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Abstract.  
Most U.S. Corn Belt states now recommend the Maximum Return to Nitrogen (MRTN) 
method for determining optimal nitrogen rates, which is based on on-farm yield response 
to nitrogen trials. The MRTN method summarizes trials for a region of a state. This study 
combines Illinois MRTN data, Bayesian methods, and on-farm experimentation to 
provide site-specific nitrogen recommendations. On-farm trials are now being used to 
provide the information necessary for site-specific management. Recommendations from 
only a few years of data, however, can be very noisy. One problem is that the needed 
models to use as Bayesian priors have not been estimated. This research fills this gap. 
Utilizing data from the Maximum Return to Nitrogen database, Bayesian estimation is 
used to estimate production functions that have a time trend to account for increased 
corn yields over time. The estimated models are then used as an informative prior for 
yield response estimations using on-farm experimental data. Three years of on-farm 
experimental data from a single field were used to estimate a spatially varying coefficient 
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model. The model was estimated using two years of data to predict the third year. The 
predicted spatial variability was small and uncorrelated with spatial variability in the third 
year. Even though experimentation did not help with variable rate recommendations, it 
could potentially help provide uniform rate recommendations for a specific field. 
Keywords.   
Bayesian Kriging; corn; precision agriculture; spatially varying coefficients 

Introduction 

The technology to apply variable rate nitrogen is included on the newer equipment used 
by many custom applicators. Without an accurate method of estimating optimal nitrogen 
rates, however, it is questionable that variable rate nitrogen application offers much 
value to producers. Recent research finds that variable rate nitrogen is not yet 
unambiguously profitable (Biermacher et al. 2009; Boyer et al., 2011; Stefanini et al., 
2015; Larson et al., 2020; Queiroz et al., 2023). The current methods of estimating site-
specific optimal nitrogen rates are not good enough for widespread adoption of variable 
rate nitrogen. This research proposes and tests a method to more accurately estimate 
variable-rate optimal nitrogen rates. 

The maximum return to nitrogen (MRTN) approach is used to recommend nitrogen rates 
in many U.S. Corn Belt states (Nafziger, 2018). MRTN rates are not site-specific (Illinois 
has three regions) and so cannot guide variable rate application. Other studies used on-
farm trials to acquire information necessary for site-specific management (Bullock et al., 
2020; Hegedus et al. 2023). The Data Intensive Farm Management (DIFM) project is a 
collaboration between researchers and producers that uses on-farm experiments to 
base farm input management decisions (Bullock et al., 2019). When these on-farm trials 
are used with only a few years of data, they produce noisy nitrogen rate 
recommendations. Combining the extensive MRTN dataset as a prior to be used with 
experimental on-farm data could reduce the uncertainty and improve the accuracy of 
optimal nitrogen rate estimates using on-farm experiments. 

Combining MRTN and DIFM data is a Bayesian problem. The current MRTN is in a 
format, however, that has limited usefulness as a prior. The nitrogen rate calculator can 
produce a histogram of economically optimal N rates, but what is needed is the 
distribution of parameter estimates. Illinois MRTN estimations are made using different 
functional forms for yield response. The most common is the quadratic plateau model, 
estimated for each site year. Linear, quadratic, and constant functions are used when 
they better fit the data than the quadratic plateau. The Illinois MRTN usually uses the 
most recent 15 years of data to estimate regional nitrogen rates. MRTN does not include 
a time trend when estimating optimal nitrogen rates. Here, the MRTN data were used to 
estimate a stochastic linear plateau model with a time trend and then used to provide the 
priors needed for Bayesian estimation using data from an on-farm experiment. 

