Login

Proceedings

Find matching any: Reset
Food Security and Precision Agriculture
Proximal Sensing in Precision Agriculture
Engineering Technologies and Advances
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Site-Specific Pasture Management
Robotics, Guidance and Automation
Application of Granular Materials with Drones
Add filter to result:
Authors
Adesope, M.O
Al Amin, A
Albarenque, S.M
Alizadeh, E
Amaral, L.R
Amaral, L.R
Anderson, V
Andersson, K
Arzani, H
Asiabaka, C.C
Astillo, P
Bøgild, A
B.G, M
Baio, F
Baio, F
Bajwa, S
Bajwa, S
Barros, M.F
Behrendt, K
Belec, C
Belford, R
Benjamin, D
Bennett, S
Berti, M
Bodson, B
Borůvka, L
Bouroubi, M.Y
Brasco, T
Bruce, A.E
Brungardt, J.J
Canavari, M
Carter, A
Cerri, D.G
Chau, M
Chen, L
Chen, L
Chikaire, J
Cho, Y
Ciampitti, I.A
Clarke, A
Coen, T
Cointault, F
Colaço, A.F
Congona Benavente, J
Coonen, J
Cranfield, G
Cugnasca, C.E
Cummings, T
De Baerdemaeker, J
Demattê, J.M
Destain, M
Dorado, J
DuPont, E.M
Dubois, J
Duft, D.G
Dynes, R
Eitelwein, M.T
Ellingson, J.L
Esau, T.J
Fallon, E
Fan, M
Ferraz, M.N
Fontenelli, J.V
Franco, H.C
Franklin, K
Franklin, K.F
Fritz, B.K
Frizzel, L
Fulton, J.P
Fulton, J.P
Fulton, J.P
Fusamura, R
Gadler, D.J
Ge, Y
George, D
Gerighausen, H
Gholizadeh, A
Goffart, J
Green, S
Greene, J
Gritten, F
Guo, J
Guo, J
Gutteridge, M
H, V
Hamm, P.B
Happich, G
Harms, H
Harnisch, W
Harper, J
Harsha Chepally, R
Hijazi, B
Hill, C
Hoffmann, W.C
Holub, B.K
Horneck, D.A
Huang, Y
Hunt, E
Ifeanyi- Obi, C.C
Jørgensen, O.J
Jørgensen, R.N
JAYEOLA, O.C
Jacobsen, N.J
Jaeger-Hansen, C.L
Jensen, K
Johnson, D
Johnson, R.M
KOJIMA, Y
Kaho, T
Kemerer, A.C
Khanal, S
Khosla, R
Khot, L
King, W
Kitchen, N
Kizer, E
Ko-Madden, C
Kodaira, M
Kolar, P.R
López-Granados, F
Lan, Y
Lang, T
Lange, A
Larbi, P.A
Laurenson, S
Leemans, V
Lianqing, Z
Lilienthal, H
Lilienthal, H
Lopez-Granados, F
Lowenberg‑DeBoer, J
Luck, J.D
Luck, J.D
Luck, J.D
Lund, E
Lund, T
MacAuliffe, R
Magalh, P.S
Magalhaes, P.S
Magalhães, P.G
Maharlooei, M
Maja, J
Majdi, M
Manfield, A
Mangus, D
Manning, M
Marie-France, D
Marlier, G
Matthews- Njoku, E.C
Maxton, C
McDonald, T.P
McDonald, T.P
McEntee, P
McGlinch, G
McGraw, T
Medici, M
Melchiori, R.J
Mercatoris, B
Miao, Y
Mireei, S.A
Molin, J.P
Molin, J.P
Molin, J.P
Morgan, S.E
Morris, E
Mouazen, A.M
Mouazen, D
Mullenix, D
Mullenix, D
Musacchi, S
N.L., R
Nadiradze, K
Nawar, S.M
Nielsen, S.H
Nnadi, F
Nowatzki, J
Nowatzki, J
Nwakwasi, R.N
OLUBAMIWA, O.0
OLUWADUN, A.A
Ohaba, M
Ortez, O
Ozmen, S
Paindavoine, M
Patil, M.B
Patil, V.C
Pauly, K
Peña, J
Peña, J.M
Percival, D.C
Pitrat, T
Prasad, V
Price, K
Price, R
Quaderer, J
R, P
Read, S.M
Roberts, A
Rojo, F
Rossetti, G
S, S
SANAEI, A
SONODA, M
Saberioon, M
Saeys, W
Sanches, G
Sanches, G.M
Sankaran, S
Santos, R.T
Saraiva, A.M
Schatz, B
Schneider, D
Schnug, E
Schnug, E
Schumann, A.W
Serra, S
Shanwad, U.K
Sharda, A
Sharda, A
Sharda, A
Sharda, A
Shearer, S.A
Shearer, S.A
Shearer, S.A
Shibusawa, S
Shibusawa, S
Shibusawa, S
Shirzadi, A
Shroyer, K
Sivarajan, S
Songchao, C
Spinelli, C.B
Stamm, M.J
Stombaugh, T
Sudduth, K
Sudduth, K.A
Sunley, S
Taylor, A
Thomas, A.D
Thomson, S.J
Torres-Sánchez, J
Torres-Sanchez, J
Tremblay, N
Trevisan, R.G
Trotter, M
Trotter, M
Turner, R.W
Upadhyaya, S.K
Vanacht, M
Vangeyte, J
Vargas, M.R
Veum, K
Viator, R.P
Vigneault, P
Waine, D
Wang, H
Wang, Y
Warren, J.G
Warren, J.G
Welch, M
Werkmeister, B.K
Whattoff, D
White, M
Wijewardane, N
Wilde, P
Wulfsohn, D
Xu, G
Yafei, Y
Zaman, Q
Zamora, I
Zandonadi, R.S
Zhang, F
Zhang, Q
Zhang, R
Zhang, R
Zhao, G
Zhou, S
Zydenbos, S
de Castro, A
de Castro, A.I
Topics
Engineering Technologies and Advances
Proximal Sensing in Precision Agriculture
Food Security and Precision Agriculture
Robotics, Guidance and Automation
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Site-Specific Pasture Management
Application of Granular Materials with Drones
Type
Poster
Oral
Year
2010
2016
2012
2022
2014
2018
2024
Home » Topics » Results

