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Abstract.  
Developments in remote sensing data acquisition capabilities, data processing, and interpretation 
of ground-based, airborne, and satellite observations have made it possible to couple remote 
sensing technologies and precision crop management systems. Land cover and crop type 
classification is a fundamental task in remote sensing and is crucial in various environmental and 
agricultural applications. Accurate and timely information on land cover and crop types is essential 
for land management, land-use planning, environmental monitoring, and food security 
assessment. Remote sensing data, such as satellite imagery, provides a valuable source of 
information for characterizing the Earth's surface by capturing the spectral and spatial properties 
of different land cover and crop types. With the advancements in artificial intelligence and machine 
learning algorithms, land cover and crop type classification automation has become more efficient 
and accurate. Most studies have focused on classifying land cover and crop types at the same 
sites. Training sets and test sets are often selected from a unique study area. The main objective 
of this study is to develop an approach for land cover and crop type classification in different sites 
located in distinct districts using Sentinel 2A-derived vegetation indices and an Artificial Neuron 
Network (ANN). Fourteen vegetation indices calculated from six Sentinel-2A images were used 
to classify Maize and Forage plants. The Multi-Layer Perceptron (MLP) algorithm model was 
calibrated on a specific geographical location and validated on another geographical location. The 
ANN algorithm utilizes the power of deep learning to automatically learn complex patterns and 
relationships in the input data, enabling it to classify crop types based on the provided features 
effectively. The results show that the studied crops are classified with an overall accuracy ranging 
between 66.1% and 88.4% on the first site and between 73.1% and 88.1% on the second site. 
The present study can advance research on using high spatial resolution satellite remote sensing 
data for classification using machine learning approaches and offers a promising approach to 
effectively classifying land cover and crop types in different geographical areas. 
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Introduction 
Land cover and crop type classification are essential tasks for various applications such as 
agricultural monitoring and land management. As the global population increases, the need for 
efficient land use and sustainable agricultural practices has become increasingly important. 
Remote sensing technology, coupled with advanced machine learning techniques, offers a 
powerful solution by enabling large-scale and timely analysis of Earth's surface. Sentinel-2A 
satellite imagery, known for its high spatial resolution and multispectral capabilities, has become 
a valuable resource for such classification. Utilizing vegetation indices derived from Sentinel-2A 
data and artificial neural networks (ANN) can significantly enhance the accuracy of land cover 
and crop type classifications (Hu et al. 2022). Previous studies have demonstrated the 
effectiveness of integrating different satellite data sources for land cover classification. For 
example, the successful mapping of land use and land cover in various regions has been achieved 
through the integration of Sentinel-2 optical data (Tavares et al. 2019). The popularity of 
employing advanced classification algorithms with Sentinel-2 data has increased because of its 
superior spatial resolution compared with other satellite images. Researchers have chosen 
Sentinel-2A data for land use/land cover classification in studies ranging from wetland monitoring 
to urban greenspace analysis (Priyadarshini et al. 2018). Furthermore, the fusion of Sentinel-2A 
data with UAV imagery has been utilized to achieve finer crop classification at a spatial scale, 
ensuring the precise mapping of crop distribution (Li-cheng et al. 2019).   
 
Numerous studies have focused on the classification of crop types and land cover using datasets 
obtained from the same locations (Vijayasekaran 2019; Jia et al. 2014; Wu et al. 2017; 
Jagadeeswaran 2018; Valcarce-Diñeiro et al. 2019; Fernández and Morales 2019). Therefore, 
the literature examined demonstrates the significance of employing machine learning and 
classification algorithms and integrating remote sensing data with crop models to classify crop 
types. Hyperspectral imaging and deep learning algorithms have been identified as viable 
methods for crop classification. In previous studies, the training and test datasets were usually 
selected from the same study sites in the literature. However, few studies have explored 
classification approaches using different datasets (Khan et al. 2021). Further research is required 
to develop effective crop-type classification approaches using high-resolution remote sensing 
data and advanced machine-learning algorithms.   
 
