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Abstract.  

This paper presents an innovative AI-based fruit harvesting system utilizing a robotic arm, 
designed to enhance efficiency and reduce labor intensity in agricultural practices. Integrated into 
the Smart Agricultural Robot, Bulldog (SARDOG), the system leverages a six-degrees-of-freedom 
robotic arm controlled by a Raspberry Pi 5 and employs an NVIDIA Jetson Orin for advanced fruit 
detection and localization using a YOLOv8 deep learning model. The system facilitates real-time 
fruit detection and harvesting through seamless hardware communication and precise kinematic 
control. Extensive dataset compilation and training were conducted to ensure high accuracy in 
fruit classification and localization. Experimental results demonstrate the system's capability to 
accurately detect and pick various types of tree fruits, optimizing the harvesting process. This 
integration into the SARDOG provides a stable and efficient platform for agricultural automation, 
representing a significant advancement in precision agriculture. The research underscores the 
potential for AI and robotics to revolutionize farming, meeting the increasing global demand for 
food while promoting sustainability. 
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I. Introduction 

In recent years, precision agriculture has become crucial to the farming industry, revolutionizing 
traditional practices. By incorporating advanced technologies like GPS, IoT sensors, drones, 
robotic arms, and data analytics, precision agriculture enables farmers to optimize resource 
utilization, increase crop yields, and reduce environmental impact [1-4]. These innovations 
provide real-time monitoring and management of crops, soil, and weather conditions, leading to 
more informed decisions and efficient farm operations. Additionally, precision agriculture supports 
sustainable practices by minimizing waste, reducing the use of pesticides and fertilizers, and 
conserving water. As the global demand for food continues to rise, embracing precision 
agriculture is key to meeting this demand while ensuring the sustainability of farming. 

Harvesting is arguably the most fundamental task in agriculture, with its efficiency playing a crucial 
role in the success of farms. This task is often the most labor-intensive during the growing season, 
particularly on smaller farms with limited equipment. To address inhumane labor conditions and 
the increasing demand for agricultural products, many autonomous robotic harvesting systems 
have been developed. This paper provides a comprehensive analysis of current robotic harvesting 
solutions and introduces a newly proposed system with unique advantages.  

We present a smart harvesting system that employs a standard six-degrees-of-freedom robotic 
arm to detect and pick eight different kinds of tree fruit. This system is installed on our custom 
Smart Agricultural Robot, Bulldog (SARDOG) [1]. The system utilizes a Raspberry Pi 5 single-
board computer to control the robotic arm's movements and an NVIDIA Jetson Orin Artificial 
Intelligence (AI) computer to optimize fruit detection. This setup replaces the previously used 
Raspberry Pi 4B computer, enabling faster and more accurate results. The Raspberry Pi 5 runs 
a series of connected Python scripts for movement control, while the Ultralytics YOLOv8 (You 
Only Look Once) computer vision deep learning model processes the RGB USB camera’s real-
time feed on the Jetson Orin. Hardware communication between the two onboard computers 
ensures seamless integration of detection and harvesting components, converting virtual 
positional data to real-world positions through a pixel coordinates-to-joint control system. Our 
system uses an electronic adaptive gripper to grasp the fruits, which differs from other systems 
that use suction or cutting mechanisms to harvest the fruits [5]. Since our gripper is fully electronic, 
a large air compressor is not needed which saves power and makes our system more efficient. 
The advantage of the simplicity of our gripper as opposed to a cutting mechanism is that ours is 
more reliable and requires less maintenance, in addition to producing harvested fruits without 
partial stems still attached.  

Training the machine learning model involved a trial-and-error approach using comprehensive 
fruit datasets compiled into a master dataset with Roboflow. Custom compiling the master dataset 
enabled class name changes and bounding box annotation corrections to be made, which 
enabled the model to be more efficient in our specific system. Other systems, such as the one by 
Salim et al. [7], use pre-compiled master datasets like Fruit-360 to train their deep-learning 
models. This approach can lead to longer training times due to unnecessary classes and poorer 
results due to limited customization. In contrast, our model was trained and fine-tuned on Google 
Colab, running multiple trials with modified parameters until achieving sufficient accuracy. 