Topics

Filter results69 paper(s) found.

1. Performance Evaluation Of A Prototype Variable Rate Sprayer For Spot- Application Of Agrochemicals In Wild Blueberry Fields

  Wild blueberry yields are highly dependent on agrochemicals for adequate weed control. The excessive use of agrochemicals with uniform application in significant bare spots and plant areas has resulted in increased cost of production. A cost-effective automated prototype variable rate (VR) sprayer was developed for spot-application (SA) of agrochemicals in a specific section of the sprayer boom where the weeds have been detected. The weed patches were mapped with an RTK-... Q. Zaman, A.W. Schumann, D.C. Percival, T.J. Esau, S.M. Read

2. Development Of Unmanned Aerial Vehicles For Site-specific Crop Production Management

... Y. Huang, W.C. Hoffmann, Y. Lan, S.J. Thomson, B.K. Fritz

3. Optical Based Sugarcane Yield Monitors

Several different optical sensors were investigated to detect sugarcane yield on a billet type sugarcane harvester. These sensors included an over-head optical sensor and a below-the-conveyor sensor. Both sensors indicated mass flow rate from a volume measurement of the cane on the conveyor slats. Both systems gave good results with linear line calibration equations and adjusted R-square values from 0.96 to 0.97. Weight wagon weights in the 0.6 to 1.6 metric ton range were estimated to 7.5% o... R. Price, R.M. Johnson, R.P. Viator

4. On-the-go Condition Mapping For Harvesting Machinery

In recent years control systems have been used to alleviate the task of harvesting machinery operators. Automation allows the operator to spend more time on other tasks such as coordinating transport. Moreover, such control systems guarantee constant performance throughout the day whereas an operator gets tired. The perfect control system anticipates on the harvest condition, just like an experienced operator would. The operator makes a visual assessment of the condition in terms of... T. Coen, J. De baerdemaeker, W. Saeys

5. Study On Application Of Wireless Sensor Networks For Precision Agriculture

  Abstract: The use of sensor network to achieve soil moisture real-time detection can provide the decision-making basis for precision agriculture. In this... G. Xu, L. Chen, R. Zhang, J. Guo, Y. Wang

6. Spatial Modelling Of Agricultural Crops For Parallel Loading Operations

There is a trend in agricultural engineering towards high-performance harvesting machines with growing operating width and throughput. As much as performance and throughput are rising, the transportation units are characterized by increasing transportation volume. If harvesting and transport are combined in parallel operation (e.g. self-propelled forage harvester), the driver of the harvesting machine and the driver of the transport unit has to pay highest attention to the loading p... G. Happich, T. Lang, H. Harms

7. New Power-leds Based Illumination System For Fertilizer Granule Motion Estimation

Environmental problems have become more and more pressing in the past twenty years particularly with the fertilization operation, one main contributor to environmental imbalance. The understanding of the global centrifugal spreading process, most commonly used in Europe, can contribute to provide essential information about fertiliser granule deposition on the soil. This last one can be predicted using a ballistic flight model and several fertilizer characteristic’s determinat... F. Cointault, B. Hijazi, J. Dubois, J. Vangeyte, M. Paindavoine

8. Prediction Of Soil Moisture Content And Penetration Resistance Using Real-time Soil Meter

A real-time soil compaction meter that refers to the air injection subsoiler, is developed.  The final goal is to predict standarized soil compaction that is converted from soil moisture content, working resistance and working speed.  This experiment confirmed performance of predicting the soil moisture content and of measuring the working resistance was conducted.  The equipments of the meter are a working resistance measurement device received from the soil and a spectroscope... T. Kaho, M. Kodaira, S. Shibusawa

