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Abstract.  
Timely and accurate prediction of winter wheat nitrogen (N) status plays an important role in 
guiding precision N management. The objectives of this study were to identify potential effective 
bands and spectral features of proximal hyperspectral sensing data using different preprocessing 
methods for predicting winter wheat plant N concentration (PNC) with seven machine learning 
(ML) algorithms and determine the potential to further improve the accuracy of PNC prediction by 
combining hyperspectral sensing data with weather information. The least absolute shrinkage and 
selection operator (LASSO) method was applied to identify the effective bands from different 
preprocessed reflectance (original (OR), first-order derivative (FD), apparent absorption (LOG), 
and continuum removal (CR)) based on data collected from six site-year field experiments 
conducted in 2014-2023. The results indicated that effective bands of FD combined with support 
vector regression (SVR) yield satisfying PNC prediction accuracy, with coefficient of determination 
(R2), root means square error (RMSE), and residual predictive deviation (RPD) being 0.80, 0.27 
and 2.16, respectively. However, when weather information was combined with the proximal 
hyperspectral sensing data, the accuracy of winter wheat PNC prediction was significantly 
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improved, with an increase of 0.04-0.46 in R2, a decrease of 0.03-0.22 in RMSE and an increase 
of 0.26-1.02 in RPD. Random forest regression (RFR) combining FD and weather information 
yielded the best PNC predictions (R2 = 0.85, RMSE = 0.23, and RPD = 2.56). It is concluded that 
the RFR model combining proximal hyperspectral sensing data and weather information can 
significantly improve winter wheat PNC prediction and is a promising and practical strategy to 
predict winter wheat N status. More studies are needed to develop unmanned aerial vehicle or 
satellite hyperspectral remote sensing-based multi-source data fusion strategies using ML for 
more efficient monitoring of crop N status over a large area. 
Keywords.   
Plant nitrogen concentration, Proximal hyperspectral sensing, Weather information, Machine 
learning 

1. Introduction  
Wheat (Triticum aestivum L.) is one of the most important staple food crops influencing global food security 
(Jiang et al. 2022). Nitrogen (N) is the most needed nutrient element and plays a vital role in the growth 
and development of wheat (Lemaire et al. 2008, Liu et al. 2023). However, excessive application of N 
fertilizer can cause many environmental problems (Padilla et al. 2018, Skiba and Rees 2014), under-
application can negatively affect crop photosynthesis and yield (Chlingaryan et al. 2018, Dong et al. 2021b, 
Miao et al. 2011, Wang et al. 2023). Therefore, N fertilizers should be optimized to meet crop needs without 
polluting the environment, which requires timely and accurate diagnosis of winter wheat N status. 

The traditional biophysical chemical method for determining N concentrations is destructive, time-
consuming, laborious and expensive. Proximal and remote sensing techniques have provided new 
opportunities for non-destructive and accurate monitoring of N status (Chen et al. 2019). A large number of 
vegetation indices (VIs) have been developed and used to monitor crop N status (Hansen and Schjoerring 
2003, Li et al. 2013, 2014, Müller et al. 2008, Yang et al. 2021a). Although acceptable N diagnostic accuracy 
was achieved, the VIs was generally composed of two or three bands. The band combination with low 
signal-to-noise ratio will also have a negative impact on the prediction model. At the same time, no VIs has 
been found to perform consistently to monitor crop N status across different sites and regions, crop varieties 
and growth stages (Li et al. 2010, Liu et al. 2019, Yang et al. 2023). Some scholars optimized the VIs and 
used them to monitor N concentration (Li et al. 2010, Yang et al. 2021b, Yang et al. 2023), but the regression 
models were still calibrated for a specific data set, and the transferability of these models were questionable. 
It is worth noting that most of the existing VIs with satisfying performances are based on the high correlation 
between chlorophyll content and N status (Wood et al. 1992). However, the crop growth is a dynamic 
process of continuous N cycling and turnover (Kattge 2002). With the advance of crop growth and 
development, especially from vegetative growth to reproductive growth, N will be redistributed to 
reproductive structures in plants, which will lead to the decrease of the relationship between chlorophyll 
content and N (Ohyama 2010). Therefore, relying on chlorophyll content for monitoring crop N status can 
be misleading. It has been pointed out that protein is the main biochemical component containing N in 
plants (Kokaly and Clark 1999), which may be a better representative (Yasumura et al. 2007). The sensitive 
band is usually located at a longer wavelength, concentrated in the near infrared and short-wave infrared 
regions (Berger et al. 2020b). Herrmann et al. (Herrmann et al. 2010) achieved satisfactory results in terms 
of the ability to predict N content and sensitivity to N content using short-wave infrared reflectance. 
Therefore, crop N status monitoring may be improved via the introduction of the short-wave infrared region. 

