Login

Proceedings

Find matching any: Reset
Information Management/Web-based Data Management
Farm Animals Health and Welfare Monitoring
Drainage Optimization and Variable Rate Irrigation
Digital Agriculture Solutions for Soil Health and Water Quality
On Farm Experimentation with Site-Specific Technologies
Add filter to result:
Authors
Abban-Baidoo, E
Abon, J.O
Adedeji, O
Admasu, W.A
Admasu, W.A
Alwaseela, H
Andales, A
Archontoulis, S
Attanayake, A.U
Barker, D
Bathke, K.J
Boyer, W
Brokesh, E
Brorsen, W
Brown, A.J
Cross, T
Dean, C
Duddu, H.U
Dufrasne, I
Fulton, J.P
Gauci, A
Ghimire, B
Gnatowski, T
Grassini, P
Guo, W
Hansen, N
Hawkins, E
Hegedus, P
Henrie, A
Hopkins, B
Ingram, B
JANBAZIALAMDARI, S
Johnson, E.U
Jones, J
Joshi, R
Karn, R
Kerry, R
Khosla, R
Khosla, R
Klopfenstein, A
Klopfenstein, A
Krmenec, A
Lebeau, F
Leszczyńska, R
Lindsey, A
Loewen, S
Longchamps, L
Luck, J.D
Mahmoudi, S
Mandal, D
Mandal, D
Maxwell, B
Maxwell, B.D
Mieno, T
Morata, G.T
Oliveira, L.P
Ortega, R.A
Ortiz, B.V
Ortiz, B.V
Parbi, B
Plum, J
Poblete, H.P
Poursina, D
Puntel, L
Quoitin, B
Samborski, S.M
Sanders, K
Sanz-Saez, A
Sharda, A
Shearer, S.A
Shearer, S.A
Shirtliffe, S.U
Squires, T
Stelford, M
Swenson, A
Szatylowicz, J
Thompson, L
Thornton, M
Unruh, R
Velasco, J.S
Walsh, O
Wieber, E
Xu, Z
Zhou, J
Topics
Drainage Optimization and Variable Rate Irrigation
Digital Agriculture Solutions for Soil Health and Water Quality
On Farm Experimentation with Site-Specific Technologies
Farm Animals Health and Welfare Monitoring
Type
Poster
Oral
Year
2024
2022
Home » Topics » Results

Topics

Filter results24 paper(s) found.

1. Constraint of Data Availability on the Predictive Ability of Crop Response Models Developed from On-farm Experimentation

Due to the variability between fields and across years, on-farm experimentation combined with crop response modeling are crucial aspects of decision support systems to make accurate predictions of yield and grain protein content in upcoming years for a given field. To maximize accuracy of models, models fit using environmental covariate and experimental data gathered up to the point that crop responses (yield/grain protein) are fit repeatedly over time until the model can predict future crop ... P. Hegedus, B. Maxwell

2. Use of Precision Technologies to Conduct Successful Within-field, On-farm Trials

Performing randomized replicated trials in row crop field environments has the potential to increase crop production in environmentally sustainable ways.  Successful implementation requires an understanding of implement capabilities and sources of potential systematic error, including operator error.  Equipment capabilities can be thought of as a series of several critical “links in a chain,” each with implications that propagate downstream.   We will... M. Stelford, A. Krmenec

3. Detect Estrus in Sows Using a Lidar Sensor and Machine Learning

Accurate estrus detection of sows is labor intensive and is crucial to achieve high farrowing rate. This study aims to develop a method to detect accurate estrus time by monitoring the change in vulvar swollenness around estrus using a light detection and ranging (LiDAR) camera. The measurement accuracy of the LiDAR camera was evaluated in laboratory conditions before it was used in monitoring sows in a swine research facility. In this study, twelve multiparous individually housed sows were c... J. Zhou, Z. Xu