The aim of the present study is to evaluate the capability of well vegetation indices, including the 
normalized difference vegetation index (NDVI), normalized difference water index (NDWI), green 
normalized difference vegetation index (GNDVI), atmospherically resistant vegetation index 
(ARVI), soil adjusted vegetation index (SAVI), optimized soil-adjusted vegetation index (OSAVI), 
modified soil-adjusted vegetation index (MSAVI), visible atmospherically resistant index (VARI), 
structure insensitive pigment index (SIPI), simple ratio (SR), red edge chlorophyll index (ReCI), 
green chlorophyll index (GCI), Green Leaf Index (GLI), and green ratio vegetation index (GRVI), 
to classify maize and forage crops in two distinct agricultural areas. The classification was 
performed using the ANN algorithm. The model was trained at a specific location and validated 
at another location.  

Materials and Methods 
Study site 
This study was conducted in two different villages in Bursa province in northwest Turkey, which 
lies approximately between latitudes 40°5'26.39"N and 40°11'19.03"N and longitudes 
28°21'35.43"E and 28°29'25.84"E (Fig. 1). The study site included two villages, Tepecik and 
Ormankadı, located in the Mustafakemalpaşa district, with areas of 13.08 km2 and 17.60 km2, 
respectively. 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

3 

 
 

Fig. 1 Location and a view of the investigated sites 
 

The climate in the study area is characteristic of a Marmara transitional Mediterranean climate. 
Precipitation occurs mostly during spring and winter. Precipitation during the winter typically 
occurs in the form of snow. The coldest month of the year is generally February, and the hottest 
month is July. Although the vegetation covering the soils of the study area provides the general 
characteristics of the Marmara Region, regions close to the sea and rural areas show differences. 
The soils in the study area are alluvial calcareous brown, red-brown Mediterranean, and large 
Rendzina soil groups formed in situ (Bantchina et al. 2017). Maize, pulses, tomatoes, forage 
plants, orchards, sugar beets, meadows, and pastures are generally cultivated in the study area, 
with minor changes from year to year. This study focuses on maize and forage crops.  

Methodology 
In this study, Sentinel-2A-derived spectral indices (NDVI, NDWI, GNDVI, ARVI, SAVI, OSAVI, 
MSAVI, VARI, SIPI, SR, ReCI, GCI, GLI, and GRVI) and an ANN machine-learning algorithm 
were selected to assess the feasibility of accurate maize and forage crop classification. The 
overall methodology and steps used in this study are illustrated in Fig. 2. 
 

Turkey

ORMANKADI

TEPECİK
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Fig. 2 Study methodology flowchart 
 

Ground Truth  
This study used data obtained from Mustafakemalpaşa and Karacabey Irrigation Unions, where 
crop types declared by farmers on a parcel basis during the cultivation period were collected. 
These declarations were cross-referenced with onsite observations to validate their accuracy. The 
field investigations were conducted during the 2022 crop season. Plots with maize and forage 
crops were investigated in the villages of Tepecik and Ormankadı in the Mustafakemalpaşa 
district. A total of 2000 parcels were investigated. Field investigations demonstrated accurate data 
from the Mustafakemalpaşa and Karacabey Irrigation Unions.  
The established crop patterns from field observations and parcel maps were processed using 
ArcGIS ArcMap 10.8 (ESRI Redlands, California, USA) software. The vector-based data were 
further transformed into raster pixels for the analysis. After the pre-processing steps, 988 parcels 
were considered in each village (Ormankadı and Tepecik). The data were exported in an Excel 
worksheet format, with each row containing information on a distinct pixel and each column 
encompassing the parcel number. The dataset was labeled into two classes, maize and forage. 
The index values were averaged per parcel and a dataset with 988 parcels/rows was curated for 
both training and testing purposes.  
 

