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Abstract.  

The declining populations of natural pollinators pose a significant ecological challenge, often 
attributed to the adverse effects of pesticides and intensive farming practices. To address the 
critical issue of pollination in the face of diminishing natural pollinators, we are pioneering an AI-
based pollinator that utilizes a CoreXY pollination system. This solution aims to augment 
pollination efforts in agriculture, increasing yields and crop quality while mitigating the adverse 
impacts of pesticide usage and climate change on pollinator populations. Our approach 
harnesses deep learning technology and robotics to automate the pollination process, providing 
a sustainable alternative in regions where pollinators are dwindling. Our research focuses on 
integrating a flower detection and pollination system into our existing CoreXY weed detection and 
elimination system. Our methodology involves equipping the CoreXY system with a pollen 
sprayer, utilizing the integrated camera and trained YOLOv8 deep learning model to pinpoint fruit 
or vegetable flowers, and then pollinating them by moving the pollen sprayer overtop. This 
meticulous process is repeated across the entire field, prioritizing plant health and minimizing 
potential damage by avoiding physical contact. In summary, our AI-based Pollinator with a 
CoreXY pollination system offers a sustainable and technologically advanced solution to the 
challenges posed by declining natural pollinators.  
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I. Introduction 

Over the past few years, precision agriculture has become increasingly vital to the farming 
industry, transforming traditional farming methods [1-4]. Leveraging advanced technologies such 
as GPS, IoT sensors, drones, robotic arms, and data analytics, precision agriculture allows 
farmers to optimize resource use, boost crop yields, and mitigate environmental impacts. These 
technologies facilitate real-time monitoring and management of crops, soil, and weather 
conditions, resulting in better decision-making and more efficient farm operations. Moreover, 
precision agriculture promotes sustainable farming practices by reducing waste, minimizing 
pesticide and fertilizer usage, and conserving water. As global food demand continues to grow, 
the adoption of precision agriculture is essential for meeting this demand while ensuring the 
sustainability of farming practices. 

Amidst the growing need for artificial plant pollination, driven by both an increased demand for 
crop production and a decline in natural pollinator populations, researchers are exploring 
innovative solutions. In [5], Hiraguri et al. introduce an autonomous drone-based pollination 
system tailored for tomato cultivation. The system utilizes an artificial vibrator to disperse pollen, 
aiming for its transfer onto flower stigmas. However, the system is limited to self-pollination 
applications, necessitating further advancements to enable cross-pollination. Consequently, there 
is a pressing need for the development of efficient flower detection and pollination systems. This 
includes the integration of deep learning models for flower identification and the implementation 
of sophisticated systems for targeted artificial pollination. By synthesizing recent research and 
development endeavors, this paper seeks to elucidate the current state-of-the-art in artificial 
pollination technology and its potential implications for sustainable agriculture.  

In this paper, we develop a flower detection and pollination system that is based on the current 
CoreXY weed detection and elimination system that we have developed [2]. The system is 
installed on our newly developed Smart Agricultural Robot bulldog (SARDOG) [4]. Utilizing the 
CoreXY architecture, favored in 3D printing and CNC devices for its precision and 
responsiveness, the system utilizes two Nema 17 stepper motors within a square aluminum 
frame, driven by DM542 microstep motor drivers. The Raspberry Pi 5 replaced the previous model 
for faster processing during flower detection while maintaining a quick response from the 
pollination system. The flower detection component utilizes the Ultralytics YOLOv8 computer 
vision deep learning model, coupled with the Raspberry Pi 5 and ELP Sony USB Camera. This 
hardware-software integration enables the detection of flowers in images, guiding the subsequent 
actions of the pollination system. The coordinate system program translates pixel coordinates 
from the flower detection model into stepper motor steps, facilitating precise positioning of the 
pollen sprayer over any detected flowers.  

Training the flower detection computer vision model involved a trial-and-error approach, utilizing 
a combination of three crop flower datasets [6-8], which is modified to contain cucumbers, 
strawberries, and cherry tomatoes. Training sessions were conducted in a Google Colab 
environment for enhanced performance and reduced training time. The model effectively detects 
and classifies flowers, aligning with the primary objective of the project. Integration with hardware 
involved meticulous wiring and configuration of stepper drivers and motors, adhering to 
specifications outlined in the DM542 datasheet. After hardware and software were integrated, 
extensive testing and tuning were conducted, ensuring optimal performance of the system. The 
final phase involved the integration of the CoreXY system into the SARDOG robot, marking the 
successful culmination of the project.  

