, and crop density. The main objective 
of this study was to develop a regression-based approach to site-specific management (SSM) by 
integrating proximally and remotely sensed data layers, namely, apparent soil electrical 
conductivity (ECa), field elevation, and multi-spectral satellite imagery. The study sites were an 
11.3-ha flat field (FieldFlat) and a 13.2-ha undulating field (FieldUnd) from Normandin, QC. Soil 
samples were collected at 5 - 15 cm depth using a 33-m grid sampling strategy and then analyzed 
for a range of chemical and physical properties. A vegetation index (VI) based on the second 
principal component in principal components analysis (PCA) was generated from a four-band 
SPOT satellite image (pan-sharpened to 1.5-m resolution). VI correlation with yield was calculated 
using Pearson’s correlation test (p < 0.05). Four distinct areas based on combinations of elevation 
and ECa were defined to signify the most diverse growing conditions in terms of the soil’s potential 
to store water and nutrients and the landscape’s susceptibility to run-off. Soil characteristics as 
well as crop performance in these areas were compared using Analysis of Variance (ANOVA) 
and Tukey’s post-hoc test (α = 0.05). Though neither field showed significant differences in yield 
among the four growing conditions, several yield-limiting soil properties were significantly 
different. In both fields, the greatest contrast in soil properties was between high elevation areas 
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with low ECa and low elevation with high ECa. The VI was not strongly correlated with yield (rund=-
0.41, rflat=-0.36). However, the VI successfully classified large, contiguous bare spots in the 
undulating field (rund=0.68). Our findings indicate satellite imagery supplements yield estimation 
and captures greater crop density variation than the sampled yield. Furthermore, the results 
indicate an integration of elevation and ECa data targets within-field contrasts effectively for SSM. 
By combining satellite, elevation and ECa data, our proposed methodology captures diverse field 
conditions.  
Keywords.  
Precision Horticulture, Vaccinium angustifolium Ait., Apparent soil electrical conductivity, SPOT 
satellite image. 
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Introduction 
Wild blueberry (Vaccinium angustifolium Ait.) cultivation generates a business value of over $45 
million annually in Quebec (Gagnon 2013). Specialty crop such as wild blueberry potentially 
benefits from site-specific management (SSM) due to its relatively high price of yield and cost of 
production. Efficient N fertilization of wild blueberry benefits both producers and the environment. 
Excessive N will cause an overgrowth of leaves, stunted fruiting, and heightened disease 
susceptibility (Percival and Sanderson, 2004), while mis-application of N threatens the ecological 
activity in the region through ammonia volatilization and nitrate leaching (Thyssen et al. 2006; 
Istas 1988). An additional challenge to wild blueberry cultivation is variation in crop density. Bare 
spots commonly occur in young and/or mismanaged fields. Previous studies have developed 
SSM strategies based on management zone (MZ) delineation of either topography or ECa in 
conjunction with mapping and excluding bare spots (Saleem et al. 2013, Farooque et al. 2012). 
However, MZs rely on categorical prescriptions, treating sub-field classes with uniform rates. 
Alternatively, a regression-based approach applies treatment at a continuously changing rate, 
relative to changing field conditions. The goal of this study was to illustrate how proximal ECa and 
elevation data might be integrated with remotely sensed imagery to develop a regression-based 
SSM strategy for the specialty crop wild blueberries. A simple data separation method on which 
to base the regression was suggested. The facility of this method may provide future decision 
support systems for widespread adoption of regression-based SSM.  