Sentinel 2A-Derived Spectral Indices 
Sentinel-2A data were used in this study. The Sentinel fleet of satellites was designed to deliver 
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remote sensing data to the European Commission's Copernicus program. The Sentinel-2A 
satellite was launched by the European Space Agency on June 23, 2015, and operates in a sun-
synchronous orbit with a 10-day repeat cycle.  
Sentinel 2A-derived vegetation indices have a significant utility in agricultural and environmental 
monitoring. These indices are valuable tools for evaluating the health, growth, and overall 
productivity of the vegetation. In this study, Sentinel-2A imagery was used to derive the vegetation 
indices. The images were downloaded from https://scihub.copernicus.eu/dhus/#/home in bottom-
of-atmosphere L2A format. Six images from May 12, June 18, July 18, August 10, September 16, 
and October 09, 2022, covering the study area, all atmospherically corrected and cloudless, were 
selected. These six images were selected by considering one image per month to cover the 
phenological stages of the maize crop. The number of images was chosen to evaluate whether it 
was possible to achieve a high accuracy with few images. In the study area, maize and forage 
crops are generally seeded in May and harvested in October or November.  
In this study, fourteen (14) well-known and commonly used vegetation indices (VIs) were 
selected. These indices have been used in many studies and have been recognized to improve 
the accuracy of crop-type classification (Thenkabail 2000; Li, et al. 2010; Agilandeeswari et al. 
2022). VIs using bands with a 10 m resolution were used to obtain high-resolution data. For each 
scene, 10 m spatial resolution bands (2, 3, 4, and 8, respectively, Blue, Green, Red, and NIR 
spectral bands) were selected. The VIs and formulae used in this study are listed in Table 1.  

 
Table 1. Sentinel-2A-derived VIs used in this study 
 

VIs Description Formula Reference 

NDVI Normalized Difference Vegetation Index (Band8 - Band4) / (Band8 + Band4) (Tucker 1979) 

NDWI Normalized Difference Water Index (Band3 - Band8) / (Band3 + Band8) (Gao 1996) 

GNDVI 
Green Normalized Difference Vegetation 
Index (Band8 - Band3) / (Band8 + Band3) (Gitelson 1996) 

ARVI Atmospherically Resistant Vegetation Index [Band8 - (2*Band4) + Band2] / [Band8 + (2*Band4) + Band2] 
(Kaufman and Tanre, 
1992) 

SAVI Soil Adjusted Vegetation Index [(Band8 - Band4) / (Band8 + Band4 + 0.5)]*(1 + 0.5) (Huete 1988) 

OSAVI Optimized Soil Adjusted Vegetation Index (Band8 - Band4) / (Band8+ Band4 + 0.16) (Rondeaux 1996) 

MSAVI Modified Soil-Adjusted Vegetation Index [2 * Band4 + 1- sqrt((2 * Band4 + 1)2 - 8 * (Band4 -Band3))]/2 (Qi 1994) 

VARI Visible Atmospherically Resistant Index (Band3 - Band4) / (Band3 + Band4 - Band2) (Gitelson et al. 2002) 

SIPI Structure Insensitive Pigment Index (Band8 - Band2) / (Band8 - Band4) (Penuelas et al. 1995) 

SR Simple Ratio Band8 / Band4 (Birth and McVey 1968) 

ReCI Red Edge Chlorophyll Index (Band8 / Band4) - 1 
Gitelson and Merzlyak 
(1994) 

GCI Green Chlorophyll Index (Band8 / Band3) - 1 (Gitelson et al. 2003) 

GRVI Green Ratio Vegetation Index Band8 / Band3 (Sripada  et al. 2006) 

GLI Green Leaf Index [(Band3- Band4) + (Band3– Band2)] / [(2* Band3) + Band4 + Blue] (Gobron et al. 2000) 
 

Artificial neural network (ANN) 
In this study, a multilayer perceptron (MLP) was used to classify the crop types. MLP is a type of 
artificial neural network (ANN) that has been extensively applied in various domains, including 
computer science (LeCun et al. 1998), artificial intelligence (Rumelhart et al. 1986), statistics 
(Pham et al. 2019), and geophysics (Hajian et al. 2011). The MLP was trained using a back-
propagation algorithm, which is a successful gradient-based learning technique (Haykin and 
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Kosko 2009). It is one of the simplest forms of neural network and serves as a foundational 
building block for more complex architectures. Fig. 3 presents a breakdown of the key 
components and functions of the MLP. 
 