Under normal circumstances, obtaining canopy hyperspectral reflectance is inevitably affected by soil 
background, atmosphere, canopy structure, and illumination changes (Tsai and Philpot 1998). Researchers 
tried to use first-order derivative (FD) transformation to suppress the impact of illumination changes on 
canopy reflectance. The results showed that FD transformation spectrum can effectively predict the light-
summing ability of crop leaves (Jin et al. 2020); apparent absorption (LOG) and (CR) transformation have 
also been used to estimate physical and chemical parameters and have achieved satisfactory research 
results (Huang et al. 2004, LaCapra et al. 1996). It can be seen that it is very necessary to preprocess the 
original (OR) spectrum using spectral transformation technology. However, there is currently no definite 
conclusion as to which spectral transformation effect is optimal in PNC prediction of winter wheat. 

Machine learning (ML) algorithms are increasingly used to improve crop N status monitoring (Li et al. 2019, 
Wang et al. 2021, Zha et al. 2020a). Upon integrating proximal hyperspectral sensing data into ML 
algorithms, the high dimensionality of reflectance data, often referred to as the 'curse of dimensionality' 
(Berger et al. 2020b, Yang et al. 2023), leads to a reduction in the prediction accuracy of ML algorithms. 
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On the other hand, the narrow bands in hyperspectral data yield a substantial amount of information, 
resulting in the generation of numerous redundant bands. Directly using all these data in the ML algorithms 
will result in the risk of overfitting, potentially compromising the interpretability of the regression models. 
Hence, the essential step of dimensionality reduction in hyperspectral reflectance data becomes crucial to 
enhance both the prediction performance and interpretability of the ML algorithms(Fu et al. 2021). The least 
absolute shrinkage and selection operator (LASSO) is a powerful feature identification method, which has 
been used to process high-dimensional data in linear and nonlinear situations (Cao et al. 2021, Kukreja et 
al. 2006, Kumar et al. 2019, Ordonez et al. 2018). Song et al. (Song and Wang 2023a) applied LASSO to 
identify the characteristic variables of leaf photosynthetic parameters (Vcmax and Jmax), evaluating leaf 
photosynthetic capacity by the random forest regression (RFR) and support vector regression (SVR). The 
results showed SVR were more accurate. Ordonez et al.(Ordonez et al. 2018) utilized the LASSO method 
to streamline the sample data dimensionality reduction. From the continuous reflectance spectrum, they 
identified optimal wavelengths to construct a model for estimating leaf water content. However, the ability 
of ML algorithms combined with LASSO to identify the effective bands of proximal hyperspectral sensing 
reflectance to diagnose the N status of winter wheat deserves further exploration. 

It is reported that factors such as planting year, region, growth stage, soil type, variety, weather conditions 
and management conditions will affect the monitoring accuracy of crop growth and N status (Bean et al. 
2018, Ruan et al. 2022, Schepers et al. 2004). ML algorithms have the potential to fuse multi-source data 
improve crop growth and N status monitoring (Grinberg et al. 2020, Küçük et al. 2016, Stas et al. 2016). 
Some scholars tried to use ML algorithms to combine VIs with different ancillary data to predict crop yield 
and N status (Ruan et al. 2022). Lu et al. (Lu et al. 2022b) integrated active sensor data with different 
varieties, environmental variables and different transplanting densities using ML algorithms and found that 
RFR model with multi-source data fusion greatly improved the diagnostic accuracy of rice N status. Dong 
et al. (Dong et al. 2021a) proved when the leaf sensor data was combined with environmental and 
management variables in multiple linear regression (MLR) model, corn N Nutrition Index (NNI) prediction 
and N status diagnosis was significantly improved. Li et al. (Li et al. 2022b) found the RFR model combining 
climate and management factors with VIs performed better than the RFR model only using VIs. These 
studies proved the feasibility of diagnosing crop N status by combining ML algorithms with proximal active 
multispectral sensors and ancillary. However, studies on the potential of improving crop N status prediction 
using proximal hyperspectral sensing and multi-source data fusion with ML are still limited.  

 The objectives of this study were to (1) understand how different types of preprocessed reflectance (OR, 
FD, LOG, and CR) affect the selection of effective bands of proximal hyperspectral sensing data in 
monitoring plant N concentration (PNC) with seven ML algorithms; and (2) determine if the introduction of 
weather information can significantly improve the accuracy of PNC monitoring model.  

2. Materials and methods 
2.1 Experimental designs 
Winter wheat field experiments were conducted in Qian County (108°07'E, 34°38'N), Shaanxi Province, 
China, from 2014 to 2023 (Figure1). The daily precipitation (mm) and daily mean temperature (℃) during 
the winter wheat growing stage are illustrated in Fig.2. The plot area varied, with experiments 1 and 2 
having 6 m×6 m plots and experiments 3-6 having 9 m×10 m plots. Each experiment consisted of N, P2O5, 
and K2O as N, P, and K fertilizers, respectively. All fertilizers were applied before planting. Winter wheat in 
this study was not irrigated and was planted according to the local standard density. Other management 
practices followed local conventions, with no significant pest problems. Specific details of the six 
experiments are provided in Table 1. 
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Figure 1. Geographic location of Qian County experiment field in this study. 

