Login

Proceedings

Find matching any: Reset
Unmanned Aerial Systems
Agricultural Education
Standards & Data Stewardship
Modeling and Geo-statistics
ISPA Community: Latin America
Big Data, Data Mining and Deep Learning
Add filter to result:
Authors
Acharya, I
Acuna, T
Adamchuk, V.I
Alabi, T
Alderman, P
Applegate, D.B
Archer, J.K
Arnall, B
Avila, E.N
B, K
Baeck, P
Baghernejad, M
Bajwa, S
Bakshi, A
Balboa, G
Balint-Kurti, P
Balmos, A
Bari, M.A
Basso, B
Bazakos, M
Bazzi, C.L
Bazzi, C.L
Berger, A
Berger, A.W
Berne, D.T
Best, S
Bishop, T
Blommaert, J
Boatswain Jacques, A.A
Bolfe, E
Boonen, M
Bouroubi, M.Y
Boydston, R
Brinton, C
Buckmaster, D
Bullock, R.J
Burris, E
CARCEDO, A
Cambouris, A
Cao, Q
Cao, W
Cappelleri, D
Caragea, D
Cavayas, F
Chaplin, Y
Charvat jr., K
Charvat, K
Chen, L
Chen, L
Chen, T
Choton, J
Ciampitti, I
Ciampitti, I
Clay, D.E
Clay, D.E
Clay, S.A
Codjia, C
Cointault, F
Cosby, A.M
Craker, B.E
Crawford, M
Daggett, D.G
Dean, R
Delalieux, S
Delauré, B
Delgadillo, C.A
Diallo, A.B
Diatta, A
Dilmurat, K
Djighaly, P
Dorissant, L
Dunbabin, M
Ellixson, A
Ellixson, A
Ellsworth, J.W
Emadi, M.M
Erickson, B
Esau, T.J
Everett, M
Farooque, A
Fasso, W
Fausti, S
Felderhoff, T
Fergugson, R.B
Ferreyra, R
Filippi, P
Fornale, M
Goeringer, P
Goeringer, P
Goffart, J
Gomez, F
Gowler, A
Grant, R.H
Gregory, S
Griffin, T
Grijalva, I
Grove, J
Guo, Y
Han, S
Hansel, D
Haringx, S.C
Hayhurst, K
Henry, B
Hillyer, C
Hock, M.W
Hoffmann, W.C
Holthaus, D
Horakova, S
Howatt, T
Huang, W
Huang, Y
Hunsche, M
Hunt, A
Ikpi, A.E
Jacquemin, G
Jagadish, K
Jamei, M
Janjua, U.U
Jha, S
Johnson, A
Journaux, L
Kaiser, D
Kaushal, S
Kepka, M
Khakbazan, M
Khot, L
Khun, K
Kidd, J
Kitchen, N.R
Kovacs, P
Krogmeier, J
Krueger Shvetsova, E
Kudenov, M
Kurtener, D
Kurtener, D
Kyveryga, P.M
Lan, Y
Liew, C
Liu, Z
Livens, S
Lord, E
Love, D.J
Lu, J
Lukas, V
Luker, E
Lum, C
Mackenzie, M
Maimaitijiang, M
Marin, A
Martin, D.L
Martin, R
McCarter, K.S
McCornack, B
Melchiori, R
Miao, Y
Miklas, P.N
Millett, B
Miteran, J
Moorhead, R.J
Moorhead, R.J
Morellas, V
Morris, C
Morris, T
Moyle, J
Mueller, D
Mulla, D
Murrell, S
Nagarajan, L
Nef, B.K
Nerpel, D
Nieman, S.T
Noga, G
Nowatzki, J
Nuyttens, D
Okoruwa, V.O
Oksanen, T
Olayide, O.E
Oliveira, W.K
Omodele, T
Ortega, R
Ossowski, M
Oster, Z
Ottley, C
Palacios, D
Pan, L
Papanikolopoulos, N
Pauly, K
Pena-Yewtukhiw, E.M
Pitla, S
Pl, L
Porter, L
Pramanik, S
Prasad, V
Prince Czarnecki, J.M
Puntel, L
R, C
Rabia, A.H
Ragab, R
Reddy, L
Reynolds, D.B
Reznik, T
Rhea, S.T
Roberts, D
Roberts, J
Rocha, D.M
Roel, A
Rumpf, T
Russo, J.M
Salem, M.A
Samiappan, S
Sanders, P
Scaramuzza, F
Schenatto, K
Scheve, A
Schroeder, M.A
Schultz, E.D
Schumacher, L
Seger, J
Shannon, K
Sharda, A
Shaw-Feather, C
Shearouse, T.W
Shen, F
Shi, W
Sima, A
Skouby, D
Sobjak, R
Souza, E.G
Spiesman, B
Stanitsas, P
Stelford, M.W
Stewart, Z
Stiehl, D
Sutherland, A
Swain, D
Tekin, A
Tevis, J.W
Thompson, L
Tian, Y
Tiscornia, G
Torbert, H
Tremblay, N
Tremblay, N
Trotter, M
Trotter, T
Vail, B
Vail, B
Verstynen, H
Vigneault, P
Wang, C
Wang, J
Weckler, P
Weinhold, B
Westbrook, J
Williams, C
Wilson, J.A
Wilson, J.W
Witt, T
Yi, T
Yost, M
Zaller, M
Zaman, Q.U
Zermas, D
Zhang, H
Zhang, R
Zhao, C
Zhou, J
Zhu, Y
Zikan, A
Zingore, S
http://icons.paqinteractive.com/16x16/ac, G
http://icons.paqinteractive.com/16x16/ac, G
http://icons.paqinteractive.com/16x16/ac, G
liu, X
maddalon, J
neogi, N
Topics
Modeling and Geo-statistics
Big Data, Data Mining and Deep Learning
Agricultural Education
Unmanned Aerial Systems
Standards & Data Stewardship
ISPA Community: Latin America
Type
Poster
Oral
Year
2010
2024
2016
2022
Home » Topics » Results