9. Precision Agricultural Branding Using Near-infrared Spectroscopy System

... Y. Kojima, S. Shibusawa, R. Fusamura, M. Sonoda

10. Developing Of A Monitoring System Of Cutting, Carrying, And Transportation Of Sugar Cane In Order To Manage Fleet

In the productive process for obtaining sugar cane products, the costs associated to the activities of harvesting (cut), carrying and transport (CCT), represent great part of the final cost of the product. In order to reduce this costs new technologies should be adopted in the agricultural mechanization using precision agriculture methods. The use of the information technology combined with the use of intelligent components can help to improve the performance of machines and equipments ... D.G. Cerri, P.S. Magalh

11. Evaluation And Contrast Of An Auto Guidance System Operating On A Sugar Cane Harvester In Brazil

The change on the harvesting sugar cane operation from the manual to mechanized cut  increased the amount of sugar cane cut by the mill per day, but the operation increased the cane loss, which is left behind on the field. The purpose of this work was to contrast the accuracy achiev... F. Baio

12. Computer Model By A Linear Program And Via Internet To Select Agricultural Mechanized Systems Based On The Smallest Operational Cost

Computer programs have been used to help the farmers on the fleet selection. However, these computing models are based on the previous choice of the mechanized system made by the user. On this context, the purpose of this work was to develop a free computer model by a linear program and via internet to select agricultural mechanized systems ... F. Baio, ,

13. An Inter-connection Model Between Standard Zigbee And Isobus Network (ISO11783)

The typical five-step cyclical process of precision agriculture includes soil and environment data collection, diagnosis, data analysis, precision field correction operation and evaluations. Usually, some steps are executed in field, others in the farm office and others in both. This can result in a complex system and consequently in waste of time and high cost in equipment, tools and workmanship. To simplify this process, the challenge is ... M.F. Barros, C.E. Cugnasca, J. Congona benavente

14. Tools For Evaluating The Potential Of Automatic Section Control

One of the newest technologies in precision agriculture is automatic section control on application equipment. This technology has tremendous potential to reduce wasted inputs, especially on irregularly shaped fields. Paybacks are not necessarily as great on rectangular fields. Producers considering adoption of the technology need to decide whether they will receive sufficient payback for their field shapes. They must also d... T. Stombaugh, R.S. Zandonadi, J.D. Luck, T.P. Mcdonald, T. Mcgraw

15. Rhizosphere Moisture Modulation By Water Head Precision Control

Abstract: A digital irrigation microcomputer system, designed to modulate rhizosphere moisture using ... M. Ohaba, S. Shibusawa

16. Application Rate Stability When Implementing Automatic Section Control Technology On Agricultural Sprayers

Automatic section control (on and off) technology of sprayer boom sections is an intelligent solution to maximize spray application efficiency during field operations. This technology can reduce over-application of products. Spray controllers available with this technology attempt to maintain the set target rate by adjusting system flow rate based on ground speed and application width.  Therefore, as sections are turned on or off, the flow regulating hardware must respond to m... A. Sharda, J.D. Luck, J.P. Fulton, S.A. Shearer, S.A. Shearer, D. Mullenix, M. Vanacht

17. Energy-efficient Wireless Sensor Network System For Soil Moisture Information Collecting

Collecting field soil moisture information is the foundation of auto-irrigation. This paper introduced a soil moisture information collecting system based on wireless sensor network (WSN) technology and with application background of automatic drip irrigation for cotton field. Firstly, application background was analyzed and application requirement was defined. The system worked together with a drip irrigation system in cotton field. After study, it was found that the output of soil moisture ... R. Zhang, L. Chen, J. Guo, J.G. Warren, J.G. Warren

18. Design And Construction Of A Computer Aided Control And Monitoring System For Greenhouses

ABSTRACT High expenditure is one the major disadvantages of using human or labor work force in agriculture division. Lack of accurate and precise processing, low working speed and the effect of physical tiredness on their efficiency are same other disadvantages. Using modern technology and replacing human work force with the automated mechanisms and instruments or intelligent machinery leads to the reduction of these expenses, enhancement of precision, accuracy and work speed ... A. Sanaei

19. Tip Flow Uniformity When Using Different Automatic Section Control Technologies During Field Operations

Automatic section control (ASC) technology provides a means to reduce double-coverage and application in unwanted areas thereby leading to input savings and improved environmental stewardship.  However, the impact of ASC on spray boom dynamics and tip flow uniformity are unknown. Therefore, a study was conducted to evaluate tip flow rate uniformity and control system response in maintaining target application rates during field operation. Field experiments were conducted using two self-p... A. Sharda, J.D. Luck, J.P. Fulton, S.A. Shearer, T.P. Mcdonald, D. Mullenix

20. Attaching Multiple Conductivity Meters To An Atv To Speed Up Precision Agriculture Soil Surveys

Ground conductivity meters are used in a number of precision agriculture applications, including the estimation of water content, nutrient levels, salinity and depth of topsoil. Typically the Geonics EM38 conductivity meter, and to a lesser extent the EM31, are used for soil surveys. Most conductivity surveys involve towing a ground conductivity meter behind an all-terrain vehicle (ATV). In some situations, such as rutted or sloping fields, it is preferable to mount the conductivity meter dir... E. Morris, A. Clarke, S. Sunley, C. Hill, G. Cranfield