 
Fig. 3 Structure of a typical artificial neural network 

Input Layer: This layer consists of neurons that receive input features. Each neuron represents a 
feature of the input data. Hidden Layers: MLPs contain one or more hidden layers that transform 
the inputs into something that the output layer can use. Each neuron in these layers applies a 
nonlinear transformation to the values received from the previous layers. The complexity and 
capacity of a MLP depend largely on the number of hidden layers and the number of neurons in 
each layer. Output Layer: The final layer that produces the output of the network. The function of 
the output layer depends on the type of prediction or classification required (e.g., binary 
classification, multiclass classification, and regression). 
Neurons in the hidden layers and sometimes in the output layer apply activation functions to 
introduce nonlinearity into the model, enabling it to learn more complex patterns. Common 
activation functions include the sigmoid, Hyperbolic Tangent (Tanh), ReLU (Rectified Linear Unit). 
During the learning process, the input data are passed through the network, from the input layer 
through the hidden layers, and finally to the output layer, where a prediction is made. Once a 
prediction is made, the error (difference between the predicted output and the actual label) is 
calculated, and this error is propagated back through the network to update the weights. This 
process was performed using a gradient descent method. 
 

Classification Models Implementation 
 
The Waikato Environment for Knowledge Analysis (Weka), a popular open-source machine 
learning software toolkit that provides a wide range of tools and algorithms for data mining and 
machine learning tasks, was used to perform the classification tasks (Hall, et al. 2009). The 
dataset was split into training and test sets by using a 70:30 partition. The hyperparameters were 
set before the learning process to determine the optimal combination for each class. The 
hyperparameters for each algorithm used in this study are listed in Table 2. 
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Table 2. The hyperparameters used for modeling in this study 

 
Model Hyperparameters Values 

ANN 

Number of fully connected layers 2, 3 

First layer size 100 

Second layer size 100 

Optimizer Adam 

Dropout rate 0, 0.1, 0.2 

Number of epochs 80, 120 

Batch size 8, 16, 32 

 Activation Function Sigmoid 
 

Model Accuracy Assessment 
Assessing the accuracy of machine learning models for crop-type classification is crucial for 
understanding how well the model performs and whether it is suitable for classification tasks. The 
evaluation metrics used to assess the performance of the classification models were True 
Positives (TP), overall accuracy, precision (P), recall (R), F1-score, Matthews correlation 
coefficient (MCC), Receiver Operating Characteristic Area (ROC Area), and Precision-Recall 
Curve Area (PRC Area). The formulae for the performance metrics are listed in Table 3.  
 
Table 3. Model Performance Evaluation Metrics 

 
Performance Evaluation Metrics Formula 

Overall Accuracy (OA) 
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

Precision (P) 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) 

Recall (R) 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 

F1-Score 2 ∗
𝑃 ∗ 𝑅
(𝑃 + 𝑅) 

MCC 𝑀𝐶𝐶	 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

1(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

ROC Area 𝑅𝑂𝐶	𝐴𝑟𝑒𝑎	 = 7 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	𝑑(𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒)
!

"
 

PROC Area 𝑃𝑅𝑂𝐶	𝐴𝑟𝑒𝑎	 = 7 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑑(𝑅𝑒𝑐𝑎𝑙𝑙)
!

"
 

TP, True Positives; TN, True Negatives; FP, False Positives; FN, False Negatives; MCC, Matthews Correlation 
Coefficient; ROC Area, Receiver Operating Characteristic Area; PRC Area, Precision-Recall Curve Area 
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Results 

Spatiotemporal Distribution of the Studied Vegetation Indices  
Temporal analysis of vegetation indices using Sentinel 2 data provides valuable insights into crop 
types and their temporal dynamics. The temporal analysis of Sentinel 2A-derived vegetation 
indices used in this study is shown in Fig. 4. The vegetation indices had higher values during the 
growing stage and lower values during the early and late stages of the maize crop.  
 

 
(a) 

 

 
(b) 

Fig. 4 Temporal distribution of used Sentinel 2A-derived VIs in Ormankadı (a) and Tepecik (b) for Maize 
and Forage 

ANN Classification Model Accuracy Results 
This section presents the quantitative results of the ANN classification algorithms used to classify 
maize and forage in the Tepecik and Ormankadı sites. The results are presented in terms of high 
values of OA, TP Rate, Precision, Recall, F1-Score, MCC, ROC Area, and PRC Area and low 
values of FP Rate. 