Topics

Filter results57 paper(s) found.

1. Saltmed Model As An Integrated Management Tool For Precision Management Of Water, Crop, Soil, And Fertilizers

                 SALTMED-2009: A modelling tool for Precision Agriculture                                                    R. Ragab Centre for Ecology and H... R. Ragab

2. Smoothness Index Of Thematic Maps

A thematic map shows the spatial distribution of one or more specific data themes for standard geographic areas. The thematic maps are generated to represent the studied variables, so interpolators are used to determine their values in places not sampled. It is usuall... C.L. Bazzi, E.G. Souza, D. Stiehl

3. Application Of Algebra Hyper-curve Neural Network In Soil Nutrient Spatial Interpolation

Study on spatial variability of soil nutrient is the basis of soil nutrient management in precision agriculture. For study on application potential and characteristics of algebra hyper-curve neural network(AHNN) in delineating soil properties spatial variability and interpolation, total 956 soil samples were taken for alkaline hydrolytic nitrogen measurement from a 50 hectares field using 20m*20m grid sampling. The test data set consisted of 100 random samples extracti... L. Chen, C. Zhao, W. Huang, T. Chen, J. Wang

4. Analysis Of Water Use Efficiency Using On-the-go Soil Sensing And A Wireless Network

An efficient irrigation system should meet the demands of the growing crops. While limited water supply may result in yield reduction, excess irrigation is a waste of resources. To investigate water use efficiency, on-the-go sensing technology was used to reveal soil spatial variability relevant to water holding capacity (in this example, field elevation and apparent electrical conductivity). These high-density data layers were used to identify strategic sites where monitoring water availabil... L. Pan, V.I. Adamchuk, D.L. Martin, M.A. Schroeder, R.B. Fergugson

5. Evaluation Of Yield Maps Using Fuzzy Indicators

  The ultimate goal of application of yield maps is profitable crop output in many farming systems. Yield maps are the starting point in the precision farming system, and provide the final record indicating the effectiveness of any management changes. Researches on yield mapping shown, that positions and boundaries of zones with different levels ... E. Krueger shvetsova, D. Kurtener, D. Kurtener, H. Torbert

6. Assessment Of Climate Variability On Optimal Nitrogen Fertilizer Rates For Precision Agriculture

 Yield response functions... B. Basso, G. Http://icons.paqinteractive.com/16x16/ac, G. Http://icons.paqinteractive.com/16x16/ac, G. Http://icons.paqinteractive.com/16x16/ac