 
Figure 2. Daily precipitation (mm) and Daily mean temperature (℃) during winter wheat growing stage of (a) 2014-2015, (b) 

2015-2016, (c) 2016-2017, (d) 2017-2018, (e) 2021-2022, (f) 2022-2023 in this study. 

Table 1. Basic information of the field experimental design in this study. 

Experiment 
of year Location Cultivar N rate 

(Kg/ha) 
P rate 

(Kg/ha) 
K rate 

(Kg/ha) Irrigation Sowing 
date Sampling stage 

 

Experiment 
1 2014-

2015 

Qian 
county 

Xiaoyan 22 
0, 37.5, 75, 
112.5, 150, 

187.5 

0, 22.5, 
45, 67.5, 
90, 112.5 

0, 15, 30, 
45, 60, 75 No 13.Oct. 

BBCH23, BBCH39, 
BBCH56, BBCH65, 

BBCH75 

 

108°07'E, 
34°38'N 

 

Experiment 
2 2015-

2016 

Qian 
county 

Xiaoyan 22 
0, 37.5, 75, 
112.5, 150, 

187.5 

0, 22.5, 
45, 67.5, 
90, 112.5 

0, 15, 30, 
45, 60, 75 No 9.Oct. BBCH65, BBCH75 

 

108°07'E, 
34°39'N 

 

Experiment 
3 2016-

2017 

Qian 
county 

Xiaoyan 22 0, 30, 60, 
90, 120, 150 

0, 22.5, 
45, 67.5, 
90, 112.5 

0, 22.5, 
45, 67.5, 
90, 112.5 

No 2.Oct. BBCH23, BBCH39, 
BBCH56 

 

108°07'E, 
34°40'N 

 

Experiment 
4 2017-

2018 

Qian 
county 

Xiaoyan 22 0, 30, 60, 
90, 120, 150 

0, 22.5, 
45, 67.5, 
90, 112.5 

0, 22.5, 
45, 67.5, 
90, 112.5 

No 2.Oct. BBCH23, BBCH39, 
BBCH65, BBCH75 

 

108°07'E, 
34°41'N 

 

Experiment 
5 2021-

2022 

Qian 
county 

Xiaoyan 22 
0, 60, 120, 
180, 240, 

300 

0, 30, 60, 
90, 120, 

150 

0, 30, 60, 
90, 120, 

150 
No 1.Oct. BBCH56, BBCH65 

 

108°07'E, 
34°42'N 

 

Experiment 
6 2022-

2023 

Qian 
county 

Xiaoyan 22 

0, 45, 90, 
135, 180, 
225, 270, 

315 

75 75 No 29.Sep. BBCH56, BBCH65 

 

108°07'E, 
34°43'N 

 

2.2 Data collection 
2.2.1 Remote sensing data collection 
Proximal hyperspectral sensing reflectance measurements were conducted using a handheld spectrometer 
(HR-1024i) from Spectra Vista Corporation (SVC), Poughkeepsie, USA, in each plot before destructive 
sampling throughout the growth stages of winter wheat. The SVC device yielded 1024 bands within the 
wavelength range of 350-2500 nm. Data for the winter wheat canopy spectrum were obtained between 
10:00 am and 2:00 pm under clear sky, with no wind or clouds. The SVC sensor lens was positioned 
vertically downward, approximately 1 m from the vertical height of the canopy, and the field of view angle 
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was set at 25°. Calibration of the sensor using a Reference Panels Cases was performed both before and 
after each spectrum measurement. In the SVC sensor measurement process, two sampling points were 
evenly collected in each plot, and 10 spectra were repeated for one sampling point. The average value of 
these repeated spectra was used as the spectral reflectance for the observed sampling point. Furthermore, 
the spectral reflectance for each plot was determined as the average reflectance of the two sampling points. 

2.2.2 Agronomic data collection 
Winter wheat plant samples in all experiments were collected following canopy sensing data collection. 
Simultaneously, global positioning system (GPS) was employed to record the coordinate information of the 
sampling points. Subsequently, the collected plants were placed in an oven at 105°C for approximately 30 
minutes to stop the physiological processes. The drying process continued at 70°C until the weight of the 
sample remained constant. After drying, the plant samples were ground to fine powders, and the modified 
Kjeldahl digestion method was utilized to determine the PNC. 

2.2.3 Weather information collection 
Weather information was introduced to improving monitoring winter wheat N diagnostic in this study. The 
daily weather data of all six field experiments were obtained from the Qian County Meteorological Station. 
According to previous studies, growing degree days (GDD), accumulated precipitation (APP) and days (D) 
from the sowing date to the measurement date were calculated. Considering that the temperature in a 
period of time may have a more significant impact on crop growth and development, continuously iterative 
weather data of the 30 days before measurement date were also introduced, including average daily 
temperature (ADT), average daily minimum temperature (ADTmin), average daily maximum temperature 
(ADTmax), and accumulated daily average temperature (ADAT) (Jiang et al. 2022). The formula of GDD was 
shown as follows, and Tbase = 0℃ according to previous research (Li et al. 2022c): 

GDD =	∑&("!"##"!$%)
%

−	T&'())           (1) 
where Tmax, Tmin, and Tbase are the daily maximum, minimum, and base temperatures, respectively. 