Through a synthesis of recent research and development efforts, this paper elucidates the current 
state-of-the-art in artificial flower pollination system development, underscoring its potential 
implications for sustainable agriculture. The following sections provide detailed insights into the 
system's design, development, and performance, offering valuable contributions to the field of 
agricultural robotics and artificial pollination practices. 
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II. CoreXY Pollination System Development 

The original linear ball screw system design was upgraded to a sophisticated dual belt system 
capable of XY movements. The CoreXY configuration, favored in 3D printing and etching devices 
for its precision and responsiveness, was chosen. Unlike the singular Nema 23 stepper motor 
driving the ball screw actuator, the CoreXY system utilizes two smaller Nema 17 stepper motors. 
Constructed within a square aluminum frame, the CoreXY system includes idler pulleys, 30-tooth 
pulleys, GT2 timing belts, and a gantry system facilitating movement. The Nema 17 stepper 
motors are driven by DM542 motor drivers, which support a micro step of 400. Additionally, the 
Raspberry Pi 4 model B was replaced with the Raspberry Pi 5 for faster processing during flower 
detection while maintaining a quick response from the pollination system. The frame features an 
extrusion with a central opening accommodating a gantry capable of sliding from end to end. 
Perpendicular gantries at the extrusion ends enable forward/backward movement in the Y 
direction, while the gantry on the extrusion slides in the X direction. Gantry movement is governed 
by simple kinematic equations: equal rotation in opposite directions moves the middle gantry 
forward/backward, equal rotation in the same direction moves it left/right, and single motor rotation 
causes diagonal movement. 

 

Fig. 1. CoreXY Belt Configuration and Kinematic Equations. 

III. Detection System Development 

A. Theoretical System Overview 

The flower detection and pollination system design consists of the following hardware 
components: 

 

Fig. 2. Detection Hardware. 



 

4 

Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

In the flower detection and pollination system, key hardware components include the Raspberry 
Pi 5 computer and the ELP Sony USB Camera. Software crucial for flower detection comprises 
the Ultralytics YOLOv8 computer vision deep learning model, Ultralytics libraries, Python scripts, 
and a combination of three crop flower datasets [5-7]. 

 

Fig. 3. Generic System Block Diagram. 

The flower detection and pollination system design comprises several components outlined in the 
block diagram above. At the core is the Raspberry Pi 5 computer, serving as the central 
processing unit. The camera interfaces with the Raspberry Pi 5 to capture images of the ground 
below, processed by scripts on the Pi. The Pi computer communicates with the Stepper drivers 
in the CoreXY system, driving them while processing images. SARDOG accommodates two 24V 
batteries connected to a central 24V output, along with 12V and 5V step-down converters. The 
Raspberry Pi 5 utilizes the 5V output, while the stepper drivers are powered by the 24V central 
output. Once integrated, the Raspberry Pi 5 captures images of the ground below, processes 
them, and guides the CoreXY system to position the pollen sprayer over flowers for pollination. 

 

Fig. 4. System Behavior Flowchart. 

The flowchart above outlines the operation of the flower detection and pollination system. Upon 
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initiation, it captures an image of the ground and utilizes the trained YOLOv8 computer vision 
model for flower detection. If no flowers are detected, it repeats the process of image capturing 
and processing. If flowers are detected, the system retrieves the bounding box coordinates for 
each flower instance. These coordinates are then translated into motor steps to position the pollen 
sprayer over the flower. After pollination, the system proceeds to the next detected flower until all 
are pollinated. Upon completion, the process begins again. 

B. Initial Hardware and Software Testing 

The initial stage of the project was primarily setting up and researching the various components 
and software that were going to be used for the flower detection and pollination system. A large 
portion of the early setup and testing was becoming familiar with the Raspberry Pi computer, 
setting it up with the YOLOv8 software, testing the GPIO, and testing the stepper motors and 
drivers. 

The first task was setting up the Raspberry Pi with YOLOv8 software and libraries. Once they 
were installed, basic programs were created to simultaneously test the software and become 
more familiar with it. For the purposes of early testing, a pre-trained YOLOv8 model (trained on 
the COCO dataset) was utilized to make testing the libraries possible while the actual flower 
detection model was being trained.  

 

Fig. 5. Preliminary Coordinate System Choice.  

When first experimenting with the YOLOv8 pre-trained model and Raspberry Pi GPIO, a very 
basic version of the coordinate system was created so that a better understanding of the software 
could be obtained. This also enabled basic testing to be performed on the stepper motors. A basic 
program was written that activated an LED on the left, middle, or right side of a breadboard 
depending on where a smartphone object was detected in the coordinate system. Using a 
smartphone was selected arbitrarily to allow for ease of testing while waiting for the actual flower 
detection model to be trained. This was the first step towards creating the much more advanced 
version of the CoreXY driver coordinate system that was implemented in the final product. This 
LED test was eventually modified into a stepper motor test, which allowed for the creation of a 
rudimentary detection and response system. This program allowed for testing of the stepper 
motors and drivers with the Pi 5 GPIO, as well as developed a better understanding of how they 
would work with the final detection model. 