7. Mapping The Effect Of Food Prices, Productivity And Poverty In The Development Domains Of Nigeria

  Poverty remains the major obstacle to economic emancipation and achievement of development agenda in Nigeria. Worse still, rising food prices pose a major threat to feeding the teeming population in Nigeria. Declining food production, high population growth, and negative food trade balance combine to worsen the food and poverty situations in Nigeria. We stand on the premise that surging and volatile food prices could have a hardest hit on those who could not afford it –... O.E. Olayide, A.E. Ikpi, V.O. Okoruwa, , T. Alabi, T. Omodele

8. Early Identification Of Leaf Rust On Wheat Leaves With Robust Fitting Of Hyperspectral Signatures

Early recognition of pathogen infection is of great relevance in precision plant protection. Disease detection before the occurrence of visual symptoms is of particular interest. By use of a laserfluoroscope, UV-light induced fluorescence data were collected from healthy and with leaf rust infected wheat leaves of the susceptible cv. Ritmo 2-4 days after inoculation under controlled conditions. In order to evaluate disease impact on spectral characteristics 215 wavelengths in the range of 370... C. R, T. Rumpf, K. B, M. Hunsche, L. Pl, G. Noga

9. Decision Making And Operational Planning

In order to automatize crop farming and its processes, a number of technological and other problems have to be solved. Agricultural field robots are in our vision to fulfill operations in fields. Robots involve number of technological challenges in order to be functional and reliable, but also systems controlling these robots are to be developed. In this paper automatic crop farming is the vision, and decision making models and operational planning is discussed. Study is carried out with simu... T. Oksanen, ,

10. Wheat Growth Stages Discrimination Using Generalized Fourier Descriptors In Pattern Recognition Context

... F. Cointault, A. Marin, L. Journaux, J. Miteran, R. Martin

11. Development Of A Decision Support System For Precision Areawide Pest Management In Cotton Production

  Crop models simulate growth and development, and provide relevant information for the routine management of the crop.  The use of crop models on large areas for diagnosing crop growing conditions or predicting crop production is hampered by the lack of sufficient spatial information about model inputs. Integrating crop models with other information technologies such as geographic information systems (GIS), variable rate technology, remote sensing, and global p... Y. Lan, W.C. Hoffmann, J. Westbrook, M. Zaller

12. Mapping Soil Salinity Using Cokriging Method In Arsanjan Plain, Southern Iran

  Salt-affected landscapes are highly sensitive to changes in climatic, edaphic and hydrological conditions in time and space in semi-arid regions such as Arsanjan plain, southern Iran. The objective of this study was to combine digital satellite data with ground based measurements of ECe by cokriging method to possibility improve the soil salinity maps of study area. Soil samples in the 85 sampling site (10187 ha)were collected from 0-30 cm depths, georefrenced using GPS recei... M.P. Baghernejad, M.M. Emadi

13. Accounting For Spatial Correlation Using Radial Smoothers In Statistical Models Used For Developing Variable-rate Treatment Prescriptions

Variable-rate treatment prescriptions for use on commercial farms can be developed from embedded field trials on those farms. Such embedded trials typically involve non-random, high-density sampling schemes that result in large datasets and response variables exhibiting spatial correlation. In order to accurately evaluate the significance of the effects of the applied treatments and the measured field characteristics on the response of interest, this spatial correlation must be accounted for ... K.S. Mccarter, E. Burris

14. Crop Rotation Impacts ‘Temporal Sampling’ Needed For Landscape-defined Management Zones

Yield and landscape position are used to delineate management zones, but this approach is confounded by yield’s weather dependence, causing yield to evidence temporal variability/lack of yield stability. Management options (e.g. crop rotation) also influence yield stability. Our objective was to build a model that would describe the influence of crop rotation on the temporal yield stability of landscape defined management zones. Corn (Zea mays L.) yield data for two rotat... E.M. Pena-yewtukhiw, J. Grove

15. Development of a PWM Precision Spraying System for Unmanned Helicopter

Application of protection materials is a crucial component in the high productivity of agriculture. Motivated by the needs of aerial precision application, in this paper we present a pulse width modulation (PWM) based precision spraying system for unmanned helicopter. The system is composed of the tank, pipelines, pump, nozzles and the automatic control unit. The system can spray with a constant rate automatically when the speed of the UAV fluctuates between 1 m/s to 8 m/s. The application ra... R. Zhang, L. Chen, T. Yi, Y. Guo, H. Zhang