4. Precision Application of Seeding Rates for Weed and Nitrogen Management in Organic Grain Systems

In a time of increasing ecological awareness, organic agriculture offers sustainable solutions to many of the polluting aspects of conventional agriculture. However, without synthetic inputs, organic agriculture faces unique challenges such as weed control and fertility management. Precision Agriculture (PA) has been used to successfully increase input use efficiency in conventional systems and now offers itself as a potential tool for organic farmers as well. PA enables on farm experimentati... S. Loewen, B.D. Maxwell

5. Use of Watering Hole Data As a Decision Support Tool for the Management of a Grazing Herd of Cattle

Establish grazing practices would improve the welfare of the animals, allowing them to express more natural behaviours. However, free-range reduces the ability to monitor the animals, thus increase the time needed to intervene in the event of a health problem. To ease the adoption of grazing, farmer would benefit from autonomously collected indicators at pasture that identify abnormal behaviours possibly related to a health problem in a bovine. These indicators must be individualised and coll... J. Plum, B. Quoitin, I. Dufrasne, S. Mahmoudi, F. Lebeau

6. Modulated On-farm Response Surface Experiments with Image-based High Throughput Techniques for Evidence-based Precision Agronomy

Agronomic research is vital to determining optimum inputs for crops to perform profitably at a local scale. However, the small-plot experiment validity is often uncertain due to on-farm variations. Furthermore, the likelihood of conducting a fully randomized trial at a local farm is low given various practical and technical challenges. We propose a new methodology with many inputs to allow for a response surface that fits the yield response to the input levels with higher accuracy to make on-... A.U. Attanayake, E.U. Johnson, H.U. Duddu, S.U. Shirtliffe

7. Where to Put Treatments for On-farm Experimentation

On-farm experimentation has become more and more popular due to advancements in technology. These experiments are not as costly as before, as current machinery can allocate different levels of treatment to specific plots. The main goal of this kind of experiment is to obtain a site-specific nutrient level. The yield behavior is different based on the researcher’s treatment. One unanswered question for on-farm experimentation is how the treatments should be allocated in the first place s... D. Poursina, W. Brorsen

8. Enhancing NY State On-farm Experimentation with Digital Agronomy

Agriculture is putting pressure on the ecosystems and practices need to evolve towards a more sustainable way of producing food. Industrial agriculture has imposed a unique production model on the ecosystems while it is now understood that it is more sustainable to adapt the production model to the ecosystem. This involves adapting existing solutions to the local agricultural context and developing new solutions that are best suited to the local ecosystem. Farmers are doing this by conducting... L. Longchamps

9. Limitations of Yield Monitor Data to Support Field-scale Research

Precision agriculture adoption on farms continues to grow globally on farms.  Today, yield monitors have become standard technologies on grain, cotton and sugarcane harvesters.  In recent years, we have seen industry and even academics leveraging the adoption of precision agriculture technologies to conduct field-scale, on-farm research.  Industry has been a primary driver of the increase in on-farm research globally through the development of software to support on-farm resear... J.P. Fulton, S.A. Shearer, A. Gauci, A. Lindsey, D. Barker, E. Hawkins

10. Is Row-unit Vibration Affected by Planter Speeds and Downforce?

Row-unit vibration is an issue created mainly by planter`s opening disks and gauge-wheels contact with the ground. Variability on row-unit vibration could interfere on seed metering and delivery process, affecting crop emergence and final stand. With the amount of embedded technology present on planters, producers are being encouraged to increase planting speeds, which is also one of the main factors for row-unit vibration increasement. In this way, knowing the proper speeds, and using other ... L.P. Oliveira, B.V. Ortiz, G.T. Morata, T. Squires, J. Jones