C. Flower Dataset Setup and Formatting 

During machine learning and computer vision training, ample data is essential for model training 
and testing. Many datasets were evaluated before selecting the three datasets that would be 
combined to serve as a fit for this project [5-7]. This dataset comprises 1584 images featuring 
three different types of crop flowers.  
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Table 1. Dataset Configuration. 

Table 1 displays the class numbers assigned to each crop flower category that is used in the 
configuration file for training the flower detection model. The data was split into training and 
validation sets with a ratio of 82/18 to maximize training data retention. Approximately 1300 
images were allocated to the training folder, and 284 images were used for model validation. 

 

 

Fig. 6. Dataset Flower Examples. 

 

Figure 6 above showcases a sample image from each class in the dataset, each category 
containing a few hundred images of that flower type. The images feature the three main classes 
Cucumber Flowers, Strawberry Flowers, and Cherry Tomato Flowers detailed in Table 1. Each 
image in the dataset is accompanied by a corresponding .txt file containing multilabel annotations 
for every flower. These annotations include bounding box coordinates and flower class. These 
datasets were already available in YOLOv8 format, so minimal augmentation was necessary to 
combine them into one dataset for the flower detection model. 

A MATLAB script was created to process the labels and images from each dataset and convert 
them into one dataset, with class 0 being assigned to cucumbers, class 1 being assigned to 
strawberries, and class 2 being assigned to cherry tomatoes. Once the labels were augmented 
to reflect the correct class number, the dataset was compressed into a zip file, and uploaded to 
Google Drive. The data was now prepared for training using the YOLOv8 computer vision model. 

D. YOLOv8 Computer Vision Training 

Training attempts were conducted in a Google Colab environment for enhanced performance and 
reduced training duration. Training trials in Google Colab utilized the dataset uploaded to Google 
Drive, with the class configuration set to 3 unique flower classifications. The training was 
conducted using an NVIDIA Tesla A100 PCle, with parameters adjusted to 300 epochs, an image 
size of 640x480, and a patience value of 25 epochs. The main training session was terminated at 
197 epochs due to a lack of performance improvement, with the best performance being selected 
from epoch 172. This early termination allows for the trained model to avoid overfitting to the 
flower training data. 
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Fig. 9. Training and Validation Results. 

The presented results illustrate the performance metrics of the trained deep learning model over 
the course of its training. At 197 epochs (the end of each graph), the model demonstrates 
convergence into a stable state for the provided flower data. The training algorithm determined 
that the model was most stable at epoch 172. This model performs well by all metrics, achieving 
a mAP50 accuracy rating of approximately 94%. This level of performance is ideal for the flower 
pollination system, allowing for accurate and precise detection and pollination of flowers. 

 

Fig. 10. Normalized Confusion Matrix. 

The normalized confusion matrix in Figure 10 above visually represents the deep learning model's 
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classification predictions of the flowers compared to the actual classifications of the flowers. The 
diagonal of the matrix represents the correct predictions, so it can be seen from the data above 
that the model is performing very well, with minimal predictions outside the diagonal.  

 

 

Fig. 11. Validation Batch Example. 

The validation process is a crucial training step where the model refines its weights based on 
validation accuracy. The provided example validation batch illustrates multiple predictions made 
by the trained model. It predicts the location of flowers in the image, draws bounding boxes around 
them, creates a flower segment, and assigns a confidence value indicating its certainty about the 
flower classification. This detection capability is invaluable for guiding the pollen sprayer, and the 
bounding box coordinates play a pivotal role in guiding the hardware. A detailed discussion of 
how this is managed will follow in the subsequent sections. 

E. Coordinate System Program 

Having trained the flower detection computer vision model, the next significant task was 
integrating it with both software and hardware. Initially, the programs were developed for the 
Raspberry Pi 4 Model B. However, with the availability of the Raspberry Pi 5, which offers 
significantly faster performance, the code was later adapted for this platform. Due to differences 
in GPIO hardware mappings between the two Raspberry Pi models, the Python libraries were 
incompatible, necessitating adaptation of the coordinate system program to utilize the gpiozero 
library. The primary objective of the coordinate system was to synchronize the hardware, capable 
of moving a sprayer anywhere in an XY plane, with the flower detection model, which provides 
bounding box coordinates for detected flower objects. This was achieved by breaking down the 
image into its pixels and the pollen sprayer XY plane into stepper motor steps. 
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Fig. 12. Derived Steps Per Pixel Equation. 