The functional form used to estimate yield response functions can lead to very different 
nitrogen recommendations. Many models are based on von Liebig’s Law of the 
Minimum, which states crop yield is determined by the most limiting essential nutrient. 
Recent research has used stochastic linear plateau functions. Tembo et al. (2008) let the 
plateau vary stochastically from year to year, while Makowski & Wallach (2002) let all 
parameters vary. MRTN lets all parameters vary by site year. The model used here only 
lets the plateau vary by year due to the limited on-farm experimental data. Stochastic 
linear plateau production functions have been applied to wheat (Brorsen & Richter, 
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2012), winter rye (Tumusiime et al., 2011), cotton (Brorsen, 2013) and corn (Lambert & 
Cho, 2022; Bouer et al., 2013; Villacis et al. 2020) 

One way to estimate spatially varying coefficient production functions is geographically 
weighted regression (GWR) (Evans et al., 2020; Trevisan et al., 2020; Lambert & Cho, 
2022). GWR is often fits data well. Wheeler and Calder (2007) showed that a Bayesian 
regression model with spatially varying coefficients provided more accurate parameter 
estimates than GWR. Finley (2011) also concluded that the Bayesian spatially varying 
coefficient model had a smaller prediction mean squared error. The drawback of 
Bayesian methods is that they are computationally slow in comparison to GWR. An 
informative Bayesian prior can improve the accuracy and speed of estimation while also 
making inference possible. This research goes beyond previous research by using an 
informative Bayesian prior to estimate a spatially varying plateau model. Estimates are 
then used to determine optimal nitrogen rates. 

Bayesian methods have long been used to estimate yield response functions (Holloway 
& Paris, 2002; Ouedraogo & Brorsen, 2018; Moeltner et al., 2021; Park et al. 2024). In a 
simulation study, Lawrence et al. (2015) used Bayesian methods to update the 
parameters each year, but did not begin with an informative prior. Bullock et al. (2020) 
stated the greatest value of the on-farm precision experiment came from prior 
information collected from two previous trials. This information helped producers more 
accurately estimate a field’s optimal uniform application rate. Franz et al. (2020) 
concluded that among spatial and temporal variables, including soil types, topography, 
and crop condition, the best predictor of crop yield was historical yield maps. This past 
research suggests that Bayesian methods are a promising way to reduce the noise in 
estimates when using only a few years of on-farm experimental data. 

The methods developed and demonstrated here are intended as a step forward toward 
designing a system that will be adopted by custom fertilizer applicators. More 
specifically, the MRTN dataset is used to estimate a stochastic linear plateau function 
that serves as a prior for a spatially varying coefficient model that uses on-farm 
experimental data to estimate nitrogen rate recommendations.  

Data and Methods 
Maximum return to nitrogen (MRTN) 

The MRTN method is a regional approach for estimating corn nitrogen rates for U.S. 
Midwest states. For example, for Illinois in 2021 the method used 720 corn yield 
response to nitrogen trials from 15 years, (2006 to 2020), of data (709 trials in 2024, but 
more than 15 years). These trials were conducted with spring application, sidedress 
application, or split between a preplant application and a sidedress application of 
nitrogen. No sites were irrigated. In Illinois, MRTN uses mostly quadratic response 
plateau (QRP) models (82.7% in 2024), some quadratic models (15%), a few linear 
responses (2.3%), and zero no-response models (in 2024) were estimated for each site 
year. QRP models are often used because they fit the data well. The MRTN approach 
uses a grid search procedure to determine the optimal level of nitrogen. The dataset 
used here includes some older data that are not currently being used by MRTN. Also, 
the 2010 to 2012 data used in the MRTN were not obtained. The data used here 
represents only a portion of the MRTN data. Note that MRTN weights each site year 
equally. Since more data are available from recent years, MRTN is not as slow to adjust 
over time as it would be if each year had the same number of sites. 
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MRTN data 

The MRTN data used for this research included 3,219 observations from on-farm yield 
response to nitrogen experiments conducted from 1999 to 2009 and 2013 to 2021 
located across the north, central and southern regions of Illinois. The data were from 
four different projects.  

