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Abstract 
In modern agriculture, timely and precise nitrogen (N) monitoring is essential to optimize resource 
management and improve trade benefits. Potato (Solanum tuberosum L.) is a staple food in many 
regions of the world, and improving its production is essential to ensure food security and promote 
related industries. Traditional methods of assessing nitrogen are labor intensive and time 
consuming, and require subjective observations. To address these limitations, combining the use 
of multispectral data derived from drone imagery with the use of artificial intelligence models could 
be a better approach to the non-invasive and high-resolution monitoring of potato fields 
throughout the growing season. To achieve this objective, a study was conducted at four different 
commercial potato fields on Prince Edward Island, Canada. Images were taken from an 
unmanned aerial vehicle (UAV) of plants at the early flowering stage. Multispectral bands were 
extracted and vegetative indices (VIs) calculated, and were then used to predict petiole nitrate 
(NO3

--N) concentrations at the early flowering stage. Various machine learning (ML) algorithms 
were used in these predictions, including random forest (RF), bagged trees (BT), gradient 
boosting machines (GBM), support vector machines (SVM) and Bayesian artificial neural network 
(BANN) algorithms. A prediction model was trained with 75% of the data set and evaluated using 
the remaining 25% of the data set. The results revealed that the BT model trained on UAV images 
(relative root mean square error [RRMSE] = 12.7% and relative mean absolute error [RMAE] = 
9.6%) performed well in predicting petiole nitrate concentrations. These results suggest that 
multispectral data has potential as input data for ML algorithms to predict in-season N. This 
method  shows promise in the digital agriculture and smart farming sectors, with the primary 
objectives of mitigating excessive N applications and optimizing potato production to its full 
potential. 
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Introduction 
Nitrogen (N) management in potato (Solanum tuberosum L.) plays an important role in promoting 
physiological growth and tuber yield, but optimizing N rates is quite challenging due to the plant’s 
shallow root system (Muleta and Aga 2019). Another issue aside from the poor root structure is 
that the optimal N application varies greatly depending on the current growth conditions, which 
are themselves extremely variable across time and space, eventually leading to over- or under-
fertilization with N (Berger et al. 2020). Excessive N in the soil may result in higher vegetative 
growth, poor skin set, delayed tuber maturation, and leaching of N into groundwater, while N 
deficiency during critical growth stages leads to premature leaf senescence, low starch content 
and lower tuber yield (Bohman et al. 2021; Zhou et al. 2022). 
Plants’ N requirements can be assessed during the critical growth stages by in-season sampling, 
which can be helpful in optimizing N applications (Grell et al. 2021). Traditional N assessment 
methods require manual tissue sampling and a laborious chemical analysis approach, which often 
requires significant time and resources (Liang et al. 2019). However, in recent years, the 
integration of modern machine learning with remote sensing technologies and its application in 
unmanned aerial vehicle (UAV) image processing have revolutionized the agriculture sector 
through the optimization of N management (Ennaji et al. 2023). 
Numerous studies have suggested the usefulness of UAV imagery, and of machine learning (ML) 
to process it, in non-invasive in-season N monitoring (Alkhaled et al. 2023; Hunt et al. 2018). For 
instance, Zhou et al. (2022) successfully predicted petiole nitrate (NO3

--N) concentrations in 
potato plots using hyperspectral images, with a reported root mean square error (RMSE) of 
0.24%. Similarly, Peng et al. (2021) extracted data from UAV multispectral images to predict plant 
N uptake using a random forest algorithm, reporting RMSE values ranging between 7.1% and 
22.0%. The goal of this study is to use ML algorithms trained and validated using high-resolution 
UAV data exclusively, in order to predict in-season N at commercial potato growing sites on Prince 
Edward Island (PEI), Canada. 