16. Use of Unmanned Aerial Vehicles to Inform Herbicide Drift Analysis

A primary advantage of unmanned aerial vehicle-based imaging systems is responsiveness.  Herbicide drift events require prompt attention from a flexible collection system, making unmanned aerial vehicles a good option for drift analysis.  In April 2015, a drift event was documented on a Mississippi farm.  A combination of corn and rice fields exhibited symptomology consist with non-target injury from a tank mix of glyphosate and clethodim.  An interesting observation was t... J.M. Prince czarnecki, D.B. Reynolds, R.J. Moorhead

17. Plant Stand Count and Corn Crop Density Assessment Using Texture Analysis on Visible Imagery Collected Using Unmanned Aerial Vehicles

Ensuring successful corn farming requires an effective monitoring program to collect information about stand counts at an early stage of growth and plant damages due to natural calamities, farming equipment, hogs, deer and other animals. These monitoring programs not only provide a yield estimate but also help farmers and insurance companies in assessing the causes of damages. Current field-based assessment methods are labor intensive, costly, and provide very limited information. Manual asse... S. Samiappan, B. Henry, R.J. Moorhead, M.W. Hock

18. Privacy Issues and the Use of UASs/Drones in Maryland

 According to the Federal Aviation Administration (FAA), the lawful use of Unmanned Aerial Vehicles (UAV), also known as Unmanned Aircraft Systems (UAS), or more commonly as drones, are currently limited to military, research, and recreational applications. Under the FAA’s view, commercial uses of drones are illegal unless approved by the Federal government.  This will change in the future.  Congress authorized the FAA to develop regulations for the use of drones by priva... P. Goeringer, A. Ellixson, J. Moyle

19. Multispectral Imaging and Elevation Mapping from an Unmanned Aerial System for Precision Agriculture Applications

As the world population continues to grow, the need for efficient agricultural production becomes more pressing.  The majority of farmers still use manual techniques (e.g. visual inspection) to assess the status of their crops, which is tedious and subjective.  This paper examines an operational and analytical workflow to incorporate unmanned aerial systems (UAS) into the process of surveying and assessing crop health.  The proposed system has the potential to significantly red... C. Lum, M. Dunbabin, C. Shaw-feather, M. Mackenzie, E. Luker

20. Weather Impacts on UAV Flight Availability for Agricultural Purposes in Oklahoma

This research project analyzed 21 years of historical weather data from the Oklahoma Mesonet system.  The data examined the practicality of flying unmanned aircraft for various agricultural purposes in Oklahoma.  Fixed-wing and rotary wing (quad copter, octocopter) flight parameters were determined and their performance envelope was verified as a function of weather conditions.  The project explored Oklahoma’s Mesonet data in order to find days that are acceptable for fly... P. Weckler, C. Morris, B. Arnall, P. Alderman, J. Kidd, A. Sutherland

21. Safety and Certification Considerations for Expanding the Use of UAS in Precision Agriculture

The agricultural community is actively engaged in adopting new technologies such as unmanned aircraft systems (UAS) to help assess the condition of crops and develop appropriate treatment plans.  In the United States, agricultural use of UAS has largely been limited to small UAS, generally weighing less than 55 lb and operating within the line of sight of a remote pilot.  A variety of small UAS are being used to monitor and map crops, while only a few are being used to apply agricul... H. Verstynen, K. Hayhurst, J. Maddalon, N. Neogi

22. Early Detection of Nitrogen Deficiency in Corn Using High Resolution Remote Sensing and Computer Vision

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which of... D. Mulla, D. Zermas, D. Kaiser, M. Bazakos, N. Papanikolopoulos, P. Stanitsas, V. Morellas

23. FOODIE Data Model for Precision Agriculture

The agriculture sector is a unique sector due to its strategic importance for both citizens (consumers) and economy (regional and global), which ideally should make the whole sector a network of interacting organizations. The FOODIE project aims at building an open and interoperable agricultural specialized platform hub on the cloud for the management of spatial and non-spatial data relevant for farming production. The FOODIE service platform deals with including their thematic, spatial, and ... K. Charvat, T. Reznik, K. Charvat jr., V. Lukas, S. Horakova, M. Kepka

