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Abstract.  
Identifying yield zones in agricultural areas is essential for efficient resource allocation, 
operational optimization, and decision-making. While optical remote sensing is widely used in 
precision agriculture, the interest in radar remote sensing data, notably from the Sentinel-1 
Synthetic Aperture Radar (SAR), has increased due to its operation in the C-band frequency, 
capturing data through cloud cover and the availability of free data. The main objective of this 
study was to evaluate whether incorporating radar remote sensing data could improve the 
accuracy of delimiting yield zones compared to relying solely on optical data, as well as to explore 
the exclusive use of SAR data. Four optical vegetation indices and six different types of SAR data 
from three soybean and two sorghum crops were acquired during the peak vegetative period. The 
delimitation of yield zones was carried out through spatial principal component (MULTISPATI-
PCA) followed by Fuzzy C-means cluster analysis, complemented by the application of Fuzzy 
Performance Index (FPI) and Modified Partition Entropy (MPE) functions to determine the optimal 
number of clusters. These maps were created using only optical data, exclusively SAR data, and 
a combination of both. Additionally, the soybean and sorghum data were analyzed together and 
separately. For validation, management zones were created based on actual yield data. The 
agreement between the resulting maps was evaluated using kappa and z-score indices. The most 
promising results were obtained when delimiting zones using both optical and SAR data for the 
grain crops together. In contrast, relying exclusively on SAR data resulted in the worst outcomes. 
Therefore, the fusion of SAR and optical data enhances the accuracy of delimiting yield zones 
compared to relying solely on a single data source, highlighting the potential of integrating SAR 
data in precision agriculture. However, the improvement was not substantial, and the 
computational cost of generating these images should be considered. 
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Introdução 
Precision Agriculture (PA) employs techniques and technologies to optimize costs and input 
usage, addressing the variability of the area. Through PA, it is possible to obtain spatial 
information about the crop by improving management and decision-making in farm operations 
(Gebbers and Adamchuk, 2010). Among the techniques used to manage area variability, dividing 
into management zones subdivides the area and allows for inferences about its homogeneity 
(Córdoba et al., 2016; Oldoni et al., 2019). These zones are created using input layers of 
georeferenced data, such as soil and plant data. Utilizing information on plant variability is crucial 
in delineating management zones. Yield maps correspond more accurately to plant information, 
but there are several challenges in obtaining this information, from availability to data reliability. 
Thus, plant information derived from remote sensing is a viable alternative for use in management 
zones (Almeida et al., 2023). 
In PA, remote sensing has been widely used due to the availability of historical data, such as the 
Landsat and Sentinel-2 series. This allows for obtaining various information about crops through 
spectral bands and vegetation indices (Castaldi, 2021). However, data collection through these 
sensors is limited due to cloud interference and the inability to image during nighttime (Silveira et 
al., 2017). Alternatively, radar remote sensing has been studied for agricultural purposes, 
including monitoring, mapping, and crop classification (Nasirzadehdizaji et al., 2021; Mestre-
Quereda, 2020). The Synthetic Aperture Radar (SAR) sensor operates in the microwave 
wavelength range, experiencing little atmospheric attenuation, thus allowing data collection from 
agricultural areas even in cloudy weather or at night. Additionally, depending on the wavelength, 
it is possible to obtain information about the soil and the canopy (Moran et al., 1998). 
The Sentinel-1 mission is equipped with an onboard SAR sensor, operating in the C-band of 
microwaves (5.54 cm) (ESA, 2024). Although the C-band has limitations in canopy penetration, it 
provides different information from optical sensors (Bahrami et al., 2021). While optical sensors 
reveal aspects of the top of the vegetation cover, SAR sensors capture part of the energy reflected 
by leaves and branches in the canopy depending on the density, allowing inferences about 
geometry and water content (ULABY et al., 1984). These data enable the extraction of backscatter 
coefficients (sigma) and the performance of polarimetric decomposition, resulting in entropy and 
alpha angle. The backscatter response is sensitive to vegetation dynamics, increasing as the 
plant fills with leaves and increases in volume (LI et al., 2023). This greater interaction with the 
leaves significantly impacts backscatter results during the crop's development stage (Wali et al., 
2020). Additionally, backscatter coefficients are highly sensitive to the presence of water 
(Nasirzadehdizaji et al., 2021). Polarimetric decomposition allows for crop monitoring and the 
identification of some crops due to its sensitivity to the target's physical structure (Harfenmeister 
et al., 2021; Wang et al., 2016; Cloude and Pottier, 1997). Furthermore, like in optical remote 
sensing, vegetation indices provide information about crops more efficiently and can be applied 
similarly to SAR data. 
Remote sensing data is an alternative for obtaining area information when other data and 
resources are unavailable. They allow for the collection of spectral behavior information of the 
area, transforming it into spatial information and managing it more efficiently than without any 
prior knowledge. The adoption of management zones is an important activity to address spatial 
variability (Oldoni et al., 2019). However, there is a gap in knowledge regarding the incorporation 
of SAR data for their delineation. In this sense, the objective of this study was to evaluate whether 
the use of radar remote sensing data can delineate yield zones or enhance the accuracy of 
delineating yield zones compared to relying solely on optical data, providing an additional 
resource for specialized crop management. 