The "Steps Per Pixel" ratio (SPP) illustrated above is determined by dividing the maximum number 
of stepper motor steps the pollen sprayer can travel in one direction by the total number of pixels 
in the image. Since the image size is 640x480, and the maximum number of steps the pollen 
sprayer can travel varies for the X and Y directions of the CoreXY, a unique SPP ratio is calculated 
for each direction, X and Y.  

 

Fig. 13. Derived Pixel Distance Equation. 

Given that the pollen sprayer begins at a known location within the XY plane, the number of steps 
required to move the pollen sprayer to the desired location in the image can be calculated by 
determining the absolute difference between the current pollen sprayer pixel location and the 
target flower pixel location. 

 

Fig. 14. Derived Steps Equation. 

The coordinate system program determines the required stepper motor steps to position the 
pollen sprayer at the target location by multiplying the calculated pixel distance value with its 
corresponding SPP ratio. These equations played a crucial role in the development of the 
coordinate system program. The program initiates by importing the YOLOv8 libraries and loading 
the trained flower detection model. It then iterates through an infinite loop, processing the results 
of the flower detection model. The X and Y pixel coordinates of the bounding boxes are stored in 
variables. Subsequently, the coordinate system calculates the pixel distance from the pollen 
sprayer to the target flower in both the X and Y directions. Utilizing the previously discussed 
equations, the coordinate system converts the pixel distance to steps for the X and Y directions. 
These step values are then transmitted to the Stepper Driver program, managing the actual 
movement of the pollen sprayer. Once the sprayer is in position, the Sprayer Driver program is 
invoked to control the pump. The coordinate system repeats this process for each detected flower, 
ensuring to return of the sprayer to its initial location at the conclusion of the process. This cycle 
continues indefinitely until the flower detection and pollination system is deactivated. 
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Fig. 15. Coordinate System Visualization. 

The depicted image illustrates the functional aspect of the coordinate system. The idle/start 
location denotes the initial position of the pollinator relative to the entire image. Due to the 
camera's slight elevation above the CoreXY pollination system, there exists unusable space at 
the image border, inaccessible to the pollinator. The coordinate system compensates for this, 
preventing the motors from directing the pollinator beyond its operational range. This adjustment 
enhances pollinator precision by refining the accuracy of the steps per pixel ratio.  

In essence, the coordinate system program serves as the primary control mechanism, 
orchestrating the operation of the flower detection model, computing the steps between the pollen 
sprayer and the flower, and executing all requisite function calls. 

F. Stepper Driver Program 

The stepper driver program plays a pivotal role as a subprogram within the coordinate system. 
Following the completion of image processing and step calculations by the coordinate system, it 
invokes the stepper driver program. This program is furnished with the precise number of steps 
required to maneuver the pollen sprayer in both the X and Y directions. Direct interaction with the 
Raspberry Pi GPIO facilitates the control of the stepper drivers. 

 

 

Fig. 16. CoreXY Architecture and Kinematic Equations. 
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The functionality of the stepper driver is intricate, particularly due to the CoreXY architecture of 
the pollination system. Upon configuring GPIO pins for interaction with the stepper drivers' pulse 
and direction inputs, the function undertakes steps in X and Y directions, adjusting them based 
on the camera's orientation. Motor A's direction and step count are determined by summing the 
X and Y steps to ascertain its delta, while Motor B's direction and step count involve subtracting 
Y steps from X steps to find its delta. This conversion is imperative as CoreXY employs both 
motors collaboratively to maneuver the gantry carriage, unlike conventional X and Y motion 
systems utilizing individual motors for each direction. To ensure operational feasibility, negative 
step values are converted to their absolute values, with the direction pin set counterclockwise as 
necessary. Subsequently, the stepper driver program initiates a loop, pulsing each motor until it 
reaches its designated destination, employing CoreXY kinematics principles. 

G. CoreXY Integration 

After training the flower detection model and finalizing the stepper driver and coordinating system 
programs, integrating with the hardware was essential for comprehensive testing and fine-tuning 
of the system. The wiring of stepper drivers and motors followed the specifications outlined in the 
DM542 datasheet. 

 

  

Fig. 17. DM542 Datasheet Connection. 