The first project was from 1999 to 2008 at seven different sites. The second was from 
2001 to 2004 and was done on farmer fields, in cooperation with the Illinois Department 
of Agriculture. The third project was composed of data from 2006 to 2008, with some 
additional trials from 2009 and was funded by a fertilizer tonnage fee administered by 
the Illinois Fertilizer Research and Education Council. The final project was from 2013 to 
2021 and funded by a fertilizer tonnage fee administered by the Illinois Fertilizer 
Research and Education Council. All projects include corn-soybean rotations. 
Experiments from 70 Illinois counties out of 102 in the state are in the dataset. Nitrogen 
rates varied across locations, and six different rates per location were applied. Nitrogen 
rates ranged from 0 to 382 kilograms per hectare with an average of 147 kilograms per 
hectare. Typically, 0, 56, 112, 168, 224, and 280 kilograms of nitrogen were applied, and 
any additional nitrogen applied by the producer was added to these amounts. The yield 
data are treatment means for each site year, and all yield values were collected with a 
combine yield monitor, the weigh wagon method, or a small plot combine. 

Production functions 

Both stochastic linear response plateau (LRP) and stochastic quadratic plateau (QRP) 
models were estimated using the MRTN data. The SAS procedure PROC MCMC was 
used to estimate the model with Bayesian methods and weakly informative priors. The 
stochastic LRP model with time varying parameters is 

(1) 											𝑌!"# = min[(𝛽$ + 𝛼$𝑡) + (𝛽% + 𝛼%𝑡)𝑁!"# , 𝑃$ + 𝛼&𝑡	 + 𝑢!"	] + 𝑣" +	𝛾!" + 𝜀!"# 
 

where 𝑌!"# is corn yield for the 𝑖th location for year 𝑡, 𝑗 treatment, 𝑁!"# is the nitrogen 
level, 𝛽$, 𝛼$, 𝛽%, 𝛼%, 𝑃$, and 𝛼& are parameters to be estimated, and 
𝑢!"~𝑁!(0, 𝜎'&), 𝑣"~𝑁!(0, 𝜎(&), 𝛾!"~𝑁;0, 𝜎)&<, 𝜀!"#~𝑁!(0, 𝜎*&) with all four error terms being 
independent. The 𝑡 is defined as 𝑡 = 𝑦𝑒𝑎𝑟 − 2010. The estimation procedure used 5,000 
observations as burn in, a thinning rate of 20, and 20,000 simulated draws to generate 
each parameters’ posterior distribution. 

The priors used with the MRTN data are weakly informative. The priors for the mean 
parameters are normal distributions with large variances, so they have little influence on 
the posterior estimates. An improper inverse gamma prior was used for variances. 

A stochastic quadratic model with time varying parameters following Cho et al. (2023) 
was considered, but not included here since the the Deviance Information Criterion (DIC) 
(Spiegelhalter et al., 2002) preferred the stochastic linear plateau. 

Profit maximization 

The optimal level of nitrogen is determined by maximizing expected profit. To perform 
the optimization, the SAS program PROC NLP is used. Expected profit is 

(2) 	max
+!,$

∫𝐸𝜋(𝑁"|𝜃)𝑝(𝜃|𝑡)	𝑑𝜃  

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.3/statug/statug_introbayes_sect050.htm#statug_introbayesspie_d02
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where 𝐸𝜋(𝑁"|𝜃) is expected profit given nitrogen and subject to the vectors of relevant 
parameters of the stochastic plateau, 𝐸𝜋 = (𝑝 ∙ 𝑌") − (𝑟 ∙ 𝑁") where 𝑝 is the corn price, 𝑌! 
is the corn yield from the stochastic plateau model, 𝑟 is the nitrogen price, and 𝑁" is the 
amount of nitrogen applied from the stochastic plateau model, 𝜃 = (𝐵$, 𝐵%, 𝑃$, 𝜎'&)	is the 
vector of relevant parameters, and 𝑝(𝜃|𝑡) is the posterior distribution for 𝜃 given year 𝑡. 
The calculation follows Brorsen (2013).  

For the economic analysis, U.S. prices were used for calculating nitrogen and corn 
prices. Urea prices were used to determine a nitrogen price of $1.75 /kg of N. A corn 
price of $0.26/kg was used to determine the optimal nitrogen rates. These prices reflect 
January 2023 market prices for urea fertilizer (Quinn, 2023) in Omaha, Nebraska, and 
U.S. corn (USDA-NASS, 2023). 