Materials & Methods 
 
Experimental sites 
Two commercial fields were selected (Fig. 1). The experimental blueberry fields lay 6 km 
southwest of Normandin, QC (48.8369° N, 72.5279° W) north of the Chamouchouane River. Soil 
here was primarily podzolic, mixed with finer eolian deposits. Drainage varied from moderate to 
good. The site was generally flat with some undulation. FieldFlat (11.3 ha) represented a uniform 
low-lying topography ranging from 123 – 125 m elevation and FieldUnd (13.2 ha) represented a 
more heterogeneous topography with elevation ranging from 127 – 136 m.  
Data layers were divided into proximally and remotely sensed data, soil samples analyzed in the 
lab, and sampled yield. The selected data layers were meant to encompass the various properties 
and processes which affect yield.  
Soil sampling and analysis 
Soil and yield samples were obtained in both fields with a 33-m grid sampling scheme for a total 
of 136 points in FieldUnd and 116 points in FieldFlat. Soil samples were collected in October 2016 
at 5-15 cm depth. Yield samples were collected over two days in August 2016 before the fields 
were harvested for commercial sale. Blueberries were combed from a square meter of blueberry 
bush at each point. The weight of the fresh blueberries was measured and recorded on site for 
every sample.  
Soil samples were dried and ground to 2 mm for textural and chemical laboratory analysis. A 
Mehlich-III soil extractant was used to extract key nutrients (Ziadi and Tran 2007). Phosphorus 
(P) content was determined by colorimetry (Lachat Instruments, model 8500, series 2) (Murphy 
and Riley 1962). Potassium (K) content was determined with spectrophotometry flame emission 
(Lachat Instruments, model 8500, series 2). Total Carbon (C) and Nitrogen (N) content were 
evaluated with the Elementar vario MAX CN analyzer (Elementar Analysensysteme GmbH, 
Hanau, Germany). Soil texture was analyzed for soil samples using the pipette method (Day 
1965). Texture was categorized in terms of grams per kilogram total sand, total silt, and total clay 
according to the Canada Soil Survey Committee standards (Sheldrick, 1984). Descriptive 
statistics on all attribute data were calculated. Laboratory analysis methods are summarized in 
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The ECa was collected with the Veris 3100 sensor. The Veris 3100 was configured with six roller 
coulter electrodes pulled by a truck. Sample transects were 3 m apart, and measurements were 
received at a density of one sample per meter. Elevation was collected with a GNSS receiver 
mounted on a gator. Data was collected at 5 samples per second. Transects were spaced 10 
meters apart, guided with a GPS steering guidance system.  
 

 
Fig. 1: Experimental sites. 

. 
Table 1: Summary of field sensor and laboratory analysis methods. 

Property Method Reference 
Granulometry Pipette Day (1965) 
P, K Mehlich-III Ziadi and Tran (2007) 
pH Water Hendershot et al. (2007) 
Total C, Total N Elementar vario MAX CN analyzerx Elementar Analysensysteme GmbH, Hanau, Germany 
ECa Veris 3100x Veris Technologies, Salina, KS 
Elevation Real-time-kinematic GPSx Trimble Navigation Inc., Sunnyvale, CA 
xMention of a trade name, proprietary product, or company name is for presentation clarity and does not imply endorsement by the 
author or McGill University, nor does it imply exclusion of other products that may also be suitable. 

Proximal soil sensing 

The ECa was collected with the Veris 3100 sensor. The Veris 3100 was configured with six roller 
coulter electrodes pulled by a truck. Sample transects were 3 m apart, and measurements were 
received at a density of one sample per meter. Elevation was collected with a GNSS receiver 
mounted on a gator. Data was collected at 5 samples per second. Transects were spaced 10 
meters apart, guided with a GPS steering guidance system.  
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Fig. 1: Experimental sites. 

Remote sensing 
A multi-spectral (MS) satellite image of the fields during August 2017 was obtained from Airbus’s 
SPOT-6 satellite archive. The SPOT-6 image was delivered georeferenced, corrected for off-nadir 
acquisition and terrain effects using the standard Reference3-D model for ground corrections 
(SPOT User Guide). The image included red, green, blue, and NIR bands at 5 m2 resolution, as 
well as a panchromatic band at 1.5 m2 resolution. The panchromatic and MS images were 
simultaneously acquired, allowing for geospatially accurate pan-sharpening of the MS image to 
1.5 m resolution. The pansharpened image was radiometrically and atmospherically corrected in 
ENVI image analysis software (Exelis Inc., Boulder, Colorado). PCA reduced the MS image to 
principal components which maximized variation and reduced noise. The second principal 
component was used as a VI per published recommendations (Eklundh and Singh 1993; 
Townshend 1985). 
Pearson’s correlation coefficient was calculated for the VI and yield to assess how well the VI 
predicted yield. The VI was classified by the Jenks optimization method to delineate bare spots 
within the field (Jenks 1967). The effectiveness of bare spot prediction was assessed by 
calculating Pearson’s correlation with a binary classification of sampled yield where yield values 
of 0 kg ha-1 were assigned a 0 and all other values were assigned a 1. 