The A and B coils of the stepper motors were linked to the respective stepper drivers. Additional 
wires were connected to the stepper drivers' +V and GND terminals to supply power. Throughout 
the testing phase, a DC bench power supply furnished 24V to the stepper drivers. Settings were 
adjusted to microstep at 400 steps per revolution, maintain a 50% current during idle, and limit 
each motor's current to 1 amp. Idle motor consumption was approximately 0.15A, rising to around 
0.3A during operation. With motors and drivers installed on the CoreXY frame, control signals 
were then linked to the Raspberry Pi 5 GPIO using GPIO cables. 
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Fig. 18. Stepper Driver Pins Code Snippet. 

 

The connections for the stepper driver pulse and direction were configured as indicated in the 
provided code snippet. Each negative pulse and direction connection was linked to an individual 
ground terminal on the Raspberry Pi GPIO. While the specific pin values were somewhat 
arbitrarily chosen, the primary aim was to have the positive pulse and direction connections 
adjacent to available ground pins. 

 

     

Fig. 19. Perspectives of Integrated Detection and CoreXY. 

 

With hardware and software now integrated, the testing and tuning phase of the project began. A 
variant of the CoreXY driver program, known as CoreXYTest, was developed for manual testing 
of the CoreXY pollination system, allowing users to provide X and Y steps manually. During this 
phase, everything performed better than expected. Users could move the carriage with high 
precision using only the software, requiring minimal tuning for optimal hardware and software 
performance. The stepper motor pulse width was adjusted from 1ms down to 0.1ms in increments 
of 0.1ms, with an experimentally determined optimal pulse width of 0.7ms providing a balance of 
speed and system stability. Additionally, the test program helped determine the maximum number 
of steps the pollen sprayer could travel in the Y and X directions—around 1800 steps and 1200 
steps respectively—before reaching the edge of the plane. This information was crucial for 
accurate tuning of the CoreXY driver program before integration into the SARDOG robot.  
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IV. SARDOG Integration and Testing 

Integrating the CoreXY flower pollination system into the SARDOG robot involved a step-by-step 
tuning process. Initially, the robot was widened to accommodate the CoreXY frame, which was 
then secured in place using zip ties around each corner. Since the robot undergoes frequent 
remodeling and relocation, a permanent mounting method wasn't suitable as it would hinder 
movement through narrow spaces. The zip ties provided flexibility, allowing the pollination system 
frame to slide in and out of the robot when needed. Next, the stepper drivers and Raspberry Pi 5 
were secured beside the frame on a small wooden board mounted in one corner of the robot. The 
stepper drivers were powered by the robot's 24V output, while the camera was fixed to the front 
end, providing an elevated view of the underside. The electric pollinator gun, depicted in Figure 
20, is initially filled with artificial pollen specific to the target flower. Once the system detects the 
flower stigma, the Raspberry Pi 5 sends a signal to the trigger to activate the pollination process. 
With all hardware integrated, the final phase involved software testing and calibration. 

 

Fig. 20. Electric Pollinator Gun. 

 

 

Fig. 21. Entire System Integrated on SARDOG. 

 

In Figure 21, the CoreXY pollination frame is centrally mounted on the robot. At the bottom right, 
the two stepper drivers and the Raspberry Pi 5 computer are securely fastened to the wooden 
board. The camera is positioned to look straight down beneath the robot, providing a clear view 
of the flowers below. Additionally, a box containing soil and flowers is placed directly under the 
pollination system to test its performance on real flowers. 
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Fig. 22. Working System Close Up. 

 

 

Fig. 23. CoreXY Driver Program Performing Predictions. 

In Figure 22, the camera offers an optimal view of the ground beneath the robot. While the CoreXY 
driver program is operational, the flower detection model conducts inferences on images every 
few hundred milliseconds. Upon detecting flowers, as shown in the image on the right, the CoreXY 
driver program retrieves the bounding box coordinates, positions the pollen sprayer nozzle over 
each flower, activates the electric pollinator sprayer, and then returns it to the starting location. 
Calibrating the camera to ensure alignment with the flower required some adjustments initially, 
but after fine-tuning, the system operated smoothly. This marks the successful development and 
implementation of a fully functional flower detection and pollination system. 
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Conclusion 

We've created an autonomous flower detection and pollination system for SARDOG. Utilizing a 
dual belt gantry system in a CoreXY configuration, we've enhanced precision and responsiveness 
while reducing maintenance needs in field settings. The system employs a trained YOLOv8 deep 
learning model for flower identification and classification, coupled with a complex coordinate 
system program to trigger the pollination process. Extensive research and design efforts were 
invested in perfecting the detection programs and deep learning model. The resulting system 
addresses the growing concerns related to declining pollinator populations while also enhancing 
crop yield and quality through consistent and timely pollination. SARDOG's compact size enables 
it to perform various functions efficiently, making it a valuable asset for flower detection and 
pollination. 
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