24. SMARTfarm Learning Hub: Next Generation Precision Agriculture Technologies for Agricultural Education

The industry demands on higher education agricultural students are rapidly changing. New precision agriculture technologies are revolutionizing the farming industry but the education sector is failing to keep pace. This paper reports on the development of a key resource, the SMARTfarm Learning Hub (www.smartfarmhub.com) that will increase the skill base of higher education students using a range of new agricultural technologies and innovations. The Hub is a world first; it links real industry... M. Trotter, S. Gregory, T. Trotter, T. Acuna, D. Swain, W. Fasso, J. Roberts, A. Zikan, A. Cosby

25. In-season Diagnosis of Rice Nitrogen Status Using Crop Circle Active Canopy Sensor and UAV Remote Sensing

Active crop canopy sensors have been used to non-destructively estimate nitrogen (N) nutrition index (NNI) for in-season site-specific N management. However, it is time-consuming and challenging to carry the hand-held active crop sensors and walk across large paddy fields. Unmanned aerial vehicle (UAV)-based remote sensing is a promising approach to overcoming the limitations of proximal sensing. The objective of this study was to combine unmanned aerial vehicle (UAV)-based remote sensing sys... J. Lu, Y. Miao, Y. Huang, W. Shi

26. Developing UAV Image Acquisition System and Processing Steps for Quantitative Use of the Data in Precision Agriculture

Mapping natural variability of crops and land is first step of the management cycle in terms of crop production. Several methods have been developed and engaged for data recording and analyzing that generate prescription maps such as yield monitoring, soil mapping, remote sensing etc. Although conventional remote sensing by capturing images via satellites has been very popular tool to monitor the earth surface, it has several drawbacks such as orbital period, unattended capture, investment co... A. Tekin, M. Fornale

27. Towards Calibrated Vegetation Indices from UAS-derived Orthomosaics

Crop advisors and farmers increasingly use drone data as part of their decision making. However, the vast majority of UAS-based vegetation mapping services support only the calculation of a relative NDVI derived from compressed JPEG pixel values and do not include the possibility to include more complex aspects like soil correction. In our ICPA12 contribution, we demonstrated the effects and consequences of the above shortcomings. Here, we present the stepwise development of a solution to ens... K. Pauly

28. Large-scale UAS Data Collection, Processing and Management for Field Crop Management

North Dakota State University research and Extension personnel are collaborating with Elbit Systems of America to compare the usefulness and economics of imagery collected from a large unmanned aircraft systems (UAS), small UAS and satellite imagery. Project personnel are using a large UAS powered with an internal combustion engine to collect high-resolution imagery over 100,000 acres twice each month during the crop growing season. Four-band multispectral Imagery is also being collected twic... J. Nowatzki, S. Bajwa, D. Roberts, M. Ossowski, A. Scheve, A. Johnson, Y. Chaplin

29. Modus: a Standard for Big Data

Modus Standard is a system of defined terminology, agreed metadata and file transfer format that has grown from a need to exchange, merge and trend agricultural testing data. The three presenters will discuss steps taken to develop the system, benefits to data exchange, current user base and additions being made to the standard. ... D. Nerpel, J.W. Ellsworth, A. Hunt

30. Small UAS Integrated Sensing Tools for Abiotic Stress Monitoring in Irrigated Pinto Beans

Precision agriculture is a practical approach to maximize crop yield with optimal use of rapidly depleting natural resources. Availability of specific and high resolution crop data at critical growth stages is a key for real-time data driven decision support for precision agriculture management during the production season. The goal of this study was to evaluate the feasibility of using small unmanned aerial system (UAS) integrated remote sensing tools to monitor the abiotic stress of eight i... L. Khot, J. Zhou, R. Boydston, P.N. Miklas, L. Porter

31. Key Data Ownership, Privacy and Protection Issues and Strategies for the International Precision Agriculture Industry

Precision agriculture companies seek to leverage technology to process greater volumes of data, greater varieties of data, and at a velocity unfathomable to most. The promises of boundless benefits are coupled with risks associated with data ownership, stewardship and privacy. This paper presents some risks related to the management of farm data, in general, as well as those unique to operating in the international arena.  Examples of U.S. and international laws related to data protectio... J.K. Archer, C.A. Delgadillo, F. Shen