Data Intensive Farm Management 

The second stage uses the Bayesian posteriors from the first stage as priors for site-
specific functions estimated with on-farm experimental data. The on-farm experimental 
data from DIFM consist of 3,836 observations on a single field in north central Ohio over 
three years. The standard DIFM data cleaning procedure was used, which is described 
in Edge et al. (2024). All collected data were from corn following soybeans. This field 
was selected because it was the only DIFM field at the time that had three years of data 
and permission to let others use the data. The experimental design was a completely 
randomized design where treatments were assigned completely at random so that each 
experimental unit has the same chance of receiving any one treatment. The experiment 
is detailed in Table 1. We now know that a random design is not optimal and that 
alternative designs could have provided greater information (Poursina et al. 2023). The 
yield average for 2019 is lower than the averages of 2017 and 2021. The late planting 
date for 2019 could have contributed to the decrease in yield.  

Table 1. On-Farm Experimental Data Selections from Single Ohio Field 
  2017 2019 2021 
Observations 141 101 91 
Yield range (kg. /ha) 11,931-16,646 8,634-12,636 9,639-16,049 
Yield average (kg. /ha) 14,567 11,272 13,068 

Nitrogen range (kg. /ha) 185-246 176-282 182-320 

Nitrogen average (kg. /ha) 218 230 262 
Seeding range  (thousand seed/ha) 74-95 73-96 59-104 
Seeding average (thousand seed /ha) 85 87 81 

 

A portion of the field was selected since estimation with the entire field was not 
computationally feasible. Using fewer observations reduces the computational time 
(even with the reduced dataset, the estimation still took over a week for 2021 data). 
Table 1 shows the means from the selected data. 
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The area of the field was selected1 to have roughly the same number of 
observations across years. Due to missing values and different size grids, the number of 
observations varied by year. There were 141 observations selected from 1,373 
observations from the 2017 data. In 2019, 101 observations were selected from 1,407 
observations. In 2021, 91 observations were selected from 1,056 observations. GWR 
would have been impractical because it cannot handle missing values and has no ready 
way to deal with coordinates changing across years. 

Spatially varying plateau model 

Using the selected data, a spatially varying plateau model was estimated for each year:  

(3) 𝑌! = minO𝛽$ + 𝛽%𝑁! + 𝛽&𝑆! + 𝛽-𝑆!& + 𝛽.𝑆!𝑁! , 𝑃!Q + 𝜀! 
 

where 𝑌! is corn yield for the 𝑖th location, 𝑁! and 𝑆! are the nitrogen and seeding rate for 
the 𝑖th location respectively. 𝛽$, 𝛽%, 𝛽&, 𝛽-, and 𝛽. are the corresponding coefficients for 
intercept, nitrogen, seeding rate, seeding rate squared, and the interaction between 
nitrogen and seeding rate. The posterior of the stochastic LRP model provided priors for 
𝛽$, 𝛽%, 𝛽., and 𝑃! of the spatially varying coefficients parameters.  

(4) 𝑷~𝑀𝑉𝑁(𝑝̅𝟏, 𝚺) 
where 𝑷 = (𝑃%, 𝑃&, …𝑃/) and 𝚺 = 𝑐𝑜𝑣;	𝑃(s), 	𝑃(𝑠0)< = 𝜎1& exp _−

2","$ 	

4
`  

where 𝑠 and 𝑠0 are two distinct locations in the field, 𝑃(s) is the plateau for location 𝑠, 𝜎1& 
is the variance of the plateau, and 𝑑5,5$ 	is the distance between 𝑠 and 𝑠0. Bayesian 
methods are used to fit the model given in equation (3). The Hamiltonian Monte Carlo 
algorithm, which is faster and has a better convergence rate (Carpenter et al., 2017) 
than Metropolis-Hastings, is used through Stan to obtain posterior estimates. Four 
chains were used with 2,000 draws as warmup and 5,000 for estimation. The estimation 
took around 14 hours for each year (for 2021, one chain was slow to converge, and it 
took over a week). Convergence of the Markov Chain was checked using the Gelman-
Rubin statistic (Gelman & Rubin, 1992).  