The ANN model exhibited good accuracy in maize and forage classification when calibrated on 
Tepecik and validated on Ormankadi sites (Table 4). During the calibration phase, the model 
achieved an OA of 88.4%, with a True Positive Rate of 83.1% for maize and 92.9% for forage 
crops, indicating a high proportion of accurately identified maize and forage crop parcels. The low 
False Positive Rate of 7.1% for maize and 16.9% for forage underscored the model's proficiency 
in minimizing misclassifications. Precision, at 90.8% for maize, and 86.7% for forage reflected the 
model's precision in labeling instances as maize and forage, whereas a Recall of 83.1% for maize 
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and 92.9% signified its ability to capture a substantial portion of actual maize and forage 
occurrences, respectively. The F1-Score of 86.8% for maize and 89.7% for forage indicated a 
harmonious balance between Precision and Recall. A MCC of 94.3% highlighted the performance 
of the model, considering both false positives and false negatives. The ROC and PRC Area values 
of 94.3% and 92.8%, respectively, for maize, and 94.3% and 95.0%, respectively, for forage, 
affirmed the model's discriminative capacity and Precision-Recall trade-off. The overall accuracy 
for maize and other crops was 89.9%.  
The model validation on Ormankadı maintained the model's performance by achieving an OA of 
66.1%, with high TP Rate (61.2%), Precision (91.1%), Recall (61.2%), F1-Score (73.2%), and 
MCC (36.4%) values, indicating its resilience across diverse datasets for maize crops. For forage 
crops, the model demonstrated an accuracy of TP Rate (81.3%), Precision (40.2%), Recall 
(81.3%), F1-Score (53.8%), and MCC (36.4%). The ROC Area and PRC Area values achieved 
accuracies of 76.8% and 49.1%, respectively. 
Furthermore, the ANN model consistently demonstrated robust performance in crop type 
classification when Ormankadı and Tepecik were used as the calibration and validation sets, 
respectively. Training on Ormankadı yielded a high OA of 88.1%. For maize classification, the 
accuracies were the TP Rate (95.0%), Precision (90.2%), Recall (95.0%), F1-Score (92.5%), and 
MCC (63.8.0%), showing the model's ability to effectively capture the intricacies of maize patterns 
at this study site. For forage classification, the accuracies were the TP Rate (64.0%), Precision 
(78.7%), Recall (64.0%), F1-Score (70.6%), and MCC (63.8.0%).  
Subsequently, the validation of the model on Tepecik maintained the accuracy of the model with 
73.1% OA. For maize crop extraction, the validation model maintained the model's performance 
by achieving high TP Rate (93.8%), Precision (64.0%), Recall (93.8%), F1-Score (76.1%), and 
MCC (52.3%) values, indicating its resilience across diverse datasets. The ROC Area and PRC 
Area values achieved accuracies of 77.0% and 65.8%, respectively. The model demonstrated 
moderate accuracy in classifying forage with a TP Rate of 55.6%, Precision of 91.4%, Recall of 
55.6%, F1-Score of 69.1%, and MCC of 52.3%. The ROC Area and PRC Area values achieved 
accuracies of 77.0% and 84.6%, respectively. 
  

Table 4. Performance metrics of the ANN model 
 

ANN 
Model 

TP Rate 
(%) 

FP Rate 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

MCC 
(%) 

ROC Area 
(%) 

PRC Area 
(%) 

Crop 
Type 

Tepecik 
Training 

83.1 7.1 90.8 83.1 86.8 76.7 94.3 92.8 Maize 
92.9 16.9 86.7 92.9 89.7 76.7 94.3 95.0 Forage 
88.4 12.4 88.6 88.4 88.3 76.7 94.3 94.0 OA 

Testing on 
Ormankadı   

61.2 18.8 91.1 61.2 73.2 36.4 76.8 89.0 Maize 
81.3 38.8 40.2 81.3 53.8 36.4 76.8 49.1 Forage 
66.1 23.6 78.7 66.1 68.5 36.4 76.8 79.3 OA 