21. Microbial Contaminants in Cocoa Powder Samples in South – West Nigeria

Cocoa powder (CP), which is the major ingredient of cocoa-based beverages, is obtained from cocoa cake in a process involving hydraulic pressing of cocoa butter from fermented and roasted cocoa beans. Cocoa powder is presently being consumed as a health drink because of the presence of flavonoids in it. Evidences have shown that cocoa flavonoids exert powerful antioxidant properties by boosting immune responses and also the presence of procyanidins in cocoa protects the body against free-radi... A.A. Oluwadun, O.0. Olubamiwa, O.C. Jayeola

22. Precision Agriculture Initiative for Karnataka – A New Direction for Strengthening Farming Community

Strengthening agriculture is crucial to meet the myriad challenges of rural poverty, food security, unemployment, and sustainability of natural resources and it also needs strengthening at technical, financial and management levels. In this c... U.K. Shanwad, M.B. Patil, V. H, M. B.g , P. R, R. N.l. , S. S, R. Khosla, V.C. Patil

23. Bayesian Methods for Predicting LAI and Soil Moisture

Crop models describe the growth and development of a crop interacting with soil, climate, and managemen... M. Majdi, D. Benjamin, D. Marie-france

24. Developing an Integrated Rice Management System for Improved Yield and Nitrogen Use Efficiency in Northeast China

... G. Zhao, Y. Miao, F. Zhang, M. Fan

25. Enhancing Farmers' Indigenous Knowledge Management in Cassava Varietal Trial Using Agro Ecosystem Analysis, Farmers' Drama Group and Animations in Eastern part of Nigeria.

Researchers continue to come up with new varieties but farmer perspectives and preferences are very important factors for new varieties to spread in farmers’ communities. Researcher priorities alone are not enough. A variety may be ‘scientifically pe... C.C. Asiabaka, M.O. Adesope, C.C. Ifeanyi- obi, R.N. Nwakwasi, F. Nnadi, E.C. Matthews- njoku, J. Chikaire

26. Comparison of Algorithms for Delineating Management Zones

... A.M. Saraiva, R.T. Santos, J.P. Molin

27. A Low Cost, Modular Robotics Tool Carrier for Precision Agriculture Research

Current research within agricultural crop production focus on using autonomous robot technology to optimize the production efficiency, enhance sustainability and minimize tedious, monotonous and wearing tasks. But progress is slow pa... A. Bøgild, S.H. Nielsen, N.J. Jacobsen, C.L. Jaeger-hansen, R.N. Jørgensen, K. Jensen, O.J. Jørgensen

28. Farmers Cooperatives in Georgia as Key Factor for Food Security

... K. Nadiradze

29. Development Of An Enterprise Level Precision Agriculture System

Development of an Enterprise Level Precision Agriculture System   James Ellingson, Chih Lai University of St. Thomas, School of Engineering 2115 Summit Ave, St. Paul, MN USA elli4729@stthomas.edu;   Abstract – In this paper, a plan for the development of an Enterprise Level system for Precision Agriculture (PA) is described. The ... J.L. Ellingson, B.K. Holub, S.E. Morgan, B.K. Werkmeister

30. Detection Of Nitrogen Deficiency In Potatoes Using Small Unmanned Aircraft Systems

  Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. A nitrogen rate experiment was established in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized block design with 3 replicates. A Tetracam Hawkeye sUAS and Agricultural Digital Camera Lite sensor were used to collect imagery with near-infra... D.A. Horneck, D.J. Gadler, A.E. Bruce, R.W. Turner, C.B. Spinelli, J.J. Brungardt, P.B. Hamm, E. Hunt

31. The TOAS Project: UAV Technology For Optimizing Herbicide Applications In Weed-Crop Systems

Site-specific weed management refers to the application of customised control treatments, mainly herbicide, only where weeds are located within the crop-field. In this context, the TOAS project is being developed under the financial support of the European Commission with the main objective of generating georeferenced weed infestation maps of certain herbaceous (corn and sunflower) and permanent woody crops (poplar and olive orchards) by using aerial images collected by an unmanned aeria... J.M. Peña, J. Torres-sanchez, A.I. De castro, J. Dorado, F. Lopez-granados

32. Applying Conventional Vegetation Vigor Indices To UAS-Derived Orthomosaics: Issues And Considerations

In recent years, unmanned airborne systems (UAS) have gained a lot of interest for their potential use in precision agriculture. While the imagery from near-infrared (NIR) enabled off-the-shelf cameras included in UAS can be directly used to facilitate crop scouting, the application in quantitative analyses remains cumbersome. The ultimate goal is to calculate (nitrogen) prescription maps from vegetation indices obtained from UAS imagery, but two main issues hamper this workflow: (1) the... J. Quaderer, J. Coonen, A. Lange, K. Pauly

33. Verify The Effectiveness Of UAS-Mounted Sensors In Field Crop And Livestock Production Management Issues

This research project is a “proof-of-concept” demonstrating specific UAS applications in production agriculture. Project personnel will use UAS-mounted sensors to collect data of ongoing crop and livestock research projects during the 2014 crop season at the North Dakota State University (NDSU) Carrington Research Extension Center (CREC). Project personnel will collaborate with NDSU research scientists conducting research at the CREC. During the first year of the pro... S. Bajwa, J. Nowatzki, W. Harnisch, B. Schatz, V. Anderson