32. High Resolution Vegetation Mapping with a Novel Compact Hyperspectral Camera System

The COSI-system is a novel compact hyperspectral imaging solution designed for small remotely piloted aircraft systems (RPAS). It is designed to supply accurate action and information maps related to the crop status and health for precision agricultural applications. The COSI-Cam makes use of a thin film hyperspectral filter technology which is deposited onto an image sensor chip resulting in a compact and lightweight instrument design. This paper reports on the agricultural monitor... B. Delauré, P. Baeck, J. Blommaert, S. Delalieux, S. Livens, A. Sima, M. Boonen, J. Goffart, G. Jacquemin, D. Nuyttens

33. Ownership and Protections of Farm Data

Farm data has been a contentious point of debate with respect to ownership rights and impacts when access rights are misappropriated. One of the leading questions farmers ask deals with the protections provided to farm data. Although no specific laws or precedence exists, the possibility of trade secret is examined and ramifications for damages discussed. Farm management examples are provided to emphasize the potential outcomes of each possible recourse for misappropriating farm data. ... A. Ellixson, P. Goeringer, T. Griffin

34. Comparative Benefits of Drone Imagery for Nitrogen Status Determination in Corn

Remotely sensed vegetation data provide an effective means of measuring the spatial variability of nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the comparative advantages of this type of imagery have not been demonstrated. The goal of... N. Tremblay, K. Khun, P. Vigneault, M.Y. Bouroubi, F. Cavayas, C. Codjia

35. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway id... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

36. Precision Farming Basics Manual - a Comprehensive Updated Textbook for Teaching and Extension Efforts

Today precision agricultural technologies are limited by the lack of a workforce that is technology literate, creative, innovative, fully trained in their discipline, able to utilize and interpret information gained from information-age technologies to make smart management decisions, and have the capacity to convert locally collected information into practical solutions. As part of a grant entitled Precision Farming Workforce Development:  Standards, Working Groups, and Experimental Lea... K. Shannon

37. A Content Review of Precision Agriculture Courses Across the US

Knowledge of what precision agriculture (PA) content is currently taught across the United States will help build a better understanding for what PA instructors should incorporate into their classes in the future. The University of Missouri partnered with several universities throughout the nation on a USDA challenge grant. Precision Agriculture faculty from 24 colleges/universities from across the U.S. shared their PA content by sharing their syllabi from 43 different courses. The syllabi we... D. Skouby, L. Schumacher, M. Yost, N.R. Kitchen

38. Knowledge, Skills and Abilities Needed in the Precision Ag Workforce: an Industry Survey

Precision agriculture encompasses a set of related technologies aimed at better utilization of crop inputs, increasing yield and quality, reducing risks, and enabling information flow throughout the crop supply and end-use chains.  The most widely adopted precision practices have been automated systems related to equipment steering and precise input application, such as autoguidance and section controllers.  Once installed, these systems are relatively easy for farmers and their sup... B. Erickson, D.E. Clay, S.A. Clay, S. Fausti

39. Rationale for and Benefits of a Community for On-Farm Data Sharing

Most data sets for evaluating crop production practices have too few locations and years to create reliable probabilities from predictive analytical analyses for the success of the practices. Yield monitors on combines have the potential to enable networks of farmers in collaboration with scientists and farm advisors to collect sufficient data for calculation of more reliable guidelines for crop production showing the probabilities that new or existing practices will improve the efficiency of... T. Morris, N. Tremblay, P.M. Kyveryga, D.E. Clay, S. Murrell, I. Ciampitti, L. Thompson, D. Mueller, J. Seger

40. How Digital is Agriculture in South America? Adoption and Limitations

A rapidly growing population in a context of land and water scarcity, and climate change has driven an increase in healthy, nutritious, and affordable food demand while maintaining the current cropping area. Digital agriculture (DA) can contribute solutions to meet the demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. This article presents the results from a systematic revi... G. Balboa, L. Puntel, R. Melchiori, R. Ortega, G. Tiscornia, E. Bolfe, A. Roel, F. Scaramuzza, S. Best, A. Berger, D. Hansel, D. Palacios