Ormankadı 
Training 

95.0 36.0 90.2 95.0 92.5 63.8 94.4 98.4 Maize 
64.0 5.0 78.7 64.0 70.6 63.8 94.4 80.1 Forage 
88.1 29.1 87.6 88.1 87.6 63.8 94.4 94.4 OA 

Testing on 
Tepecik 

93.8 44.4 64.0 93.8 76.1 52.3 77.0 65.8 Maize 
55.6 6.2 91.4 55.6 69.1 52.3 77.0 84.6 Forage 
73.1 23.7 78.9 73.1 72.3 52.3 77.0 76.0 OA 

 

Qualitative Classification Results 
The map presented in Fig. 5 visually represents the classification outcomes of the ANN model in 
Tepecik and Ormankadı and offers insights into the spatial distribution and arrangement of crop 
types. The qualitative interpretation of the classified crop map substantiates the effectiveness of 
our machine-learning-based approach in accurately distinguishing between crops. The spatial 
patterns captured in these maps validated the accuracy of the classification models and 
highlighted the feasibility of leveraging machine learning techniques for precise crop type 
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identification. 
 

     
              (a)               (b) 

 
Fig. 5 ANN model-based classified crop type maps for Ormankadı(a), and Tepecik (b) 

Discussion 
Land cover and crop type classification using remote sensing data and machine learning 
techniques has recently gained considerable attention in the scientific community. This study 
aimed to explore a new approach to enhance remote sensing research using high-resolution 
satellite-derived vegetation indices and machine-learning methods. The present study 
underscores the commendable performance consistently exhibited by an artificial neural network 
for maize and forage crop classification across the two study regions. The model calibrated on 
Tepecik and validated on Ormankadı maintained its accuracy, with an overall accuracy ranging 
from 66.1% to 88.4%. Furthermore, the model consistently demonstrated robust performance 
when Ormankadı served as the calibration set and Tepecik as the validation set, with overall 
accuracies of 73.1% and 88.1%, respectively.  
 

The ANN model used in the two scenarios demonstrated similar results in terms of model 
performance. The findings are acceptable as they align comparably with the results documented 
in the relevant literature. For instance, in their investigation of deep learning for crop type 
classification, Khan et al. 2021 reported a 70.0% overall classification accuracy achieved by 
models trained on one geographical area and subsequently validated it in other areas within 
Nebraska (United States).  
 

The integration of machine learning algorithms with Sentinel-2-derived spectral indices has 
emerged as a focal point of interest in remote sensing and agricultural research. Numerous 
studies have provided valuable insights into the utilization of machine learning for crop 
classification and mapping (Bantchina and Gundogdu 2024; Muntean 2023; Hudait and Patel 
2022; Ibrahim et al. 2021; Moumni and Lahrouni 2021; Arias et al. 2020). These researchers 
achieved a higher accuracy using a common approach (calibration and validation in the same 
study area).  
To the best of our knowledge, few studies using the approach proposed in this study are available 
in the literature. The proposed approach is unique because it suggests exploring alternative 
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methods other than common techniques of crop type classification. The vegetation indices used 
and the chosen number of images covering all phenological stages showed that it is possible to 
achieve acceptable accuracy in maize and forage crop classification.  
 

Conclusion 
In conclusion, the utilization of Sentinel-2A-derived vegetation indices in conjunction with artificial 
neural networks offers a robust approach for land cover and crop type classification. The objective 
of the present study was to develop an approach for classifying maize and forage crops across 
heterogeneous agricultural areas. The ANN model demonstrated its ability to classify crops 
accurately and effectively across different geographical areas. The use of Sentinel 2A-derived 
vegetation indices in conjunction with an advanced artificial neural network algorithm achieved 
good results. Further studies are expected to be performed using other crops, more remote data, 
and deep learning techniques to improve classification accuracy. In future research, it may be 
necessary to conduct studies using synthetic-aperture radar data and images taken only at 
specific phenological stages. Thus, crop-type classification could be performed without following 
all phenological stages to investigate whether the classification accuracy improved. These 
additional research efforts should help understand the factors contributing to suboptimal 
classification performance within specific test areas for other crop types within the same 
geographical region.  
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