34. Unmanned Aerial System Applications In Washington State Agriculture

Three applications of unmanned aerial systems (UAS) based imaging were explored in row, field, and horticultural crops at Washington State University (WSU). The applications were: to evaluate the necrosis rate in potato field crop rotation trials, to quantify the emergence rates of three winter wheat advanced yield trials, and detecting canker disease-infection in pear. The UAS equipped with green-NDVI imaging was used to acquire field aerial images. In the first appli... L. Khot, S. Sankaran, D. Johnson, A. Carter, S. Serra, S. Musacchi, T. Cummings

35. Weed Seedlings Detection In Winter Cereals For Site-Specific Control: Use Of UAV Imagery To Overcome The Challenge

Weed management is an important part of the investments in crop production. Cost of herbicides accounts for approximately 40% of the cost of all the chemicals applied to agricultural land in Europe. In order to increase the profitability of crop production and to reduce the environmental concerns related to chemicals application, it is needed to develop site-specific weed management strategies in which herbicides are only applied in the crop zones were weeds spread. Moreover, th... J. Peña, A. De castro, F. López-granados, J. Torres-sánchez

36. Unmanned Aerial System To Determine Nitrogen Status In Maize

Maize field production shows spatial variability during vegetative crop growth that could be used to prescribe nitrogen variable rates. The use of portable sensors mounted on high-clearance applicators is well documented, however new UAS vehicle equipped with high resolution digital cameras could be used to determine crop spatial variability with the advantage of survey extensive field areas. To our knowledge, comparisons between vegetation indices obtained by a modified digital camera a... A.C. Kemerer, S.M. Albarenque, R.J. Melchiori

37. sUAVS Technology For Better Monitoring Crop Status For Winter Canola

The small-unmanned aircraft vehicles (sUAVS) are currently gaining more popularity in agriculture with uses including identification of weeds and crop production issues, diagnosing nutrient deficiencies, detection of chemical drift, scouting for pests, identification of biotic or abiotic stresses, and prediction of biomass and yield. Research information on the use of sUAVS have been published and conducted in crops such as rice, wheat, and corn, but the development of... I.A. Ciampitti, K. Shroyer, V. Prasad, A. Sharda, M.J. Stamm, H. Wang, K. Price, D. Mangus

38. A Comparison Of Performance Between UAV And Satellite Imagery For N Status Assessment In Corn

A number of platforms are available for the sensing of crop conditions. They vary from proximal (tractor-mounted) to satellites orbiting the Earth. A lot of interest has recently emerged from the access to unmanned aerial vehicles (UAVs) or drones that are able to carry sensors payloads providing data at very high spatial resolution. This study aims at comparing the performance of a UAV and satellite imagery acquired over a corn nitrogen response trial set-up. The nitrogen (N) r... P. Vigneault, N. Tremblay, M.Y. Bouroubi, C. Bélec, E. Fallon

39. The Use Of A Multirotor And High-Resolution Imaging For Precision Horticulture In Chile: An Industry Perspective

As part of the prototype development of a yield forecasting and precision agriculture service for Chilean horticulture, we evaluated the use of an eight-rotor Mikrokopter for high-resolution aerial imaging to support ground-based surveys. Specific considerations for UAV and communications performance under Chilean conditions are windy conditions, limited space for take-off and landing in orchards, tree height and plantation density, and the presence of high metal contents in soils. We di... I. Zamora, D. Wulfsohn

40. Memory Based Learning: A New Data Mining Approach to Model and Interpret Soil Texture Diffuse Reflectance Spectra

Successful estimation of spectrally active soil texture with Visible and Near-Infrared (VNIR, 400-1200 nm) and Short-Wave-Infrared (SWIR, 1200-2500 nm) spectroscopy depends mostly on the selection of an appropriate data mining algorithm. The aims of this paper were: to compare different data mining algorithms including Partial Least Squares Regression (PLSR), which is the most common technique in soil spectroscopy, Support Vector Machine Regression (SVMR), Boosted Regression Trees (BRT), and ... A. Gholizadeh, M. Saberioon, L. Borůvka

41. Detection of Nitrogen Stress on Winter Wheat by Multispectral Machine Vision

Hand-held sensors (SPAD meter, N-Tester, …) used for detecting the leaves nitrogen  concentration (Nc) present several drawbacks. The nitrogen concentration is gained by an indirect way through the chlorophyll concentration and the leaves have to be fixed in a defined position for the measurements. These drawbacks could be overcome by an imaging device that measures the canopy reflectance. Hence, the objective of the paper is to analyse the potential of multispectral imaging for d... M. Destain, V. Leemans, G. Marlier, J. Goffart, B. Bodson, B. Mercatoris, F. Gritten