41. Geographic Database in Precision Agriculture for the Development of AI Research

Agriculture 4.0 has profoundly transformed production processes by incorporating technologies such as Precision Agriculture, Artificial Intelligence, the Internet of Things, and telemetry. This evolution has enabled more accurate and timely decision-making in agriculture. In response to this movement, the Precision Agriculture Laboratory (AgriLab) of UTFPR, located in Medianeira, proposes the establishment of a consistent and standardized database. This database is continually updated with su... E.N. Avila, C.L. Bazzi, W.K. Oliveira, K. Schenatto, R. Sobjak, D.M. Rocha

42. Explainable Neural Network Alternatives for Ai Predictions: Genetic Algorithm Quantitative Association Rule Mining

Neural networks in one form or another are common precision agriculture artificial intelligence techniques for making predictions based on data. However, neural networks are computationally intensive to train and to run, and are typically “black-box” models without explainable output. This paper investigates an alternative artificial intelligence prediction technique, genetic algorithm quantitative association rule mining, which creates explainable output with impacts directly qua... M. Everett

43. Sampling Bumble Bees and Floral Resources Using Deep Learning and UAV Imagery

Pollinators, essential components of natural and agricultural systems, forage over relatively large spatial scales. This is especially true of large generalist species, like bumble bees. Thus, it can be difficult to estimate the amount and diversity of floral resources available to them. Floral cover and diversity are often estimated over large areas by extrapolation from small scale samples (e.g., a 1-m quadrat) but the accuracy of such estimates can vary depending on the spatial patchiness ... B. Spiesman, I. Grijalva, D. Holthaus, B. Mccornack

44. Optimizing Nitrogen Application in Global Wheat Production by an Integrated Bayesian and Machine Learning Approach

Wheat production plays a pivotal role in global food security, with nitrogen fertilizer application serving as a critical factor. The precise application of nitrogen fertilizer is imperative to maximize wheat yield while avoiding environmental degradation and economic losses resulting from excess or inadequate usage. The integration of Bayesian and machine learning methodologies has gained prominence in the realm of agricultural research. Bayesian and machine learning based methods have great... Z. Liu, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao

45. Automated Southern Leaf Blight Severity Grading of Corn Leaves in RGB Field Imagery

Plant stress phenotyping research has progressively addressed approaches for stress quantification. Deep learning techniques provide a means to develop objective and automated methods for identifying abiotic and biotic stress experienced in an uncontrolled environment by plants comparable to the traditional visual assessment conducted by an expert rater. This work demonstrates a computational pipeline capable of estimating the disease severity caused by southern corn leaf blight in images of ... C. Ottley, M. Kudenov, P. Balint-kurti, R. Dean, C. Williams

46. Deep Learning for Predicting Yield Temporal Stability from Short Crop Rotations

Investigating the temporal stability of yield in management zones is crucial for both producers and researchers, as it helps in mitigating the adverse impacts of unpredictable disruptions and weather events. The diversification of cropping systems is an approach which leads to reduced variability in yield while improving overall field resilience. In this six-year study spanning from 2016 to 2021, we monitored 40 distinct fields owned by 10 producers situated in Quebec, Canada. These... E. Lord, A.A. Boatswain jacques, A.B. Diallo, M. Khakbazan, A. Cambouris

47. Enhancing Agricultural Feedback Analysis Through VUI and Deep Learning Integration

A substantial amount of information relies on consumers, influencing aspects from product adoption to overall satisfaction. Similarly, the agricultural sector is entirely dependent on farmers, who dictate the success of products and highlight associated challenges. Our study aligns with this perspective, recognizing the significance of understanding farmers' needs to assist tractor manufacturing industries. As these industries aim for widespread adoption of their products among farmers, i... S. Kaushal, A. Sharda

48. An Open Database of Crop Yield Response to Fertilizer Application for Senegal

Food security is one of the major global challenges today.  Africa is one of the continents with the largest gaps in terms of challenges for food security. In Senegal, about 60% of the population resides in rural areas and the cropping systems are characterized as a low productivity system, low input and in reduced areas, smallholder subsistence systems. Increasing crop productivity would have a positive impact on food security in this country. One of the main factors limiting crop produ... F. Gomez, A. Carcedo, A. Diatta, L. Nagarajan, V. Prasad, Z. Stewart, S. Zingore, I. Ciampitti, P. Djighaly