This paper culminates recent research and development efforts, detailing the current smart 
harvesting system's development and its implications for improving labor conditions and efficiency 
in agriculture. The following sections discuss the system's development, testing, and 
performance. 

The rest of the paper is organized as follows. In Section II, we discuss the robotic arm movement 
system development. In Section III, we discuss the detection system development including the 
machine learning algorithm training. In Section IV, we present the SARDOG integration and 
experimentation before presenting our conclusion in Section V.   
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II. Robotic Arm Movement System Development 

A. Hardware System Overview 

The following hardware components make up the smart harvesting system: 

 

Fig. 1. System Hardware. 

The most crucial hardware components of the smart harvesting system are the Jetson Orin 
computer and the robotic arm.  

 

Fig. 2. System Behavior Flowchart. 

The flowchart in Figure 2 details the system's operation from start to finish. The process begins 
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by analyzing real-time camera footage using the YOLOv8 deep learning model. When fruit is 
detected, the model's bounding box coordinates are sent to the pixel coordinate processing 
Python script on the Jetson Orin. This script determines whether the arm is already centered on 
the fruit or needs to rotate right or left to become centered. If the arm is not centered, it rotates its 
base joint as instructed by the Jetson Orin. Once centered, the arm saves its base joint position 
and harvests the fruit. The harvested fruit is then stored in a bin on the SARDOG, and the robot 
moves forward until another fruit is detected.  

 

Fig. 3. Generic Hardware Block Diagram. 

 

Figure 3 illustrates the block diagram detailing the basic hardware flow of the smart harvesting 
system. The two onboard computers, the Raspberry Pi 5 and the Jetson Orin communicate via 
two 5V relays that connect their GPIO headers. The Jetson Orin powers the USB camera, 
capturing real-time video footage, which is processed by the AI model. The Jetson Orin then 
sends directional and verification Boolean signals to the relay modules.  

The directional command relay sends a HIGH value to indicate that the robotic arm should adjust 
its starting position to the right, and a LOW value to adjust to the left. The verification command 
relay sends a HIGH value to signal that the arm is centered on the detected fruit and does not 
need further adjustment; a LOW value indicates that the arm should continue reading input from 
the directional command relay.  

Relays are used instead of direct GPIO connections because the Raspberry Pi's header is 
connected to an Elephant Robotics hat board within the arm, operating at 24V, while the Jetson 
Orin's GPIO header operates at 5V. Once the Raspberry Pi confirms the arm is centered on the 
fruit, it sends angular values to the servos in the robotic arm and adaptive gripper.  

The system is powered by the SARDOG’s power distribution board, connected to its two 24V 
batteries. This board provides 24V to the robotic arm and gripper and steps down the voltage to 
supply 5V to both onboard computers through 24V, 12V, and 5V converters. 

B. Software System Overview 

The Raspberry Pi 5 operates using the latest Debian Raspberry Pi Desktop Operating System 
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and controls the servos in the robotic arm via a hat board within the arm. We developed two main 
Python scripts to handle the kinematics necessary for the harvesting process.  

The first script, the analysis script, moves the arm back to its maximum extent and then pans it 
horizontally. As the arm moves laterally, it reads input from the relays controlled by the Jetson 
Orin. Based on the Boolean value of the directional relay, the arm adjusts its position right or left 
to center itself on the detected fruit. Once centered, the second relay outputs a HIGH value, and 
the script saves the calibrated start position of the arm.  

The second script controls the picking motion of the arm. It includes several complex motions 
tailored for different harvesting scenarios. These motions are programmed using angular values 
sent to the six servos within the arm, enabling precise and efficient fruit picking. 