42. NIR Spectroscopy to Map Quality Parameters of Sugarcane

Precision Agriculture aims to explore the potential of each crop considering the differences within the field. One information that is considered the most important is the yield or the obtained income in the field. However, in the case of sugarcane, quality will also directly influence farmer’s income. Several studies suggest harvester automation aiming to monitor yield, but few consider the quality analysis in the process. Among the existing methods for measuring sugar content the one ... M.N. Ferraz, J.P. Molin

43. A Multi Sensor Data Fusion Approach for Creating Variable Depth Tillage Zones.

Efficiency of tillage depends largely on the nature of the field, soil type, spatial distribution of soil properties and the correct setting of the tillage implement.  However, current tillage practice is often implemented without full understanding of machine design and capability leading to lowered efficiency and further potential damage to the soil structure. By modifying the physical properties of soil only where the tillage is needed for optimum crop growth, variable depth tillage (... D. Whattoff, D. Mouazen, D. Waine

44. Proximal Sensing of Leaf Temperature and Microclimatic Variables to Implement Precision Irrigation in Almond and Grape Crops

Irrigation decisions based on traditional soil moisture sensing often leads to uncertainty regarding the true amount of water available to the plant. Plant based sensing of water stress decreases this uncertainty. In specialty crops grown in California’s Central Valley, precision deficit irrigation based on plant water stress could be used to decrease water use and increase water use efficiency by supplying the necessary quantity of water only when it is needed by the plant. However, th... E. Kizer, S.K. Upadhyaya, F. Rojo, S. Ozmen, C. Ko-madden, Q. Zhang

45. Mapping Spatial Production Stability in Integrated Crop and Pasture Systems: Towards Zonal Management That Accounts for Both Yield and Livestock-landscape Interactions.

Precision farming technologies are now widely applied within Australian cropping systems. However, the use of spatial monitoring technologies to investigate livestock and pasture interactions in mixed farming systems remains largely unexplored. Spatio-temporal patterns of grain yield and pasture biomass production were monitored over a four-year period on two Australian mixed farms, one in the south-west of Western Australia and the other in south-east Australia. A production stability index ... P. Mcentee, S. Bennett, M. Trotter, R. Belford, J. Harper

46. Proximal Hyperspectral Sensing in Plant Breeding

The use of remote sensing in plant breeding is challenging due to the large number of small parcels which at least actually cannot be measured with conventional techniques like air- or spaceborne sensors. On the one hand crop monitoring needs to be performed frequently, which demands reliable data availability. On the other hand hyperspectral remote sensing offers new methods for the detection of vegetation parameters in crop production, especially since methods for safe and efficient detecti... H. Lilienthal, P. Wilde, E. Schnug

47. Non-destructive Plant Phenotyping Using a Mobile Hyperspectral System to Assist Breeding Research: First Results

Hybrid plants feature a stronger vigor, an increased yield and a better environmental adaptability than their parents, also known as heterosis effect. Heterosis of winter oilseed rape is not yet fully understood and conclusions on hybrid performance can only be drawn from laborious test crossings. Large scale field phenotyping may alleviate this process in plant breeding. The aim of this study was to test a low-cost mobile ground-based hyperspectral system for breeding research to e... H. Gerighausen, H. Lilienthal, E. Schnug

48. Estimation of Soil Profile Properties Using a VIS-NIR-EC-force Probe

Combining data collected in-field from multiple soil sensors has the potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate many important soil properties, such as soil carbon, water content, and texture. Other common soil sensors include penetrometers that measure soil strength and apparent electrical conductivity (ECa) sensors. Previous field research has related those sensor measuremen... Y. Cho, K.A. Sudduth

49. Laboratory Evaluation of Two VNIR Optical Sensor Designs for Vertical Soil Sensing

Visible and near infrared reflectance spectroscopy (VNIR) is becoming an extensively researched technology to predict soil properties such as soil organic carbon, inorganic carbon, total nitrogen, moisture  for precision agriculture. Due to its rapid, non-destructive nature and ability to infer multiple soil properties simultaneously, engineers have been trying to develop proximal sensors based on the VNIR technology to enable horizontal soil sensing and mapping. Since the vertical varia... N. Wijewardane, Y. Ge

50. Development of Micro-tractor-based Measurement Device of Soil Organic Matter Using On-the-go Visual-near Infrared Spectroscopy in Paddy Fields of South China

Soil organic matter (SOM) is an essential soil property for assessing the fertility of paddy soils in South China. In this study, a set of micro-tractor-based on-the-go device was developed and integrated to measure in-situ soil visible and near infrared (VIS–NIR) spectroscopy and estimate SOM content. This micro-tractor-based on-the-go device is composed of a micro-tractor with toothed-caterpillar band, a USB2000+ VIS–NIR spectroscopy detector, a self-customized steel plow and a ... Z. Lianqing, S. Zhou, C. Songchao, Y. Yafei

51. Development of a Sensing Device for Detecting Defoliation in Soybean

Estimating defoliation by insects in an agricultural field, specifically soybean, is performed by manually removing multiple leaf samples, visually inspecting the leaves for feeding, and assigning a value representing a “best guess” at the level of leaf material missing. These estimates can require considerable time and are subjective. The goal of this study was to design a low-cost system containing light sensors and a microcontroller that could remotely record and report long-te... P. Astillo, J. Maja, J. Greene