The specific statistical descriptions of the weather information considered in this study are provided in Table 
2. 

Table 2. Weather variables used for machine learning model development. 

2.3 Proximal hyperspectral sensing data preprocessing 
Data processing of proximal hyperspectral sensors primarily involves smoothing with the Savitzky-Golay 

Year Growth Stage GDD(℃) APP (mm) D ADTmax(℃) ADTmin(℃) ADAT(℃) ADT(℃) 

2014-2015 

BBCH23 988.55  79.60  167  15.45  0.90  258.10  8.60  

BBCH39 1177.95  161.80  182  16.50  6.65  360.65  12.02  

BBCH56 1400.45  185.80  196  18.90  9.10  414.25  13.81  

BBCH65 1650.45  209.00  209  22.80  9.65  507.70  16.92  

BBCH75 1994.95  214.00  226  24.00  15.65  592.35  19.75  

2015-2016 
BBCH65 1725.05  145.00  213  24.20  13.50  541.35  18.05  

BBCH75 2047.90  162.80  230  24.20  11.80  578.60  19.29  

2016-2017 

BBCH23 1159.25  160.50  176  11.80  2.85  226.65  7.56  

BBCH39 1422.75  193.80  195  19.05  4.65  344.55  11.49  

BBCH56 1649.45  210.20  209  19.80  9.15  447.50  14.92  

2017-2018 

BBCH23 1098.00  190.70  179  20.15  4.35  356.00  11.87  

BBCH39 1415.55  244.70  199  20.80  8.35  461.00  15.37  

BBCH65 1768.95  255.60  218  22.95  8.35  518.90  17.30  

BBCH75 2081.35  288.90  233  27.05  14.80  585.05  19.50  

2021-2022 
BBCH56 1589.90  171.10  207  22.85  9.30  452.75  15.09  

BBCH65 1806.00  192.60  219  24.50  9.30  506.65  16.89  

2022-2023 
BBCH56 1598.40  196.50  210  21.95  5.35  424.45  14.15  

BBCH65 1863.25  240.50  226  21.95  5.35  471.35  15.71  
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(SG) filter, resulting in the original (OR) spectrum. To ensure the validity of proximal hyperspectral sensing 
data and mitigate the impact of human interference factors and the spectral absorption interval of water 
during measurement, further processing of the OR spectrum is necessary. In essence, the starting band of 
350-400 nm (instability of initial band electromagnetic radiation signal) and the interference in water 
absorption bands (1360-1420 nm, 1790-1950 nm, 2350-2500 nm) were systematically excluded (Berger et 
al. 2020a). This exclusion left a total of 1729 bands in the 400-2350 nm range for subsequent studies. 
Spectral preprocessing in this study included the first-order derivative (FD), apparent absorption (LOG), 
and continuum removal (CR) techniques. These methods were employed to minimize the noise effects 
arising from changes in light due to soil background, atmospheric scattering, and alterations in field 
geometry (Figure 3). The calculated formulas for FD, LOG, and CR are shown as follows:  

𝐹𝐷* =
𝑅*#+ − 𝑅*,+

2𝛥𝜆  (2) 

                                                                   𝐿𝑂𝐺* = log	( +
-&
) (3) 

                                                                   𝐶𝑅* =
𝑅*
𝑅.9  (4) 

where i refers to the wavelength of band i, FDi, LOGi and CRi refers to FD, LOG and CR reflectance corresponding to 
wavelength i, respectively. Rc refers to the reflectance of continuum line. 𝛥𝜆  is the interval between adjacent 
wavelengths. Ri is the reflectance of the i band. 

 
Figure 3. Different forms of proximal hyperspectral sensing data preprocessing. 

2.4 Effective bands identification by LASSO 
The LASSO method was initially introduced by Tibshirani (Tibshirani 1996). LASSO filters variables by 
compressing the regression coefficients associated with each variable through a penalty function until the 
residual sum of squares of the model is minimized. Ultimately, for variables with minimal correlation and 
uncorrelated variables, the regression coefficient is compressed to zero, leading to the exclusion of the 
corresponding variables. This process significantly enhances the interpretability of the model. In this study, 
LASSO was employed to identify the effective bands from various forms of proximal hyperspectral sensing 
data preprocessing. Ten-fold cross-validation was utilized to determine the optimal set of effective variables. 
The implementation of LASSO relied on the “glmnet” package in R language. 

2.5 Machine learning (ML) algorithms 
In this study, ML algorithms were implemented using the caret package within the Rstudio programming 
environment. The process began by applying the createDataPartition function to meticulously partition the 
dataset, allocating 75% for the training set (552 data points) and reserving the remaining 25% for the test 
set (180 data points).  