The conditional autoregressive (CAR) and simultaneously autoregressive (SAR) models 
can provide faster computations (Poursina, 2022) than the exponential, but CAR and 
SAR are not applicable to data where the locations of the grids change every year. 

The posterior from Equation 1 is used as a prior to forecast parameter distribution for 
2021 using 2017, 2019, and 2021 data. The posterior predictive distribution is used to 
forecast parameters for 2021 locations from 2017, 2019, and 2021 data. New 
coordinates from 2021 are added to forecast the yield value.  

Results and Discussion 

Posterior distribution using the MRTN data  

The mean and standard deviation of the posterior distribution for the parameters of the 
stochastic LRP model are presented in Table 2. The optimal nitrogen rate increased 

 
 
1 The model was estimated with a different portion of the field and estimates estimated spatial effects were also quite small. 
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21% from 2010 to 2021. The Illinois MRTN (Nafziger et al. 2022, Figure 4) has also 
shown increases in optimal N as new data were added and old data were dropped. 

Table 2. Stochastic Linear Plateau Estimates on Illinois Corn Yields (kg /ha), 1999-2021 
Parameter Mean Standard Deviation 

Intercept 6614.5 138.9 
Intercept time trend 0.1 17.9 
Nitrogen 40.7 1.2 
Slope time trend 0.5 0.2 
Plateau 11853.4 142.5 
Plateau time trend 204.0 20.2 
Plateau variance 1728766.0 226626.0 
Year random effect 4249889.0 345320.0 
Error variance 1393012.0 44255.6 
Optimal N 2010 (kg /ha) 160.2  
Optimal N 2021 (kg /ha) 193.3  
Deviance Information Criterion 48083.3  

Note: The selected price of nitrogen is $1.75/ kg., the price of corn is $0.26/kg. The data 
are 2799 observations from the Illinois Maximum Return to Nitrogen (MRTN) dataset. 
 
Utilizing the time trend variable of the stochastic LRP model, the year 2023 optimal 
nitrogen rate was estimated using January 2023 prices for nitrogen, $1.75/kg, and corn, 
$0.26/kg (Quinn, 2023; USDA-NASS, 2023). The optimal nitrogen rate was 199 kg of 
nitrogen /ha. The nitrogen rate calculator (Nafziger, 2023) computed optimal nitrogen 
rates using the same prices for the three Illinois regions: North, Central, and South. The 
calculator estimated an optimal nitrogen rate of 187 kg /ha for the North region, 195 kg 
/ha for the Central region, and 218 kg /ha for the South region.  

 
Production function estimates 
 
Fig. 1 plots the stochastic LRP model using posterior means for 2010 and 2021. The 
intercept, slope, and plateau all increased over time. The intercept increased by 0.02 
percent and the slope increased by roughly 13 percent. The plateau increased the most 
by roughly 28 percent, and thus the optimal nitrogen rate also increased. 

Assefa et al., (2017) studied corn yield data from 1987 to 2015 and concluded that corn 
yields across the United States increased between 97 and 147 kg/ha/year. There are 
many reasons as to why corn yields have increased over time. Genetic improvements 
(Russell, 1991), increased plant densities (Assefa et al., 2018), and earlier planting 
dates (Tannura et al., 2008) have all been suggested as explanations for increasing corn 
yields. All estimated variances were quadrupled when used as priors to allow the 
information from the field to have more impact on the posterior distribution. 
 

https://acsess.onlinelibrary.wiley.com/authored-by/ContribAuthorRaw/Assefa/Yared
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Fig. 1. Expected Stochastic Linear Plateau Models for 2010 and 2021 

DIFM data 
Treatment means for yield for the three years of on-farm experiment are in Fig. 2. High 
seeding rates were between 89,000 and 104,000 seeds/ha, medium between 74,000 
and 88,999 seeds/ha, and low less than or equal to 73,999 seeds/ha. The figure 
highlights the difficulties in using this data. High seeding rates appear beneficial in 2021 
but had no effect in other years. The curves are relatively flat for nitrogen, except for the 
medium seeding rate in 2019 and the high seeding rate in 2021 where the plateau was 
not reached with the highest levels of nitrogen applied. 
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Fig. 2. Mean Yield Reponses to Nitrogen and Seeding Rate for 2017 (top), 2019 
(middle), and 2021 (bottom) 
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Spatially Varying Plateau Estimates 
The stochastic LRP model is used as a prior when estimating the spatially varying 
plateau model. The estimated spatially varying coefficient models are used to predict 
corn yield response for 2021 selected locations and using response data from 2017, 
2019, and 2021.  
 