52. Evaluating low-cost Lidar and Active Optical Sensors for pasture and forage biomass assessment

Accurate and reliable assessment of pasture or forage biomass remains one of the key challenges for grazing industries. Livestock managers require accurate estimates of the grassland biomass available over their farm to enable optimal stocking rate decisions. This paper reports on our investigations into the potential application of affordable Lidar (Light Detection and Ranging) systems and Active Optical (reflectance) Sensors (AOS) to estimate pasture biomass. We evaluated the calibration ac... M. Trotter, K. Andersson, M. Welch, M. Chau, L. Frizzel, D. Schneider

53. Sensor Based Soil Health Assessment

Quantification and assessment of soil health involves determining how well a soil is performing its biological, chemical, and physical functions relative to its inherent potential. Due to high cost, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide high resolution soil health data. Therefore, sensor-based approaches are important to facilitate cost-effective, site-specific management for soil health. In the Central Claypan Region, visible, near-infrared ... K. Veum, K. Sudduth, N. Kitchen

54. Soil Attributes Estimation Based on Diffuse Reflectance Spectroscopy and Topographic Variability

The local management of crop areas, which is the basic concept of precision agriculture, is essential for increasing crop yield. In this context, diffuse reflectance spectroscopy (DRS) and digital elevation modelling (DEM) appears as an important technique for determining soil properties, on an adequate scale to agricultural management, enabling faster and less costly evaluations in soil studies. The objective of this work was to evaluate the use of DRS together with topographic parameters fo... J.V. fontenelli, L.R. Amaral, J.M. Demattê, P.G. Magalhães, G. Sanches

55. Apparent Electrical Conductivity Sensors and Their Relationship with Soil Properties in Sugarcane Fields

One important tool within the technological precision agriculture (PA) package are the apparent electrical conductivity (ECa) sensors. This kind of sensor shows the ability in mapping soil physicochemical variability quickly, with high resolution and at low cost. However, the adoption of this technology in Brazil is not usual, particularly on sugarcane fields. A major issue for farmers is the applicability of ECa, how to convert ECa data in knowledge that may assist the producer in decision-m... G.M. Sanches, L.R. Amaral, T. Pitrat, T. Brasco, P.S. Magalhaes, D.G. Duft, H.C. Franco

56. On-the-go Measurements of pH in Tropical Soil

The objective of this study was to assess the performance of a mobile sensor platform with ion-selective antimony electrodes (ISE) to determine pH on-the-go in a Brazilian tropical soil. The field experiments were carried out in a Cambisol in Piracicaba-SP, Brazil. To create pH variability, increasing doses (0, 1, 3, 5, 7 and 9 Mg ha-1) of lime were added on the experimental plots (25 x 10 m) one year before the data acquisitions. To estimate soil pH levels we used a Mobile Sensor ... M.T. Eitelwein, R.G. Trevisan, A.F. Colaço, M.R. Vargas, J.P. Molin

57. Comparing Predictive Performance of Near Infrared Spectroscopy at a Field, Regional, National and Continental Scales by Using Spiking and Data Mining Techniques

The development of accurate visible and near infrared (vis-NIR) spectroscopy calibration models for selected soil properties is a crucial step for variable rate application in precision agriculture. The objective of the present study was to compare the prediction performance of vis-NIR spectroscopy at local, regional, national and continental scales using data mining techniques including spiking. Fresh soil samples collected from farms in the UK, Czech Republic, Germany, Denmark and the Nethe... S.M. Nawar, A.M. Mouazen, D. George, A. Manfield

58. Time Series Study of Soybean Response Based on Adjusted Green Red Index

Four time-lapse cameras, Bushnell Nature View HD Camera (Bushnell, Overland Park, KS) were installed in a soybean field to track the response of soybean plants to solar radiation, air temperature, relative humidity, soil surface temperature, and soil temperature at 5-cm depth. The purpose was to confirm if visible spectroscopy can provide useful data for tracking the condition of crops and, if so, whether game and trail time-lapse cameras can serve as reliable crop sensing and monitoring devi... P.A. Larbi, S. Green

59. A Data Fusion Method for Yield and Soil Sensor Maps

Utilizing yield maps to their full potential has been one of the challenges in precision agriculture.  A key objective for understanding patterns of yield variation is to derive management zones, with the expectation that several years of quality yield data will delineate consistent productivity zones.  The anticipated outcome is a map that shows where soil productive potentials differ.  In spite of the widespread usage of yield monitors, commercial agriculture has found it dif... E. Lund, C. Maxton, T. Lund

60. Vis/NIR Spectroscopy to Estimate Crude Protein (CP) in Alfalfa Crop: Feasibility Study

The fast and reliable quality determination of alfalfa crop is of interest for producers to make management decisions, the dealers to determine the price, and the dairy producers for livestock management. In this study, the crude protein (CP), one of the main quality indices of alfalfa, was estimated using the visible and near-infrared (Vis/NIR) spectroscopy. A total of 68 samples from various variety trials of alfalfa crop were collected under the irrigated and rainfed conditions. The diffus... M. Maharlooei, S. Bajwa, S.A. Mireei, A. Shirzadi, S. Sivarajan, M. Berti, J. Nowatzki

