Login

Proceedings

Find matching any: Reset
Information Management/Web-based Data Management
Farm Animals Health and Welfare Monitoring
Drainage Optimization and Variable Rate Irrigation
Digital Agriculture Solutions for Soil Health and Water Quality
Add filter to result:
Authors
Abban-Baidoo, E
Abon, J.O
Adedeji, O
Admasu, W.A
Admasu, W.A
Alwaseela, H
Andales, A
Archontoulis, S
Bathke, K.J
Boyer, W
Brokesh, E
Brown, A.J
Cross, T
Dean, C
Dufrasne, I
Ghimire, B
Grassini, P
Guo, W
Hansen, N
Henrie, A
Hopkins, B
Ingram, B
JANBAZIALAMDARI, S
Joshi, R
Karn, R
Kerry, R
Khosla, R
Khosla, R
Klopfenstein, A
Klopfenstein, A
Lebeau, F
Luck, J.D
Mahmoudi, S
Mandal, D
Mandal, D
Mieno, T
Ortega, R.A
Ortiz, B.V
Parbi, B
Plum, J
Poblete, H.P
Puntel, L
Quoitin, B
Sanders, K
Sanz-Saez, A
Sharda, A
Shearer, S.A
Swenson, A
Thompson, L
Unruh, R
Velasco, J.S
Wieber, E
Xu, Z
Zhou, J
Topics
Drainage Optimization and Variable Rate Irrigation
Digital Agriculture Solutions for Soil Health and Water Quality
Farm Animals Health and Welfare Monitoring
Type
Poster
Oral
Year
2024
2022
Home » Topics » Results

Topics

Filter results15 paper(s) found.

1. Detect Estrus in Sows Using a Lidar Sensor and Machine Learning

Accurate estrus detection of sows is labor intensive and is crucial to achieve high farrowing rate. This study aims to develop a method to detect accurate estrus time by monitoring the change in vulvar swollenness around estrus using a light detection and ranging (LiDAR) camera. The measurement accuracy of the LiDAR camera was evaluated in laboratory conditions before it was used in monitoring sows in a swine research facility. In this study, twelve multiparous individually housed sows were c... J. Zhou, Z. Xu

2. Use of Watering Hole Data As a Decision Support Tool for the Management of a Grazing Herd of Cattle

Establish grazing practices would improve the welfare of the animals, allowing them to express more natural behaviours. However, free-range reduces the ability to monitor the animals, thus increase the time needed to intervene in the event of a health problem. To ease the adoption of grazing, farmer would benefit from autonomously collected indicators at pasture that identify abnormal behaviours possibly related to a health problem in a bovine. These indicators must be individualised and coll... J. Plum, B. Quoitin, I. Dufrasne, S. Mahmoudi, F. Lebeau

3. Crop Modeling-based Framework to Explore Region-specific Impact of Nitrogen Fertilizer Management on Productivity and Environmental Footprint

To maintain current crop production while reducing negative environmental impacts, improved understanding of the relative impact of the 4Rs for nitrogen (N) management (rate, time, place, and source) for a given geo-agroecosystem are needed and can play a critical role in driving policy, recommendations, and local practices. However, the timeframe and cost required to assess and characterize the impact of N rate and timing over years and weather conditions through field experiments is prohibi... L. Thompson, S. Archontoulis, P. Grassini, L. Puntel, T. Mieno

4. Development of Standard Protocols for Soil Tilth Assessment As an Essential Component of Tillage Tool Automation to Improve Soil Health

The accurate assessment of soil tilth may be pivotal when assessing soil health as part of a holistic process to ensure sustainable and profitable crop production practices. In this study, we focus on demonstrating methodologies for the spatial assessment of soil tilth as ground truth for assessing real-time soil tilth quality sensing technologies. The proposed methodologies for evaluating tillage effects involve the integration of the line transect method for residue distribution analysis. S... C. Dean, A. Klopfenstein, A. Klopfenstein, S.A. Shearer

5. Optimizing Corn Irrigation Strategies: Insights from NDVI Trends, Soil Moisture Dynamics, and Remote Sensing

This comprehensive field experiment systematically examines the impact of varied irrigation rates on corn growth and yield across three treatments: 33%, 67%, and 100% irrigation rates. Utilizing the normalized difference vegetation index (NDVI) as a parameter for vegetation health, distinct patterns emerge throughout key growth stages. The 100% irrigation treatment consistently exhibits superior vegetation health, sustaining higher NDVI values across all stages, while the 33% treatment reveal... J.O. Abon, A. Sharda

6. Delineating Dynamic Variable Rate Irrigation Management Zones

Agriculture irrigation strategies have traditionally been made without accounting for the natural small-scale variability in the field, leading to uniform applications that often over-irrigate parts of the field that do not need as much water. The future success of irrigated agriculture depends on advancements in the capability to account for and leverage the natural variability in croplands for optimum irrigation management both in space and time. Variable Rate Irrigation (VRI) management of... R. Unruh, W.A. Yilma, D. Mandal, R. Joshi, R. Khosla