Material and Methods 
This study analyzes SAR images for the creation of yield zones in soybean and sorghum crops. 
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The study was conducted in a commercial production area of approximately 106 hectares, located 
in the municipality of Cosmópolis, SP, Brazil (22°41'55.16"S and 47°10'34.15"W). Figure 1 
presents the diagram of the study design. 

 
Fig. 1 – Delineamento do trabalho realizado. 

Grain yield data from three soybean harvests (2020/2021, 2021/2022, and 2022/2023) and two 
intercropping seasons of sorghum (2021 and 2023) were obtained through a yield monitor 
installed on the combine harvester. To ensure data quality, outliers and inliers resulting from 
different factors, such as incorrect adjustment of the platform width, maneuvers performed by the 
harvester, and sensor failures (Menegatti and Molin, 2004), were removed using the procedure 
suggested by Maldaner et al. (2021). Next, ordinary kriging was used for data interpolation (Figure 
2), with the best fit of the experimental semivariogram by the spherical model. 

 
Fig. 2 – Interpolated yield maps of the five crop seasons 
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For the optical data, Sentinel-2 images were acquired with Level 2A atmospheric correction during 
the peak vegetative stage, and Sentinel-1 SAR sensor data on dates close to those of the optical 
data (Table 1). The peak vegetative stage was determined using a time series based on the 
Enhanced Vegetation Index (EVI). From the optical images, it was calculated four vegetation 
indices (Table 2) to obtain different information on crop reflectance. 

Table 1. Dates corresponding to the acquisition of optical and SAR data for the crops. 
Crop Harvest Data S1 Data S2 

Soybean 2020/2021 03/02/2021 03/02/2021 
Sorghum 2021 27/06/2021 20/06/2021 
Soybean 2021/2022 10/02/2022 15/02/2022 
Soybean 2022/2023 05/02/2023 08/02/2023 
Sorghum 2023 17/06/2023 18/06/2023 

The SAR sensor operates in the C-band, and the European Space Agency (ESA) provides the 
data free of charge. We acquired SAR data at Level 1 SLC (Single Look Complex) in the IW 
(Interferometric Wide) mode, where the sensor operates in dual polarization: VH (vertical 
transmission and horizontal reception polarization) and VV (vertical transmission and reception 
polarization). This acquisition configuration allows for obtaining both backscatter coefficient data 
and polarimetric decomposition for dual polarizations (Cloude, 2007). 