61. Grazing System and Solar Fences, Innovation and Opportunity in Rangeland of Developing Countries

The future of the development and management of pasture resources depends on increasing the use of scientific innovations. In some countries rangeland livestock production majority relies on natural ecological processes of plant and animal production, despite the progress in all of the infrastructure, rangeland management have a little growth and base on traditional ranching management, grazing livestock is based on a free grazing system. In this study grazing system was applied and electric ... H. Arzani, E. Alizadeh

62. Through the Grass Ceiling: Using Multiple Data Sources on Intra-Field Variability to Reset Expectations of Pasture Production and Farm Profitability

Intra-field variability has received much attention in arable and horticultural contexts. It has resulted in increased profitability as well as reduced environmental footprint. However, in a pastoral context, the value of understanding intra-field variability has not been widely appreciated. In this programme, we used available technologies to develop multiple data layers on multiple fields within a dairy farm. This farm was selected as it was already performing at a high level, with well-dev... W. King, R. Dynes, S. Laurenson, S. Zydenbos, R. Macauliffe, A. Taylor, M. Manning, A. Roberts, M. White

63. Synchronized Windrow Intelligent Perception System (SWIPE)

The practice of bale production, in forage agriculture, involves various machines that include tractors, tedders, rakers, and balers. As part of the baling process, silage material is placed in windrows, linearly raked mounds, to drive over with a baler for easy collection into bales. Traditionally, a baler is an implement that is attached on the back of a tractor to generate bales of a specific shape. Forage agricultural equipment manufacturers have recently released an operator driven, self... E.M. Dupont, P.R. Kolar

64. Economics of Field Size for Autonomous Crop Machines

Field size constrains spatial and temporal management of agriculture with implications for farm profitability, field biodiversity and environmental performance. Large, conventional equipment struggles to farm small, irregularly shaped fields efficiently. The study hypothesized that autonomous crop machines would make it possible to farm small non-rectangular fields profitably, thereby preserving field biodiversity and other environmental benefits. Using the experience of the Hands Free Hectar... A. Al amin, J. Lowenberg‑deboer, K. Franklin, K. Behrendt

65. Seed Localization System Suite with CNNs for Seed Spacing Estimation, Population Estimation and Doubles

Proper seed placement during planting is critical to achieve uniform emergence which optimizes the crop for maximum yield potential. Currently, the ideal way to determine planter performance is to manually measure plant spacing and seeding depth. However, this process is both cost- and labor-intensive and prone to human errors. Therefore, this study aimed to develop seed localization system (SLS) system to measure seed spacing and seeding depth and providing the geo-location of each planted s... A. Sharda, R. Harsha chepally

66. Agricultural Robots Classification Based on Clustering by Features and Function

Robotic systems in agriculture (hereafter referred to as agrobots) have become popular in the last few years. They represent an opportunity to make food production more efficient, especially when coupled with technologies such as the Internet of Things and Big Data. Agrobots bring many advantages in farm operations: they can reduce humane fatigue and work-related accidents. In contrast, their large-scale diffusion is today limited by a lack of clarity and exhaustiveness in the regulatory fram... M. Canavari, M. Medici, G. Rossetti

67. Agronomic Opportunities Highlighted by the Hands Free Hectare and Hands Free Farm Autonomous Farming Projects

With agriculture facing various challenges including population increase, urbanisation and both mitigating and managing climate change, agricultural automation and robotics have long been seen as potential solutions beyond precision farming. The Hands Free Hectare (HFH) and Hands Free Farm (HFF) collaborative projects based at Harper Adams University (HAU) have been developing autonomous farming systems since 2016 and have conducted multiple autonomous field crop production cycles since a wor... K.F. Franklin

68. Possibilities for Improved Decision Making and Operating Efficiency Derived from the Predictability of Autonomous Farming Operations

For the last 6 years, small autonomous agricultural vehicles have been operating on Harper Adams University’s fields in Shropshire.  Starting with a single tractor on a single rectangular hectare (2.5 acres) and moving on to three tractors on 5 irregularly shaped fields covering over 30 hectares (75 acres).  Multiple crops have been grown; planting, tending, and harvesting with autonomous tractors and harvesters.  The fields are worked using a Controlled Traffic Farming s... M. Gutteridge

69. Assessing the Distribution Uniformity of Broadcast-interseeded Cover Crops at Different Crop Stages by an Unmanned Aerial Vehicle

Drones can now carry larger payloads and have become more affordable, making them a viable option to use for broadcast-interseeding cover crops in the fall, prior to main crop harvest. This strategy has become popular in Ohio over the past two years. However, this new strategy arose quickly with a limited understanding of field performance of the drone’s distribution uniformity under different parameters such as rates, swath widths, speeds, or cash crop type. Therefore, the objective of... A.D. Thomas, J.P. Fulton, S. Khanal, O. Ortez, G. Mcglinch