Data processing 
Elevation and ECa data were filtered to one value per five seconds. Data distribution was 
examined for normality and values outside of two standard deviations were removed. Slope and 
topographic wetness index (TWI) were calculated from the elevation data using SAGA GIS 
(Beven and Kirkby 1979). Elevation and ECa data were interpolated to continuous surfaces using 
the Ordinary kriging (OK) method with R statistical software (R Foundation for Statistical 
Computing, Vienna, Austria).  
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Topographic attributes and ECa were extracted from their raster grids by the yield/soil sample 
points so they could be compared with other sampled attributes. Elevation vs. ECa values were 
then projected onto a scatter plot, and ten points in the four corners of the scatter plot – with the 
exclusion of outliers – were sub-set to represent four extreme growing conditions of ECLow ElevLow, 
ECLow ElevHigh, ECHigh ElevLow, and ECHigh ElevHigh. Veris Shallow ECa was selected because its 
depth of response (0.3 m) most closely corresponded with the depth of soil samples. ANOVA and 
Tukey’s post-hoc test were used to compare the significant difference of the means of individual 
soil properties in the four scenarios (locations with extreme soil conditions).  

Results & Discussion 
Lab analysis showed both fields with sandy, acidic soil. Average yield in FieldUnd was higher than 
the FieldFlat (6432 kg ha-1 vs. 3985 kg ha-1). FieldUnd also had higher silt content and less sand 
than FieldFlat (Table 2). The average pH in both fields was within the range of 4.6 to 5.2, which 
was appropriate for wild blueberry production according to NBDAAF (1998). Nutrient levels were 
similar in both fields except for the P content, which was higher in FieldUnd. Sampled yield was 
highly variable, and correlation was difficult to establish. In FieldUnd, a significant negative 
correlation existed between yield and elevation ( 
  FieldUnd  FieldFlat 

  Unit N Min Max Mean STD CV %  N Min Max Mean STD CV % 

Yield kg ha-1 136 0 16080 6432 3499 54.4  116 0 10740 3985 2253 56.5 

Total C % 136 0.64 3.88 1.29 0.53 40.9  116 0.20 4.12 1.17 0.57 48.8 
Total N % 136 0.04 0.17 0.07 0.02 35.5  116 0.02 0.22 0.08 0.03 35.0 
Soil pHwater -- 136 4.5 6.5 5.1 0.3 6.0  116 4.6 5.8 5.0 0.2 3.5 
P mg kg-1 136 1.1 249.1 67.0 48.5 72.3  116 1.1 134.3 24.3 21.4 88.0 
K mg kg-1 136 8.1 256.8 38.7 25.0 64.4  116 3.4 95.2 40.4 18.4 45.6 
Sand g kg-1 136 636.4 948.1 856.8 74.1 8.6  116 718.9 968.4 896.0 30.2 3.4 
Silt g kg-1 136 35.4 345.8 119.7 75.6 63.1  116 19.2 257.6 77.5 30.5 39.3 
Clay g kg-1 136 12.0 37.3 23.5 5.2 22.1  116 9.9 38.1 26.5 6.1 23.1 

Table 3). There was also a positive correlation between yield and silt in the undulating field. 
Texture and topography appeared to be more yield-determining in FieldUnd. In FieldFlat, yield was 
significantly correlated with total C and extractable K.  

Table 2: Statistical summary of yield and soil samples. 

  FieldUnd  FieldFlat 

  Unit N Min Max Mean STD CV %  N Min Max Mean STD CV % 

Yield kg ha-1 136 0 16080 6432 3499 54.4  116 0 10740 3985 2253 56.5 

Total C % 136 0.64 3.88 1.29 0.53 40.9  116 0.20 4.12 1.17 0.57 48.8 
Total N % 136 0.04 0.17 0.07 0.02 35.5  116 0.02 0.22 0.08 0.03 35.0 
Soil pHwater -- 136 4.5 6.5 5.1 0.3 6.0  116 4.6 5.8 5.0 0.2 3.5 
P mg kg-1 136 1.1 249.1 67.0 48.5 72.3  116 1.1 134.3 24.3 21.4 88.0 
K mg kg-1 136 8.1 256.8 38.7 25.0 64.4  116 3.4 95.2 40.4 18.4 45.6 
Sand g kg-1 136 636.4 948.1 856.8 74.1 8.6  116 718.9 968.4 896.0 30.2 3.4 
Silt g kg-1 136 35.4 345.8 119.7 75.6 63.1  116 19.2 257.6 77.5 30.5 39.3 
Clay g kg-1 136 12.0 37.3 23.5 5.2 22.1  116 9.9 38.1 26.5 6.1 23.1 