Material and Methods 
Site description 
The experiments were conducted in 2020 and 2021 on potato producing commercial sites located 
in pedoclimatic conditions of PEI, Canada (Fig 1). The four different experimental sites consisted 
of two sites at Oyster Cove Farms, OC1 (8.6 ha) and OC2 (15 ha), and two sites at Black Pond 
Farms, BP1 (8.8 ha) and BP2 (8.1 ha) (Fig 1). Soil series for four sites was Charlottetown, having 
sandy loam texture with a pH ranging from 5.3 to 6.7 (average 6.0). All the sites were on a three 
year crop rotation strategy and identified as Orthic Humo-Ferric Podzol soil classification (Soil 
Classification Working Group, 1998). All the sites were on a three-year crop rotation. The 
experiments were laid out in a generalized randomized design, with three management zones 
(MZ) and site-specific N treatments.  
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Fig 1. Experimental sites, Oyster Cove (OC1 & OC2) and Black Pond (BP1 & BP2) (Source : Google Earth®). 

 
Table 1. Experimental layout based on generalized randomized design, and treatments implemented at the Oyster Cove 

(OC1 and OC2) and Black Pond (BP1 and BP2) sites. 

Site MZ  Block Treatment  Sampling 
points 

OC1 3 4 Uniform 35 
   VRA  
OC2 3 4 Uniform 36 
   VRA  
BP1  3 3 Three 

specific N 
rates  

27 

BP2 3 3 Three 
specific N 
rates 

27 

Note: MZ = management zone, Uniform = uniform nitrogen rate application: 168 kg ha-1 for OC1 and OC2. 
VRA = variable nitrogen rate application: 22, 45, 67 kg ha-1 for OC1 and 34, 56, 78 kg ha-1 for OC2. Three 
specific nitrogen rates:  22, 50, 78 kg ha-1 for BP1 and 45, 73, 101 kg ha-1 for BP2. 

Ground truth sampling 
Sampling points representative of the overall condition of the experimental sites were selected 
and georeferenced (Table 1). These points were chosen to collect ground truth data on petiole 
nitrate concentrations through petiole sampling (target stage), which was performed 62 days after 
planting (DAP) to monitor in-season plant NO3

--N concentrations. For petiole sampling, the fourth 
youngest, fully expanded leaf from the top of the plant was sampled from 20 plants at all 
georeferenced sampling points. The tissue samples were oven-dried at 60°C, ground, and sieved 
to 2 mm, extracted and analyzed using a continuous flow injection analyzer. N concentrations 
were calculated from petiole nitrate concentrations as a percentage (NO3

--N ) (Bohman et al. 
2019). The data sets from all four sites were subsequently merged  (35 + 36 + 27 + 27) (Table 1) 
into larger data sets, with 125 points provided for ground truthing.  
Multispectral image acquisition and preprocessing 
Remote sensing (RS) hyperspectral imagery data were recorded at the selected target stage 
(petiole sampling, 62 DAP) using a UAV (Matrice 210 RTK V2 UAV; DJI, Shenzhen, China) 
equipped with a MicaSense Altum multi-spectral camera (MicaSense Inc., Seattle, WA, USA). 
The UAV collected imagery in five spectral bands, including blue (475 nm and 32 nm bandwidths), 
green (560 nm and 27 nm bandwidths), red (668 nm and 14 nm bandwidths), rededge (717 nm 
and 12 nm bandwidths) and near-infrared (NIR) (842 nm and 57 nm bandwidths). The 
hyperspectral images were processed using Pix4Dmapper  software (Pix4D S.A., Prilly, 
Switzerland, version 4.2.27), and the final mosaic images were resampled to a 5-cm spatial 
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resolution. At the georeferenced sampling points, mean reflectance values for each spectral band 
were extracted using the simple feature (sf) package in R, for later use in the calculation of 
vegetative indices (VIs) (ver. 4.3.1; R Core Team, 2023). In addition, ten different VIs—consisting 
of the optimized soil adjusted index (OSAVI), green and red ratio vegetation index (GRVI), 
normalized difference red-edge index (NDRE), modified soil-adjusted vegetation index (MSAVI), 
canopy chlorophyll content index (CCCI), chlorophyll vegetation index (CVI), chlorophyll index 
(CIgreen), chlorophyll index (CIrededge), green normalized vegetation index (GNDVI) and 
transformed chlorophyll absorption reflectance index (TCARI)—were chosen and calculated 
based on an extensive review of the specific literature on potato production (Goffart et al. 2023; 
Peng et al. 2021; Sun et al. 2022; Yang et al. 2021). 
 