11. Use of Remotely Measured Potato Canopy Characteristics As Indirect Yield Estimators

Prediction of potato yield before harvest is important for making agronomic and marketing decisions. Active optical sensors (AOS) are rarely used together with other hand-held instruments for monitoring potato growth, including yield prediction. The aim of the research was to determine the relationship between manually and remotely measured potato crop characteristics throughout the growing season and yield in commercial potato fields. Objective was also to identify crop characteristics that ... S.M. Samborski, J. Szatylowicz, T. Gnatowski, R. Leszczyńska, M. Thornton, O. Walsh

12. Crop Modeling-based Framework to Explore Region-specific Impact of Nitrogen Fertilizer Management on Productivity and Environmental Footprint

To maintain current crop production while reducing negative environmental impacts, improved understanding of the relative impact of the 4Rs for nitrogen (N) management (rate, time, place, and source) for a given geo-agroecosystem are needed and can play a critical role in driving policy, recommendations, and local practices. However, the timeframe and cost required to assess and characterize the impact of N rate and timing over years and weather conditions through field experiments is prohibi... L. Thompson, S. Archontoulis, P. Grassini, L. Puntel, T. Mieno

13. Development of Standard Protocols for Soil Tilth Assessment As an Essential Component of Tillage Tool Automation to Improve Soil Health

The accurate assessment of soil tilth may be pivotal when assessing soil health as part of a holistic process to ensure sustainable and profitable crop production practices. In this study, we focus on demonstrating methodologies for the spatial assessment of soil tilth as ground truth for assessing real-time soil tilth quality sensing technologies. The proposed methodologies for evaluating tillage effects involve the integration of the line transect method for residue distribution analysis. S... C. Dean, A. Klopfenstein, A. Klopfenstein, S.A. Shearer

14. Optimizing Corn Irrigation Strategies: Insights from NDVI Trends, Soil Moisture Dynamics, and Remote Sensing

This comprehensive field experiment systematically examines the impact of varied irrigation rates on corn growth and yield across three treatments: 33%, 67%, and 100% irrigation rates. Utilizing the normalized difference vegetation index (NDVI) as a parameter for vegetation health, distinct patterns emerge throughout key growth stages. The 100% irrigation treatment consistently exhibits superior vegetation health, sustaining higher NDVI values across all stages, while the 33% treatment reveal... J.O. Abon, A. Sharda

15. Delineating Dynamic Variable Rate Irrigation Management Zones

Agriculture irrigation strategies have traditionally been made without accounting for the natural small-scale variability in the field, leading to uniform applications that often over-irrigate parts of the field that do not need as much water. The future success of irrigated agriculture depends on advancements in the capability to account for and leverage the natural variability in croplands for optimum irrigation management both in space and time. Variable Rate Irrigation (VRI) management of... R. Unruh, W.A. Yilma, D. Mandal, R. Joshi, R. Khosla

16. Spatio-temporal Analysis of Soil Moisture and Turfgrass Health to Investigate the Temporal Stability of Variable Rate Irrigation Zones

The western USA has been experiencing severe drought conditions for at least the last 20 years. The population in many areas of the west, like Utah, has also increased greatly in this time putting greater strain on the limited freshwater supply. While agriculture is generally the sector consuming the largest proportion of freshwater, conversion of agricultural land to urban areas with lawns, parks and playing fields may result in some reduction of water use, but the EPA have estimated that as... R. Kerry, K. Sanders, A. Swenson, A. Henrie, N. Hansen, B. Hopkins, B. Ingram

17. Hyperspectral Sensing to Estimate Soil Nitrogen and Reduce Soil Sampling Intensity

Recognizing soil's critical role in agriculture, swift and accurate quantification of soil components, specifically nitrogen, becomes paramount for effective field management. Traditional laboratory methods are time-consuming, prone to errors, and require hazardous chemicals. Consequently, this research advocates the use of non-imaging hyperspectral data and VIS-NIR spectroscopy as a safer, quicker, and more efficient alternative. These methods take into account various soil components, i... W.A. Admasu, D. Mandal, R. Khosla