 

Fig. 4. Generic Software Block Diagram. 

 

The NVIDIA Jetson Orin operates on the Ubuntu-based Jetpack 6 Operating System and handles 
all image processing for the smart harvesting system. Utilizing the trained YOLOv8 model and 
the OpenCV Python library, the system detects, classifies, and locates fruits in real-time USB 
camera video footage by drawing bounding boxes around them. The bounding boxes are 
generated using pixel coordinate data from the YOLOv8 model.  

In our harvesting Python script, the center of each bounding box is determined, as illustrated in 
Figure 5. This center point is used to send directional and verification Boolean values to the relays. 
If the center of the bounding box is to the left or right of the camera frame's center, the Jetson 
Orin sends a corresponding Boolean value to the relays. When the center point aligns with the 
camera frame's center, a HIGH value is sent to the verification relay, indicating that the arm is 
correctly positioned for harvesting. 
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Fig. 5. Drawing bounding boxes around detected fruits. 
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Fig. 6. ROS2 RViz Joint Control Simulation Environment. 

 

During the development of our programmed harvesting motions for the robotic arm, virtual 
simulation of the joints was crucial for planning the kinematics and ensuring the mounted camera 
remained steady at different points. To achieve smooth and effective motions, the six servos had 
to move at varying speeds to reach their final angles simultaneously. We used ROS2 Foxy to 
simulate these motions. To optimize the harvesting motions, we employed an RViz simulation of 
the six joints of the robotic arm, developed by Elephant Robotics. This simulation environment is 
shown in Figure 6.  

Due to the use of this simulation environment and the developed horizontal position calibration 
system, the need for coordinate control of the robotic arm was eliminated. Coordinate control of 
the joints is more complicated and requires many more computations on the backend since it 
converts a single coordinate input into motions for all of the joints of the arm. In the case of fruit 
harvesting, it is helpful for the arm to keep its end effector cleared of branches and leaves as it is 
reaching for the fruit, to reduce the risk of it getting stuck in the crop or damaging other fruits. 
Relative angular control, which is what we implemented in our system, enables full control of 
every stage of the robotic arm movements, which allows the end effector to be carefully guided 
around obstacles as it reaches for the fruit. Other systems that use coordinate control rely on their 
scripts to determine the most optimal joint movements to reach the final coordinate point, which 
makes the movements less customizable and gentle [6].  

 

III. Detection System Development 

A. Dataset Compilation and Formatting 

The master dataset was custom-compiled using existing unlabeled image datasets from Kaggle. 
The eight types of tree fruits included in this dataset are shown in Figure 7. To create a dataset 
compatible with training a YOLOv8 model, each fruit in the images had to be labeled with 
bounding boxes and class names. This was accomplished using the Roboflow image annotation 
tool. We first divided the images into eight separate datasets, annotated all the images, and then 
merged them to create a final master dataset with eight classes. All images were resized to 
640x640 and their orientations were normalized. The master dataset contained a total of 4,502 
images of tree fruits, with 80% allocated for training and the remaining 20% for validation and 
testing. 
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Fig. 7. Fruits in the Master Dataset. 

 

B. YOLOv8 Computer Vision Training 

YOLOv8 was selected as the computer vision model for this task due to its superior object 
localization capabilities compared to traditional models like ResNet50 and GoogleNet. This 
precision is essential for the smart harvesting system, as the robotic arm must accurately center 
itself on the detected fruit, which requires precise pixel coordinate information in the image frame. 
Training for our model was conducted using Google Colab, leveraging its accelerated GPU 
performance. Specifically, an NVIDIA T4 Tensor Core GPU was utilized for training. Initially, the 
model was run for only 8 epochs, which did not yield consistent accuracy. Although it increased 
the training time significantly, the final model was trained for 25 epochs, resulting in much better 
performance. 

 

Fig. 8. Training and Validation Results. 