Table 2. Índices de Vegetação ópticos calculados. 
 Vegetation Index Equation 

EVI Enhanced vegetation index 2.5(NIR − Red) / (NIR + 6Red − 7.5Blue + 1) 
SFDVI Spectral Feature Depth Vegetation Index  [(NIR+Green)/2] –[(R+REDEDGE1)/2] 
NDVI Normalized difference vegetation index (NIR+Red)(NIR−Red) 

CI Chlorophyll index (with green band) (NIR / Green) – 1 

 
It was conducted that SAR image processing, as recommended by Diniz (2019) to extract 
backscatter coefficients (σ_VV^0, σ_VH^0) (Figure 3a), as well as polarimetric decomposition 
that generated corresponding images of the alpha angle and entropy (Figure 3b). Based on the 
backscatter coefficients, it was calculated the Radar Forest Degradation Index (RFDI), which aids 
in differentiating     vegetation types and providing more information from dual-polarization data 
(MITCHARD et al., 2012). Through polarimetric decomposition processing, it was obtained that 
the Dual-Pol Radar Vegetation Index (DPRVI), proposed by Mandal et al. (2020), which utilizes 
Cloude and Pottier's (1996) polarimetric decomposition to calculate the normalized dominant 
eigenvalue and degree of polarization, allowing for crop monitoring. After generating the SAR 
images (σ_VV^0, σ_VH^0, H, alpha angle, RFDI, and DPRVI), it was clipped these images with 
a distance of 15 meters from the pathways to avoid external influences on the crop. Additionally, 
these indices were standardized on a scale from 0 to 1 to facilitate comparison between variables. 
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Fig. 3 - Processing flow of SAR images for backscatter coefficient data (a) and for polarimetric decomposition (b). 

 

The delineation of productivity zones was carried out using spatial principal component analysis 
(MULTISPATI-PCA), followed by Fuzzy C-means cluster analysis, as per Córdoba et al. (2016). 
This approach reduces data collinearity, allowing for determining the most suitable number of 
zones for each dataset. The definition of the number of principal components (PCs) used in 
clustering depends on the explained cumulative variance, where a minimum value of 70% was 
adopted. Two cluster quality indices were applied to determine the ideal number of clusters 
(zones): Fuzzy Performance Index (FPI) and Modified Partition Entropy (MPE), where lower 
values indicate a more suitable number of zones. 
Different numbers of zones were explored, ranging from 2 to 5, in nine distinct scenarios. This 
included the analysis of both crops separately (soybean and sorghum), as well as combined 
(soybean+sorghum), and the use of SAR and optical data individually and combined (SAR, 
optical, and SAR+optical). Three reference scenarios were also considered based on soybean, 
sorghum, and soybean+sorghum yield data.  

Results e discussion 
During the implementation of spatial PCA for the tested scenarios, the number of principal 
components explaining more than 70% of the cumulative variance ranged from 2 to 4 (Table 3). 
Using only a remote sensing approach (optical or SAR) for sorghum, only two principal 
components (PCs) were needed, while soybean required three PCs to reach 70%. This difference 
can be attributed to the amount of input data: sorghum had data from only two harvests, while 
soybean had data from three harvests. This indicates a certain discrepancy in yield behavior over 
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the years. Additionally, when using combined optical and SAR data, the number of necessary 
PCs increased to 3 and 4, respectively, indicating that a higher amount of input data influences 
the process of defining PCs. The indices that stood out the most in the first PCs were SFDVI for 
soybean and NDVI and SFDVI for sorghum (Figure 4). When integrating both crops, in addition 
to these indices, CIgreen also stood out. The last component in all cases highlighted the DPRVI 
index, indicating that SAR data, especially those formed by the polarimetric decomposition 
process, influence principal component analysis and consequently provide additional information 
to optical VIs. 