Seven ML algorithms were employed to assess winter wheat PNC, including RFR, SVR, K-Nearest 
Neighbors Regression (KNNR), Partial Least Squares Regression (PLSR), Gradient Boosting Decision 
Tree Regression (GBDTR), Elastic Net Regression (ENR), and Decision Tree Regression (DTR). Detailed 
introductions to three ML algorithms, RFR, SVR, and PLSR, can be found in our previous publication (Chen 
et al. 2023b). KNNR is utilized for predicting continuous or numerical output values, relying on the proximity 
of data points within a feature space. Predictions for new data points in KNNR are established by averaging 
the target values of their K-nearest neighbors within the training dataset. GBDTR is an ensemble learning 
method combining the predictive power of decision trees with boosting techniques to create highly accurate 
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and robust regression models. ENR is a linear regression technique employed for constructing predictive 
models, feature selection, and addressing issues in high-dimensional datasets. It harnesses the combined 
benefits of Ridge Regression and LASSO Regression. DTR builds a regression model in the form of a tree 
structure, decomposing the dataset into smaller subsets while progressively developing associated 
decision trees. The result is a tree with decision nodes and leaf nodes. Hyperparameter tuning for the seven 
ML algorithms involved grid search, followed by ten-fold cross-validation on the calibration set. The optimal 
parameter or parameter combination was determined based on the highest coefficient of determination (R2) 
and lowest root mean square error (RMSE)and mean relative error (MRE) in the calibration set (R2cv, 
RMSEcv and MREcv). These determined hyperparameters were then used to calibrate each prediction 
model on the entire calibration dataset, and the accuracy was evaluated on an independent test dataset. 
For specific hyperparameters and range sizes adjusted by each ML algorithm, refer to the research of Ruan 
et al. (Ruan et al. 2022) and Wang et al. (Wang et al. 2018). 

The accuracy of the winter wheat PNC estimation models was evaluated using the R2, RMSE, and residual 
prediction deviation (RPD). RPD is calculated as the ratio between the standard deviation (SD) of the test 
set and RMSE. RPD values can be interpreted as follows: RPD < 1.40 indicates poor prediction 
performance; 1.40 < RPD < 2.00 suggests rough prediction ability; RPD > 2.00 signifies excellent prediction 
ability of the model (Chen et al. 2023a). Additionally, the workflow of this study is illustrated in Figure 4. 

 
Figure 4. The workflow for predicting winter wheat PNC in this study. 

3. Results 
3.1 Descriptive statistics 
As shown in Table 3, PNC values ranged from 0.47% to 3.25% in the calibration dataset, with an average 
of 1.46% and a standard deviation of 0.54. In the validation dataset, PNC values ranged from 0.71% to 
3.14%, with an average of 1.5%, and a standard deviation of 0.59. Field sampling covered the entire growth 
period of winter wheat. Consequently, large differences existed between the maximum and minimum PNC 
values. The distribution range of PNC in the validation set was within the calibration dataset range, affirming 
the suitability of the dataset division. In summary, the PNC data in both the calibration and validation 
datasets were well-suited for subsequent studies on evaluating different prediction ML models. 

Table 3. Descriptive statistics of winter wheat PNC (%) in this study. 

Data sets Number of samples Maximum (%) Minimum (%) Average SD 

 All  732 3.25 0.47 1.46 0.54 

Calibration  552 3.25 0.47 1.44 0.53 

Validation  180 3.14 0.71 1.5 0.59 

3.2 Identification of effective bands by LASSO 
Table 4 illustrates the number of effective bands identified through OR, FD, LOG, and CR. The minimum 
number of effective bands distinguished from OR was 42, covering the visible light range (400-518nm), 
near-infrared (1037-1154nm), and shortwave infrared (1336-1751nm and 1966-2311nm) regions (Fig. 5). 
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In contrast, the maximum number of effective bands identified from FD was 162, located in the visible light 
range (403-669nm), near-infrared (767-1258nm), and shortwave infrared (1349-2338nm) regions (Fig. 5). 
LOG yielded 67 effective bands, mainly distributed in the visible light range (400-680nm), near-infrared 
(1033-1154nm), and shortwave infrared (1336-2337nm) regions (Fig. 5). Additionally, CR identified 79 
effective bands, predominantly spanning the visible light range (401-673nm), near-infrared (764-1176nm), 
and shortwave infrared (1353-2350nm) regions (Figure 5). 

Table 4. The number of effective bands under different processed proximal sensing data. 

Spectrum transform Number of full bands Number of effective bands 

OR 1729 42 

FD 1729 162 

LOG 1729 67 

CR 1729 79 

 
Figure 5. The distribution of effective bands for different processed proximal sensing data. 

3.4 Estimating PNC with canopy hyperspectral sensing data 
When proximal hyperspectral sensing data were used as input variables to estimate winter wheat PNC, the 
R2 and RMSE values of various ML algorithms applied to different preprocessed proximal sensing data are 
presented in Table 5 (MLOR, MLFD, MLLOG, MLCR). For MLOR, the R2 ranged from 0.33 to 0.63, with RMSE 
values between 0.36 and 0.49. The GBDTROR model yielded the best result (R2 = 0.63, RMSE = 0.36, 
Figure 6 (a)). In the case of MLFD, the R2 ranged from 0.43 to 0.80, with RMSE values between 0.27 and 
0.46. The SVRFD model performed the best (R2 = 0.80, RMSE = 0.27, Figure 6 (b)). For MLLOG, the R2 
ranged from 0.34 to 0.74, with RMSE values between 0.30 and 0.48. The ENRLOG model achieved the best 
performance (R2 = 0.74, RMSE = 0.34, Figure 6 (c)). Finally, for MLCR, the R2 ranged from 0.53 to 0.76, 
with RMSE values between 0.30 and 0.40. The SVRCR model had the best result (R2 = 0.76, RMSE = 0.30, 
Figure 6 (d)). In summary, SVRFD demonstrated the best performance in predicting PNC, with an increase 
of 0.17-0.47 in R2 and a decrease of 0.09-0.22 in RMSE compared with MLOR. 