49. On Data-driven Crop Yield Modelling, Predicting, and Forecasting and the Common Flaws in Published Studies

There has been a recent surge in the number of studies that aim to model crop yield using data-driven approaches. This has largely come about due to the increasing amounts of remote sensing (e.g. satellite imagery) and precision agriculture data available (e.g. high-resolution crop yield monitor data), and abundance of machine learning modelling approaches. This is a particular problem in the field of Precision Agriculture, where many studies will take a crop yield map (or a small number), cr... P. Filippi, T. Bishop, S. Han, I. Rund

50. Generative Modeling Method Comparison for Class Imbalance Correction

An image dataset, for use in object detection of hay bales, with over 6000 images of both good and bad hay bales was collected.  Unfortunately, the dataset developed a class imbalance, with more good bale images than bad bales.  This dataset class imbalance caused the bad bale class to over train and the good bale class to under train, severely impacting precision, and recall.  To correct this imbalance and provide a comparison of differing generative modeling methods; three di... B. Vail, Z. Oster, B. Weinhold

51. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System Imagery

In the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-t... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff

52. Machine Vision in Hay Bale Production

The goal of this project is to develop a system capable of real-time detection, pass/fail classification, and location tracking of large square hay bales under field conditions.  First, a review of past and current methods of object detection was carried out.  This led to the selection of the YOLO family of detectors for this project.  The image dataset was collected through help from our sponsor, collection of images from the K-STATE research farm, and images collected from th... B. Vail

53. Design of an Autonomous Ag Platform Capable of Field Scale Data Collection in Support of Artificial Intelligence

The Pivot+ Array is intended to serve as an innovative, multi-user research platform dedicated to the autonomous monitoring, analysis, and manipulation of crops and inputs at the plant scale, covering extensive areas. It will effectively address many constraints that have historically limited large-scale agricultural sensor and robotic research. This achievement will be made possible by augmenting the well-established center pivot technology, known for its autonomy, with robust power inf... S. Jha, J. Krogmeier, D. Buckmaster, D.J. Love, R.H. Grant, M. Crawford, C. Brinton, C. Wang, D. Cappelleri, A. Balmos

54. Wheat Spikes Counting Using Density Prediction Convolution Neural Network

Vision-based wheat spikes counting can be valuable for pre-harvest yield estimation for growers and researchers. In this study, wheat spike counting convolutions neural networks were implemented to solve the problem of vision-based wheat yield prediction problem. Encoder-decoder style convolutional neural networks (CNN) were developed with a Global Sum Pooling (GSP) layer as its output layer and trained to produce a density map which predicts the pixelwise wheat spikes density.  Thi... C. Liew, S. Pitla

55. Simultaneously Estimating Crop Biomass and Nutrient Parameters Using UAS Remote Sensing and Multitask Learning

Rapid and accurate estimation of crop growth status and nutrient levels such as aboveground biomass, nitrogen, phosphorus, and potassium concentrations and uptake is critical with respect to precision agriculture and field-based crop monitoring. Recent developments in Uncrewed Aircraft Systems (UAS) and sensor technologies have enabled the collection of high spatial, spectral, and temporal remote sensing data over large areas at a lower cost. Coupled deep learning-based modeling approaches wi... P. Kovacs, M. Maimaitijiang, B. Millett, L. Dorissant, I. Acharya, U.U. Janjua, K. Dilmurat

56. Potato Disease Detection Using Laser Speckle Imaging and Deep Learning

Early detection of potato diseases is essential for minimizing crop loss. Implementing advanced imaging techniques can significantly improve the accuracy and efficiency of disease detection in potato crops. Leveraging machine learning algorithms can further enhance the speed and precision of disease identification, enabling timely intervention measures. This work presents a novel potato disease detection technique using whole-potato speckle imaging and deep learning. Laser Speckle Imaging (LS... A.H. Rabia, M.A. Salem

57. Application of Advanced Soft Computing to Estimate Potato Tuber Yield: a Case Study from Atlantic Canada

The potato crop plays a crucial role in the economy of Atlantic Canada, particularly in Prince Edward Island and New Brunswick, where it contributes significantly to potato production. To help farmers make informed decisions for sustainable and profitable farming, this study was conducted to examine the variations in potato tuber yield based on thirty soil properties collected over four growing seasons through experimental trials. The study employed an advanced and explainable ensemble model ... Q.U. Zaman, A. Farooque, M. Jamei, T.J. Esau