The results, shown in Figure 8, demonstrate the model's performance during training on our 
custom dataset. The training process took a total of 56 minutes, averaging about 2 minutes per 
epoch. After 20 epochs, the model's predictions stabilized at an 88% validation accuracy. These 
results indicate that the model can differentiate between eight different types of tree fruits with 
sufficient accuracy. The primary objective, however, was to detect and localize tree fruits in 
general, and these results confirm that the model can accomplish this task with high accuracy. 
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Fig. 9. Confusion Matrix. 

 

The confusion matrix above visually represents the classification predictions made by the deep 
learning model. It's evident that the model achieved significantly higher accuracy in predicting the 
orange and apple classes compared to other types of fruits. This aligns with the fact that the 
master dataset contained more images of apples and oranges, providing the model with more 
data to learn from for these classes.  

To create a model capable of accurately classifying these eight tree fruits individually, a larger 
and more balanced dataset, along with a longer training time, would be necessary. However, for 
the sole purpose of detecting the eight classes as fruits in general, this model performs more than 
sufficiently. 
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Fig. 10. Validation Batch Example. 

The collage above presents a snapshot of the validation results obtained from the deep learning 
model. Various image perspectives were included in the master dataset, ranging from standalone 
individual fruits to fruits in groups and clusters, as well as fruits hanging from trees and partially 
obscured by branches. The results indicate that when the fruit is clearly visible, the model 
classifies it with a confidence rating of 90%. However, when the fruit is partially obscured, the 
confidence rating remains between 60-80%. 

 

IV. SARDOG Integration and Testing 

A. Integration 

Several modifications were implemented to seamlessly integrate the smart harvesting system into 
the SARDOG frame. The base of the robotic arm, being relatively narrow, posed challenges for 
affixing it to a metal rod. To overcome this limitation, a wooden base was designed to securely 
attach the robotic arm with four long bolts, providing ample space for accommodating other 
hardware components.  

Once all components were mounted on the platform, four U-bolts were utilized to firmly attach the 
platform to the left side outermost rod of the robot. This setup allowed for easy attachment and 
detachment of the system, which proved essential for maneuvering the SARDOG through narrow 
passageways during transportation. 
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Fig. 11. Smart Harvesting System by itself. 

B. Testing and Experimentations 

As depicted in Figure 12, positioning the robotic arm sufficiently away from the side of the robot 
enabled easy access to hanging tree fruits. We observed that widening the SARDOG frame to 
match the length of the orchard path facilitated overall system access. This adjustment was 
necessary because positioning the robot closer to the left side of the path was impractical due to 
other onboard systems requiring it to be centered on the path.  

The system demonstrated optimal performance when targeting fruits positioned on the outer 
edges of the trees but faced challenges reaching fruits located closer to the inner parts of the 
trees. This issue can be addressed by incorporating a longer arm. Despite this, the YOLOv8 
model successfully detected and classified fruits positioned deeper within the trees. The arm's 
pulling and twisting functionalities enabled it to harvest oranges and plums without causing 
damage, as oranges require twisting motions while plums require pulling motions. 

   

Fig. 12. Smart Harvesting System Integrated onto the SARDOG. 
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V. Conclusion 

Through this research, we've developed an autonomous smart harvesting system for SARDOG, 
designed to optimize the harvesting of tree fruits. Featuring a six-degrees-of-freedom robotic arm, 
this system reduces the need for human labor in this labor-intensive task. Utilizing a YOLOv8 
deep learning model and two onboard computers, the system achieves fruit detection and 
localization. This information is then translated into real-world actions through a hardware 
communication system and coordinate conversion mechanism.  

The development of this system involved extensive research and design efforts, resulting in a 
solution that enhances the efficiency of one of agriculture's most challenging tasks. By deploying 
it on SARDOG, the system can effectively approach trees and provide a stable base for storing 
harvested fruit, thereby creating a highly effective tool for farmers. 
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