Table 5. The R2 and the RMSE values of ML algorithms based on different preprocessed proximal hyperspectral sensing 
data. 

Type OR FD LOG CR 

ML R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

RFR 0.59  0.40  0.75  0.32  0.55  0.40  0.75  0.31  

SVR 0.55  0.47  0.80  0.27  0.62  0.38  0.76  0.30  

KNNR 0.47  0.43  0.47  0.44  0.48  0.43  0.72  0.32  

GBDTR 0.63  0.36  0.77  0.28  0.63  0.36  0.70  0.32  

PLSR 0.43  0.45  0.45  0.44  0.44  0.44  0.61  0.39  

ENR 0.61  0.37  0.78  0.28  0.74  0.30  0.75  0.30  

DTR 0.33  0.49  0.43  0.46  0.34  0.48  0.53  0.40  
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Figure 6. The scatter plots of measured and predicted PNC for different machine learning models using preprocessed 

proximal hyperspectral sensor data. (The unit of RMSE is %). 

3.5 Estimating PNC by combining proximal hyperspectral sensing and weather information 
Weather variables were combined with hyperspectral sensing data to construct PNC estimation ML models 
(MLOR+W, MLFD+W, MLLOG+W, MLCR+W). For the MLOR+W model, the R2 ranged from 0.76 to 0.83, with RMSE 
between 0.24 and 0.30. The GBDTROR+W model produced the most favorable result (R2 = 0.83, RMSE = 
0.24, Figure 7 (a)). Similarly, the MLFD+W model exhibited an R2 range of 0.76-0.85 and RMSE of 0.23-0.30, 
with the RFRFD+W model achieving the highest performance (R2 = 0.85, RMSE = 0.23, Figure 7 (b)). The 
MLLOG+W model demonstrated an R2 range of 0.76-0.84 and RMSE of 0.24-0.30. The ENRLOG+W model 
performed the best (R2 = 0.84, RMSE = 0.24, Figure 7 (c)). Lastly, the R2 and RMSE of the MLCR+W model 
ranged from 0.76-0.85 and 0.23-0.30, respectively. The ENRCR+W model yielded the best result (R2 = 0.85, 
RMSE = 0.23, Figure 7 (d)). More information on the performance of different models can be found in Table 
6.  

Table 6. The R2 and RMSE values of different machine learning models combining proximal hyperspectral sensing and 
weather information. 

Type OR+W FD+W LOG+W CR+W 

ML R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

RFR 0.82 0.25 0.85  0.23  0.81  0.25  0.84  0.24  

SVR 0.81 0.26 0.84  0.24  0.79  0.27  0.82  0.25  

KNNR 0.81 0.25 0.82  0.25  0.82  0.25  0.83  0.24  

GBDTR 0.83 0.24 0.85  0.24  0.82  0.25  0.84  0.24  

PLSR 0.76 0.30 0.76  0.30  0.76  0.30  0.76  0.30  

ENR 0.82 0.26 0.83  0.25  0.84  0.24  0.85  0.23  

DTR 0.79 0.27 0.80  0.26  0.80  0.26  0.80  0.27  

 
Figure 7. The scatter plots of measured and predicted PNC for best performing machine learning models using 

preprocessed hyperspectral sensing data and weather information (The unit of RMSE is %). 

3.6 Comparison of different PNC prediction strategies  

In order to further compare the accuracy of the above PNC estimation models, the RPD values of these 
models were calculated (Figure 8). The MLFD (RPD = 1.30 to 2.13), MLLOG (RPD = 1.23 to 1.94), and MLCR 
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(RPD = 1.46 to 1.97) were superior to MLOR (RPD = 1.22 to 1.65). SVRFD model had the highest RPD 
(2.16). However, the results showed that the accuracy of ML models combining proximal hyperspectral 
sensing with weather information were significantly improved (RPD = 1.99 to 2.56) compared with the 
models using proximal hyperspectral sensing alone (RPD = 1.22 to 2.16), with the accuracy of RFRFD+W 
model being the highest (RPD = 2.56), followed by ENRCR+W model (RPD = 2.54).  

 
Figure 8.  The relative prediction deviation (RPD) values of seven machine learning models combining preprocessed 

hyperspectral sensing data and weather variables for PNC prediction. 