18. Changes in Soil Chemical and Physical Properties After a Flooding Event in Chile

During the winter of 2023, ridges were made to plant French prunes (Prunus domestica). After building the ridges, the soil was surveyed using gamma radiation technology (SoilOptix technologies, Ontario, CA).  Due to the intense rains that occurred at the end of august 2023, the Cachapoal River, the main water supply of the O’Higgins region, left its course and flooded several fields, including the one where the ridges had been built, destroying them. Ridges were washed out... R.A. Ortega, H.P. Poblete

19. Extension Program Prioritization Guides Web-mapping Application Delivery to Ranchers

Cooperative Extension has a long history of helping agricultural producers address their current needs and emerging public issues; often through training in the use of technologies that are not yet widely adopted. The quality of geospatial data and tools to visualize and analyze that data continues to improve. However, barriers exist to rancher adoption of geospatial decision support tools. These barriers can include costs, ease of use, and privacy concerns. The sustainability of beef ca... W. Boyer

20. Fertigation Management Strategies Effect on Residual Nitrates in the Soil Profile and Ground Water

Nitrogen is an input that is vital for growth and productivity within the corn belt states of the U.S. However, when nitrogen as an input into agricultural cropping systems is often over-applied and thus not optimally utilized by the cropping system. Therefore, it is at risk of loss within the environment through processes of leaching, denitrification, and volatilization. This is a major concern in Nebraska, as the reality is that much of the state’s groundwater has been contaminated wi... K.J. Bathke, T. Cross, J.D. Luck

21. Assessing Precision Water Management in Cotton Using Unmanned Aerial Systems and Satellite Remote Sensing

The goal of this study was to improve agricultural sustainability and water use efficiency by allocating the right amount of water at the right place and time within the field. The objectives were to assess the effect of variable rate irrigation (VRI) on cotton growth and yield and evaluate the application of satellites and Unmanned aerial systems (UAS) in capturing the spatial and temporal patterns of cotton growth response to irrigation. Irrigation treatments with six replications of three ... O. Adedeji, W. Guo, H. Alwaseela, B. Ghimire, E. Wieber, R. Karn

22. Integrating Collected Field Machine Vibration Data with Machine Learning for Enhanced Precision in Agricultural Operations

In this research, we provide an innovative combination of the Agricultural Vibration Data Acquisition Platform (avDAQ) with cutting-edge machine learning methods for data collecting from agricultural machinery. The avDAQ system, which has a strong connection to a GPS sensor, provides precise spatial information to the vibration data that has been collected, providing an in-depth explanation of the locations of the vibrations. The objective is to fully utilize avDAQ's potential to extract ... S. Janbazialamdari, E. Brokesh

23. Apparent Soil Electrical Conductivity As an Indicator of Failed Subsurface Drains

It is estimated that 2,000 ha of cropland are taken out of production daily worldwide due to salinization and sodification. Salinity is estimated to result in economic losses of $27.3 billion U.S. dollars annually. Our project aimed to develop techniques for quantifying the severity of soil-water salinity and impacts on crop production in the Lower Arkansas River Valley (LARV) in Colorado. The Fairmont Drainage District (FDD) study site in the LARV is a furrow-irrigated, tile-drained area of ... A. Andales, A.J. Brown

24. Evaluation of Peanut Response to Soil Water Levels Using the Crop Water Stress Index Generated from Infrared Thermal Sensors and Imagery

In precision agriculture, precise monitoring of crop water stress is crucial for optimizing water use, increasing crop yield, and promoting environmental sustainability. Achieving high water use efficiency in peanut production is key to producing high-quality crop. This study investigates the efficiency of infrared thermal sensors and thermal imagery from satellites and unmanned aerial vehicles (UAVs) for determining peanut crop water stress index (CWSI). Furthermore, this research explores t... B. Parbi, B.V. Ortiz, E. Abban-baidoo , A. Sanz-saez, J.S. Velasco