The model produces a different spatially varying value of the plateau for each location. 
The spatially varying estimates are quite small. The plateau’s latent spatial process of 
2021 locations from 2017, 2019, and 2021 data were used to create Fig. 3. The maps 
show no distinct pattern across years and the plateau varies little across the field, which 
foretells that precision nitrogen application is of little value in this field. 

 
Patterson (2023) conducted multiple tests on the out-of-sample predictions and found no 
predictive accuracy. Many past researchers have found uniform nitrogen rates are more 
profitable than variable rate applications (Isik & Khanna, 2002; Thrikawala et al., 1999; 
Edge 2022). Variable rate applications have been profitable given sufficient spatial 
variability (Roberts et al., 2000). The area of the field studied here did not have sufficient 
spatial variability to derive a benefit from using variable rate nitrogen application. 
 
Optimal nitrogen and seeding rate 
The optimal nitrogen and seeding rates were calculated for each prediction year using 
the prediction parameter means from the output of the spatially varying coefficient model 
estimation. A seed corn price of $2.00 per thousand seeds (Lauer & Stanger, 2023), 
corn price of $0.26 per kg (Quinn, 2023), and nitrogen price of $1.75 per kg (USDA-
NASS, 2023) were used. Optimal levels were constrained to be within the range of the 
data. All optimal levels were corner solutions. What is shown is that the seeding rates 
and nitrogen levels used were so high that almost all observations were on the plateau. 
To learn more about optimal levels, lower rates of nitrogen and lower seeding rates 
would need to be considered. This conclusion is consistent with Poursina and Brorsen 
(2024) who find that an optimal on-farm experiment should include a small number of 
plots with a low level of input. 
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           Based on 2017 data                                                    Based on 2019 data 

 
Based on 2021 data 

Fig. 3. Predicted Gaussian spatial process values for 2021 based on the data from 2017, 
2019, and 2021 
 
 
Conclusions 
The first goal was to develop informative Bayesian priors. The goal was achieved by 
estimating a stochastic linear plateau model using data from the MRTN database and 
incorporating a time trend that accounts for increasing corn yields over time. The 
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intercept, slope, and plateau all increased over time. The plateau increased the most by 
28 percent, and thus the optimal nitrogen rate also increased. The optimal nitrogen rate 
from 2010 to 2021 increased by almost 21 percent. The estimated posterior distribution 
of the stochastic linear plateau is used as a prior for completing the second goal of this 
research which is to estimate a spatially varying coefficient model to determine accurate 
site-specific nitrogen rates. After estimating the spatially varying coefficient model, the 
estimated plateaus revealed little spatial variability across the field which limited the 
benefit of applying variable rate nitrogen. Poursina (2022) suggests experimenting on 
only a part of the field, which would increase the importance and dependence upon the 
priors. The general approach used here might prove useful for determining uniform rate 
recommendations even if it did not aid in variable rate recommendations. This research 
is consistent with previous research that found variable rate nitrogen may not be 
profitable when the only information available is the location of the plot. Only a section of 
the field was analyzed due to limits on the computational time, which is a limitation that 
will need to be overcome if this approach is to be commercially viable.  

The uniformity of the field studied likely contributed to variable rate nitrogen not being 
profitable. Another limitation is the need for lower seeding rates (or using a constant 
seeding rate) and lower nitrogen rates in order to get more precise estimates. Variable 
rate nitrogen applications can still be profitable in a field with higher spatial variability. 
Finally combining the approach used here with other sources of data such as remote 
sensing might lead to profitable variable rate nitrogen application. 
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