Table 3: Pearson's correlation coefficients, *p < 0.05, **p < 0.001, ***p < 0.0001. 

 Field Und  Field Flat 
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 Yield Elevation ECa  Yield Elevation ECa 

Yield  1.00 -0.22* -0.02  1.00 -0.06 0.18 

Elevation -0.22* 1.00 -0.50***  -0.06 1.00 -0.28* 

ECa -0.02 -0.50*** 1.00  0.18 -0.28** 1.00 

Total C 0.10 -0.02 0.16  0.25* 0.00 0.28* 

Total N 0.08 -0.04 0.14  0.23 -0.14 0.36*** 

Soil pHwater -0.04 -0.50*** 0.38***  -0.18 -0.46*** 0.25* 

P -0.02 -0.11 0.04  0.02 -0.31** 0.17 

K 0.25* 0.22** -0.07  0.25* 0.04 0.16 

Sand -0.16 0.60*** -0.34***  -0.20 0.12 -0.31** 

Silt 0.19* -0.69*** 0.38  0.12 -0.06 0.25* 

Clay -0.14 0.55*** -0.28*  -0.02 0.15 0.12 

 
In addition, it was observed that ECa correlated with pH (rUnd = 0.38, rFlat = 0.25). In both fields, 
ECa was significantly correlated with the results of particle size analysis, particularly for total sand 
(rUnd = -0.34, rFlat = -0.31) indicating sandier soil is negatively correlated with ECa. ECa was not 
significantly correlated with TWI in FieldUnd but was correlated in FieldFlat (rFlat =0.25). In FieldUnd, 
physical soil characteristics were more correlated with ECa while in the FieldFlat, chemical and 
physical soil characteristics were correlated with ECa. In FieldUnd, total silt was negatively 
correlated with elevation while total clay was positively correlated with elevation. Elevation 
showed a significant correlation with pH in both fields with higher elevations corresponding to 
lower pH (rUnd = - 0.50, rFlat = - 0.46).  

Extreme cases 
The scatter plots in Fig. 2 and Fig. 3 illustrate the relationship between ECa and elevation data 
used to identify contrasting field conditions on which to base the regression. The two distinct 
clusters in Fig. 2 show the bimodal distribution of elevation in FieldUnd. The red points highlighted 
in the scatterplot represent occurrences of zero yield. They all occur in the high elevation cluster 
and are mostly distributed among higher ECa. Tukey’s post-hoc test revealed slope to be 
significantly higher in the ElevHigh ECHigh scenario indicating that high slope and bare spots 
coincide. In FieldFlat, elevation varies less, but ECa was also slightly lower in high elevation areas 
(Fig. 3). 
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Fig. 2: FieldUnd scatter plot of Elevation vs. ECa values. Bare spots are highlighted in red. Bare spots are highlighted in red 

and correspond with higher elevation. 

 
Fig. 3:  FieldFlat scatter plot of Elevation vs. ECa values. Bare spots are highlighted in red. 

 
Tukey results showed a significant difference in soil texture among high and low elevation 
scenarios. Total silt was separated by elevation, but not distinguished by ECa (Fig. 4). The 
combination of ECa and elevation distinguished other physical and chemical attributes (sand, 
slope, Fe, and pH). Average pH was significantly higher in ElevLow ECHigh and slightly above the 
optimal range.  
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Fig. 4: FieldUnd total silt separated by high vs. low elevation and other chemical and physical soil properties separated by 

the combination of high vs. low elevation and ECa. 

Like FieldUnd, the greatest distinction in FieldFlat was between scenarios ElevLow ECHigh and ElevHigh 
ECLow (Fig. 5). Elevation was less variable in FieldFlat, so ECa was more useful in separating data. 
 