Table 3. Explained variance (V) and the total explained variance (Vacu), in %, of the spatial principal components (PCs) 
applied to the different scenarios and the number of PCs adopted to reach at least 70% (N). 
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m 
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m 
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V Vac
u 

V Vac
u 

V Vacu V Vac
u 

V Vac
u 

V Vacu V Vac
u 

V Vac
u 

V Vacu 

1 4
2 42 6

3 63 53 53 3
0 30 3

7 37 27 27 32 32 4
7 

47 4
0 

40 

2 2
6 69 2

0 84 16 70 2
7 57 3

4 71 20 48 15 47 1
8 

66 1
4 

54 

3 1
2 81     2

2 79   14 63 13 60 1
3 

88 9 64 

4           11 74 9 70   5 70 

N 3 2 2 3 2 4 4 3 4 

 
Fig. 4 – Variables that stood out in the principal component analysis explaining more than 70% of the cumulative variance 

in scenarios integrating SAR and optical data. 

 
Based on FPI and MPE indices, three zones would be indicated for soybean, two for sorghum, 
and also two zones when both crops were analyzed together (Figure 5). Additionally, the option 
for 2 zones is not viable when exclusively using SAR data due to the higher values obtained. SAR 
data produce images with different patterns than optical images (Figure 4), as they provide 
information affected by distinct variables such as volume, geometry, and surface moisture (LI et 
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al., 2023; Harfenmeister et al., 2021; Nasirzadehdizaji et al., 2021), which are not related to 
vegetative vigor as with optical indices. Furthermore, when including SAR data with optical data, 
the indices tended to follow the same pattern as optical data and resembled productivity data 
more closely. Therefore, it was decided to proceed with the study using two zones. 

  
Fig. 5 – Cluster quality indices (MPE and FPI) for scenarios with soybean (a), sorghum (b), and using soybean and 

sorghum together (c). 
 

Upon analyzing the similarity between actual productivity maps and those obtained through 
remote sensing using the kappa coefficient, it was found that the integrated use of SAR and optical 
data yields better results than using each type of data alone (Table 4). Despite radar wave 
penetration in the C-band depending on canopy density (Bahrami et al., 2021), and the higher 
canopy density at the vegetative peak, SAR data still added information to optical data. Although 
SAR data showed the greatest discrepancy compared to productivity data, they were significant 
in augmenting clustering with optical data, as indicated by the Z score. However, despite SAR 
data improving productivity zone definition, the improvement when including them was less than 
10%, considering the kappa index. The high computational cost of generating this data is a 
disadvantageous point. Therefore, the decision to include SAR data should consider the balance 
between marginal accuracy benefits and associated computational costs. 
Table 4. Kappa index, z score, and the percentage difference in kappa when using SAR data along with optical data using 

two zones. 
 Soybean Sorghum Soybean + Sorghum 
 Kappa z-score Kappa z-score Kappa z-score 

Optical 0.527 85.5 0.633 103 0.663 32.6 
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SAR 0.077 12.5 0.276 44.8 0.226 11.1 
Optical + SAR 0.573 93.1 0.645 105 0.704 34.7 

Difference 8%  2%  6%  

  
The integrated use of SAR and optical data yielded better results in terms of productivity zone 
delineation, especially when integrating both crops. In addition to this statistical finding through 
kappa and z score (Table 4), the similarity between productivity zones created by actual 
productivity data and those derived from remote sensing images can also be visually observed 
(Figure 6). This suggests that data diversity provides information from more than one crop and 
can delineate better productivity zones, even with different phenologies, resulting in better 
similarity with actual productivity. Therefore, integrating remote sensing data from different 
sources and crops can improve accuracy in delineating management zones. 

 
Fig. 6 – Productivity zone maps (2 zones) for soybean and sorghum crops individually and combined, created using 

productivity data (reference), only optical remote sensing information (optical), SAR sensing, and integrating both pieces 
of information (Optical+SAR). 

Conclusion 
Compared to sole reliance on optical data, the incorporation of SAR data in defining productivity 
zones may increase similarity with zones determined by the productivity map. However, it is 
crucial to consider the high operational cost associated with obtaining SAR data, which may 
render this approach unfeasible in some situations.  
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