4. Discussion 
4.1 The necessity of estimating crop N status with the introduction of the short-wave 
infrared region 
Physiologically, N in plants is used to produce proteins and chlorophyll stored in leaf cells. Notably, 
chlorophyll represents only a small fraction of leaf N (Homolová et al. 2013), with proteins being the primary 
N-containing biochemical component. However, most research studies relied on the high correlation 
between N and chlorophyll content to assess crop N status, predominantly within the visible infrared 
spectral domain. This approach tends to neglect the redistribution of N concentrated in protein-related 
structures and non-photosynthetic regions (Berger et al. 2020b), particularly in the short-wave infrared 
region. To the best of our knowledge, the correlation between N and chlorophyll content in the entire 
ecosystem is moderately strong, with a correlation coefficient ranging 0.5-0.65 (Homolová et al. 2013). This 
correlation may stem from the dynamic nature of vegetation growth, characterized by a continuous process 
of N turnover (Kattge 2002), During this dynamic process, N is transported between organs without relying 
on chlorophyll. In the context of wheat, N initially binds to wheat leaves during the early stages of growth. 
As the growth period advances towards the reproduction stage, there is a discernible transfer or 
redistribution of N from leaves to reproductive structures, such as seeds, ears, or fruits (Ohyama 2010)，
Consequently, the correlation between chlorophyll content and N decreases at this stage (Berger et al. 
2020a). In contrast, protein emerges as a robust proxy for crop N content, given that rubisco contains up 
to 50% N in green leaves (Verrelst et al. 2021). Previous studies have highlighted the benefits of using 
shortwave infrared wavelengths associated with proteins to monitor crop N status (Dunn et al. 2016, 
Herrmann et al. 2010). Therefore, we propose to focus on protein as the primary N component in leaves 
and plants and estimate crop N status by the introduction of the short-wave infrared region, capitalizing on 
the advantages of chlorophyll and protein as effective substitutes for N content. 

Hyperspectral sensing technology typically refers to passive sensing capturing subtle characteristics related 
to physicochemical parameters of crops in continuous narrow bands. However, the utilization of a large 
number of bands can introduce the curse of dimensionality, giving rise to collinear effects. Additionally, the 
curse of dimensionality prompts the regression model to intricately train on the data, learning noise in the 
dataset and consequently reducing the prediction accuracy of the regression model. Therefore, the LASSO 
method was employed in this study to identify effective bands in full-band proximal hyperspectral data to 
estimate PNC in winter wheat. Following LASSO processing, the number of estimated effective bands for 
PNC (Table 3) significantly reduced to 42 (OR), 162 (FD), 67 (LOG), and 79 (CR), based on different 
preprocessing methods. These results underscore the effectiveness of the LASSO method, which 
combines feature selection and regularization, mitigating the curse of dimensionality while reducing 
collinearity and overfitting. Song et al. (Song and Wang 2023b) reached similar conclusions when 
estimating leaf photosynthetic capacity by combining LASSO with hyperspectral reflectance data. In this 
study, the effective bands for PNC identified by LASSO are distributed across the visible, near-infrared, and 
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short-wave infrared regions (Figure 5). This further substantiates the necessity of monitoring PNC with the 
introduction of the short-wave infrared region.  

4.2 Combining proximal hyperspectral sensing and weather information to improve winter 
wheat PNC prediction using ML 
Despite employing diverse preprocessing techniques for proximal hyperspectral sensing data and utilizing 
a combination of ML algorithms for estimating winter wheat PNC, accuracy still needed improvement 
(Figure 6 and Figure 8). Previous research indicated that the prediction of maize N Nutrition Index (NNI) 
was improved by combining proximal sensing data with environmental and management information (Dong 
et al. 2021a). Soil sampling and testing is a time-consuming and labor-intensive process. In contrast, 
weather information like temperature and precipitation can be easily obtained (Dong et al. 2021a). Extreme 
temperatures, whether high or low, impose constraints on crop growth. Simultaneously, precipitation plays 
a crucial role in influencing crop growth, N transport, and the formation of yields. Moreover, changes of 
temperature and precipitation can significantly influence soil microbial activities and plant root metabolism. 
For instance, reduced soil water content hampers the capacity of plant roots to absorb and transport N, 
consequently impacting the overall crop N status (Jiang et al. 2022, Kirschbaum 1995, Naylor et al. 2020). 
The study of Jiang et al. (Jiang et al. 2022) demonstrated the efficacy of integrating Unmanned Aerial 
Vehicles (UAVs) multi-spectral remote sensing data with weather information like temperature and 
precipitation as well as field management data for diagnosing N status of winter wheat at a field scale. To 
enhance the prediction accuracy of winter wheat PNC, this study explored the inclusion of weather 
information, such as temperature and precipitation, as supplementary information in the ML algorithms 
(Figure 7). When weather information was combined with the proximal hyperspectral sensing data, the 
accuracy of winter wheat PNC prediction was significantly improved, with an increase of 0.04-0.46 in R2, a 
decrease of 0.03-0.22 in RMSE and an increase of 0.26-1.02 in RPD. 