7. Spatio-temporal Analysis of Soil Moisture and Turfgrass Health to Investigate the Temporal Stability of Variable Rate Irrigation Zones

The western USA has been experiencing severe drought conditions for at least the last 20 years. The population in many areas of the west, like Utah, has also increased greatly in this time putting greater strain on the limited freshwater supply. While agriculture is generally the sector consuming the largest proportion of freshwater, conversion of agricultural land to urban areas with lawns, parks and playing fields may result in some reduction of water use, but the EPA have estimated that as... R. Kerry, K. Sanders, A. Swenson, A. Henrie, N. Hansen, B. Hopkins, B. Ingram

8. Hyperspectral Sensing to Estimate Soil Nitrogen and Reduce Soil Sampling Intensity

Recognizing soil's critical role in agriculture, swift and accurate quantification of soil components, specifically nitrogen, becomes paramount for effective field management. Traditional laboratory methods are time-consuming, prone to errors, and require hazardous chemicals. Consequently, this research advocates the use of non-imaging hyperspectral data and VIS-NIR spectroscopy as a safer, quicker, and more efficient alternative. These methods take into account various soil components, i... W.A. Admasu, D. Mandal, R. Khosla

9. Changes in Soil Chemical and Physical Properties After a Flooding Event in Chile

During the winter of 2023, ridges were made to plant French prunes (Prunus domestica). After building the ridges, the soil was surveyed using gamma radiation technology (SoilOptix technologies, Ontario, CA).  Due to the intense rains that occurred at the end of august 2023, the Cachapoal River, the main water supply of the O’Higgins region, left its course and flooded several fields, including the one where the ridges had been built, destroying them. Ridges were washed out... R.A. Ortega, H.P. Poblete

10. Extension Program Prioritization Guides Web-mapping Application Delivery to Ranchers

Cooperative Extension has a long history of helping agricultural producers address their current needs and emerging public issues; often through training in the use of technologies that are not yet widely adopted. The quality of geospatial data and tools to visualize and analyze that data continues to improve. However, barriers exist to rancher adoption of geospatial decision support tools. These barriers can include costs, ease of use, and privacy concerns. The sustainability of beef ca... W. Boyer

11. Fertigation Management Strategies Effect on Residual Nitrates in the Soil Profile and Ground Water

Nitrogen is an input that is vital for growth and productivity within the corn belt states of the U.S. However, when nitrogen as an input into agricultural cropping systems is often over-applied and thus not optimally utilized by the cropping system. Therefore, it is at risk of loss within the environment through processes of leaching, denitrification, and volatilization. This is a major concern in Nebraska, as the reality is that much of the state’s groundwater has been contaminated wi... K.J. Bathke, T. Cross, J.D. Luck

12. Assessing Precision Water Management in Cotton Using Unmanned Aerial Systems and Satellite Remote Sensing

The goal of this study was to improve agricultural sustainability and water use efficiency by allocating the right amount of water at the right place and time within the field. The objectives were to assess the effect of variable rate irrigation (VRI) on cotton growth and yield and evaluate the application of satellites and Unmanned aerial systems (UAS) in capturing the spatial and temporal patterns of cotton growth response to irrigation. Irrigation treatments with six replications of three ... O. Adedeji, W. Guo, H. Alwaseela, B. Ghimire, E. Wieber, R. Karn

13. Integrating Collected Field Machine Vibration Data with Machine Learning for Enhanced Precision in Agricultural Operations

In this research, we provide an innovative combination of the Agricultural Vibration Data Acquisition Platform (avDAQ) with cutting-edge machine learning methods for data collecting from agricultural machinery. The avDAQ system, which has a strong connection to a GPS sensor, provides precise spatial information to the vibration data that has been collected, providing an in-depth explanation of the locations of the vibrations. The objective is to fully utilize avDAQ's potential to extract ... S. Janbazialamdari, E. Brokesh

14. Apparent Soil Electrical Conductivity As an Indicator of Failed Subsurface Drains

It is estimated that 2,000 ha of cropland are taken out of production daily worldwide due to salinization and sodification. Salinity is estimated to result in economic losses of $27.3 billion U.S. dollars annually. Our project aimed to develop techniques for quantifying the severity of soil-water salinity and impacts on crop production in the Lower Arkansas River Valley (LARV) in Colorado. The Fairmont Drainage District (FDD) study site in the LARV is a furrow-irrigated, tile-drained area of ... A. Andales, A.J. Brown

15. Evaluation of Peanut Response to Soil Water Levels Using the Crop Water Stress Index Generated from Infrared Thermal Sensors and Imagery

In precision agriculture, precise monitoring of crop water stress is crucial for optimizing water use, increasing crop yield, and promoting environmental sustainability. Achieving high water use efficiency in peanut production is key to producing high-quality crop. This study investigates the efficiency of infrared thermal sensors and thermal imagery from satellites and unmanned aerial vehicles (UAVs) for determining peanut crop water stress index (CWSI). Furthermore, this research explores t... B. Parbi, B.V. Ortiz, E. Abban-baidoo , A. Sanz-saez, J.S. Velasco