 

 
Fig. 5: FieldFlat physical and chemical properties separated by combining high vs. low elevation and ECa. 

Remote Sensing 
The VI derived from the second principal component (PC2) using PCA improved the classification 
of bare soil vs. vegetation. Correlation with yield in FieldUnd was higher than in FieldFlat (rUnd=0.-41, 
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rFlat=-0.36). Low correlation coefficients suggest the VI alone could not capture yield patterns in 
the field – in part, because greener and denser growth did not necessarily indicate higher 
blueberry yield but may have represented weed patches or more excessive leaf growth.  
Based on the VI classification, bare spots comprised 75.5 m2 or 8.5% of FieldUnd and 29.3 m2 or 
10.7% of FieldFlat. Results showed the VI better identified bare spots in FieldUnd (r=0.68) than in 
FieldFlat (r=0.40), likely because the incidence of bare spots was more contiguous in the undulating 
field (Fig. 6). Validating the VI with sampled yield proved challenging because SPOT imagery 
pixels were pansharpened to 1.5 m2 resolution while ground-truth yield was sampled at 1 m2. 
Smaller and less contiguous bare spots did not appear on the satellite image.   
Larger classified spots could be used to identify areas of the fields to be excluded from the 
regression approach. The average soil conditions in bare spots were found to have only a slightly 
lower ECa (zUnd = -0.143 zFlat = -0.090), yet soil showed higher than average pH (zUnd = 0.33, 
zFlat = 2.53) and lower than average total C (zUnd = -0.27, zFlat = -1.19) and K (zUnd =-0.59, 
zFlat = -1.347). This suggests soil conditions in bare spots differ dramatically from average field 
conditions, despite little change in ECa. The large bare spots classified in FieldUnd will be separated 
for tailored management. 
 

 
Fig. 6: Classification of bare spots based on PCA-derived VI. The VI performs especially well when classifying large 

contiguous bare spots. 

Conclusion 
In this study spatial heterogeneity of the growing environment was analyzed in two wild blueberry 
production fields using proximally-sensed elevation and ECa data combined with remotely-sensed 
satellite data. We found the VI generated from satellite imagery was limited in mapping yield in 
part because ground-truth data could not appropriately validate the VI and in part because 
measuring vigor in fruiting crops presented new challenges when compared to green crops. 
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However, where large, contiguous bare spots occurred, the VI satisfactorily identified them. 
Satellite imagery proved to be a simple method for mapping large bare spots to be separated 
from the rest of the field for SSM. Future studies should investigate how this method can be scaled 
to cover an entire producer’s site for rapid assessment of bare spots.  
The two experimental fields showed contrasting field conditions with one field topography-driven 
and with larger bare spots than the other. Yet, the integration of elevation and ECa data effectively 
separated within-field contrasting field conditions in both fields – the greatest contrast occurring 
between ElevLow ECHigh vs. ElevHigh ECLow. With the inclusion of bare spot delineation from satellite 
imagery, a host of field conditions may be separated with our methodology. 
Future studies should address the question of scalability of SSM strategies on this specialty crop 
in this region. Furthermore, this regression-based fertilization strategy lends itself to the 
development of a decision support system for determining fertilization levels based on sampled 
ECa and elevation data. When combined with satellite imagery for mapping bare spots, this 
methodology encompasses the main challenges of wild blueberry production.  
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Appendix  
Appendix A: Standard score of soil variables in bare spots. The score represents distance from 
the field average. A value close to 0 has little difference from field average. NUnd = 8 and NFlat=2.  
 

Soil Particle size zUnd zFlat 

Clay 0.329 -1.570 
Silt -0.594 -1.124 
Sand 0.583 1.453 
Chemical analysis    
Total N 0.087 -1.239 
Total C -0.266 -1.186 
Soil pHwater 0.329 2.530 
P -0.297 1.478 
K -0.587 -1.347 
Sensor + Yield   
Veris Shallow  -0.143 -0.090 
Veris Deep  0.077 -1.245 
Elevation 1.090 -1.159 
Yield -1.838 -1.768 
Slope 0.676 0.471 
TWI -0.371 0.140 

 
 
  