The integration of remote sensing, environmental, and field management information using ML has become 
pivotal in predicting both crop yield (Gopal and Bhargavi 2019, Kang et al. 2020, Zhang et al. 2019) and N 
status (Dong et al. 2021a, Grinberg et al. 2020). In this study, seven ML algorithms were compared for their 
performance in predicting winter wheat PNC. The RFR model exhibited the highest accuracy when 
incorporating both proximal hyperspectral sensing and weather information. RFR leverages ensemble 
learning, a strategy that combines predictions from numerous weak learners to produce a more robust and 
accurate overall prediction (Genuer et al. 2017). Each decision tree within the ensemble acts as a weak 
learner, potentially prone to overfitting on specific data subsets. However, the strength of RFR lies in the 
amalgamation of these trees, compensating for individual weaknesses and thereby improving the collective 
predictive capability (Feng et al. 2023). Notably, each decision tree in RFR operates as a non-parametric 
model, effectively capturing irregular data patterns and adapting to intricate relationships. This versatility 
makes RFR well-suited for handling high-dimensional data and nonlinear associations (Liang et al. 2015). 
Moreover, RFR is resilient against overfitting. By constructing multiple decision trees and averaging their 
outcomes, the model mitigates the risk of overly tailoring itself to the training data to some extent. This 
feature contributes to the model's effectiveness in making accurate predictions on novel, unseen data. In 
previous studies, many scholars have arrived at similar conclusions when utilizing RFR for the estimation 
of crop physicochemical parameters (Jiang et al. 2022, Khanal et al. 2018, Zha et al. 2020b). 

4.3 Preprocessing methods for proximal hyperspectral sensing 
The hyperspectral data of winter wheat canopy inevitably undergo influences from atmospheric conditions, 
soil background and variations in illumination (Pu 2017). The application of spectral preprocessing 
techniques enables the partial disentanglement of subtle information within spectra, mitigating background 
interferences and consequently elevating the prediction precision of crop growth parameters (Kokaly and 
Clark 1999). Therefore, three different preprocessing techniques, including FD, LOG, and CR, were applied 
to OS in this study. After the identification of effective bands through LASSO, these preprocessed data 
were utilized as input variables in conjunction with ML algorithms to estimate winter wheat PNC. As shown 
in Figure 6 and 8, SVRFD yield satisfactory PNC prediction accuracy compared with MLOR. This could be 
attributed to the fact that FD, compared to other preprocessing methods, has the capability to eliminate 
various background interferences, emphasize sensitive spectral information, and better suppress the 
impact of low-frequency components related to illumination variations (Demetriades-Shah et al. 1990, 
Imanishi et al. 2004, Tsai and Philpot 1998). Previous research has also validated the effectiveness of the 
first derivative spectra in estimating parameters such as light interception in deciduous forests (Jin et al. 
2020, Jin et al. 2022) and chlorophyll content in the canopy of winter wheat (Chen et al. 2023c). Our study 
affirms the advantages of FD spectral preprocessing techniques in diagnosing winter wheat PNC. 

4.4 Challenges and future works 
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In this study, the optimal monitoring model explained 85% of the variation in winter wheat PNC, with an 
RPD of 2.56, suggesting the potential for further improvement in the model. Future research could explore 
the integration of more diverse datasets into the PNC prediction model, such as the Shannon Diversity 
Index (SDI), Average Daily Sunshine Hours (ASH), Sowing Density (SD), N Ratio (NR), and Soil pH (SP), 
etc. Incorporating such multi-source data can enhance the accuracy and robustness of the ML models, as 
demonstrated for precision N management (Dong et al. 2021a, Li et al. 2022a, Li et al. 2022b, Lu et al. 
2022a). However, for regional-scale crop N status monitoring, the proximal hyperspectral sensing, being 
point measurements, is still time-consuming and laborious. The UAV remote sensing technology can 
somewhat overcome these constraints, improving monitoring efficiency and coverage. More studies are 
needed to develop UAV or satellite hyperspectral remote sensing-based multi-source data fusion strategies 
using ML for more efficient crop N status monitoring over a large area. 

5. Conclusion 
This study conducted six site-year field experiments on winter wheat under various N fertilizer treatments. 
Seven ML algorithms, in conjunction with different preprocessing techniques for proximal hyperspectral 
sensing data and various weather variables were employed to establish models for predicting winter wheat 
PNC. The key results indicated that effective bands of FD combined with SVR yield satisfying PNC 
prediction accuracy (R2 = 0.80, RMSE = 0.27, and RPD = 2.16). When weather information was combined 
with the proximal hyperspectral sensing data, the accuracy of winter wheat PNC prediction was significantly 
improved, with an increase of 0.04-0.46 in R2, a decrease of 0.03-0.22 in RMSE and an increase of 0.26-
1.02 in RPD. Random forest combining FD and weather information yielded the best PNC predictions (R2 
= 0.85, RMSE = 0.23, and RPD = 2.56). It is concluded that the RFR model combining FD of proximal 
hyperspectral sensing data and weather information can significantly improve winter wheat PNC prediction 
compared with using hyperspectral sensing data alone and is a promising and practical strategy to predict 
winter wheat PNC. 
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