Feature optimization and model development  
Since the VIs were calculated from data extracted from the five multispectral bands, 
multicollinearity among predictors may occur that can lead to unnecessary noise in ML algorithms, 
causing an increase in standard errors, unstable coefficients and difficulty in selecting important 
features (Kuhn and Johnson 2013). Highly correlated predictors were eliminated using the 
findCorrelation function in R, followed by the Boruta feature selection algorithm in the R Boruta 
package, in order to identify the most relevant features associated with the target stage (petiole 
nitrate concentration). Following a careful feature selection, in order to obtain robust and unbiased 
ML models, the data set was randomly partitioned into training data (75%) and model validation 
data (25%). For model validation, a five-fold cross validation technique was employed using the 
caret package in R studio (ver. 4.3.1; R Core Team, 2023). Five different ML models, random 
forest (RF), bagged trees (BT), gradient boosting machines (GBM), support vector machines 
(SVM) and Bayesian artificial neural network (BANN), were employed for the prediction process. 
Each ML model underwent an intensive iterative process in order to achieve hyperparameter 
optimization, maximizing the model’s ability to detect complex pattens in the data set.  
Model performance evaluation   
The final predictive model was evaluated using a validation test set. To screen the goodness of 
fit for all models, several metrics were computed, including the root mean square error (RMSE), 
relative root mean square error (RRMSE [%]), mean absolute error (MAE) and relative mean 
absolute error (RMAE [%]). The selection of the best performing ML model was based on the 
minimal error percentage closest to zero (Chen et al. 2011). 
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Result and discussion  
Relationship among predictors and target stage  
Understanding the complex associations between multispectral bands, VIs and biochemical traits 
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such as petiole NO3
--N  concentrations is essential for understanding overall ML model 

performance and potato crop health (Ahmad and Sharma 2023; Peng et al. 2021). A moderate 
but nevertheless significant correlation was found between predictors (multispectral bands and 
VIs) and petiole NO3

--N  concentrations (Fig 2). Among the predictors, NDRE showed the highest 
correlation (r = - 0.42, p = 0.001) with petiole NO3

--N concentrations. Conversely, TCARI showed 
the lowest correlation (r = - 0.19, p = < 0.001) (Fig 2). These findings are in agreement with those 
obtained by Zhou et al. (2022), who reported a significant relationship between rededge or 
rededge derived VIs and petiole NO3

--N concentrations. This significant relationship could be due 
to the sensitivity of rededge region wavelengths to leaf chlorophyll content, which is eventually 
related to the plant’s nitrogen status (Morier et al. 2015; Wu et al. 2007).  

 

 

 
Fig 2. Correlation matrix between multispectral bands, vegetation indices and petiole NO3--N concentrations at 62 DAP. 

Feature selection for model building 
The hybrid feature selection approach (correlation threshold for predictors and Boruta algorithm) 
proved useful in identifying the most relevant features influencing the predictive power of ML 
models among the 15 different bands and VIs. Using this approach, the CCCI was found to be 
most important feature in predicting petiole nitrate concentrations (Fig 3). These findings 
corroborate those by Liu et al. (2021), who found that rededge region wavelengths and VIs derived 
from rededge wavelengths are associated with petiole nitrate concentrations.  
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Fig 3. Ranking of feature importance based on the Boruta feature selection algorithm. 

 
 
Machine learning model performance and validation  
Using the selected input variables, five different ML predictive models were built to predict petiole 
nitrate concentrations in order to compare their performance: RF, BT, GBM, SVM and BANN. All 
models were trained using k-fold cross validation (k = 10) and validated using the test data set. 
For validation purposes, scatter plots for observed and predicted petiole nitrate concentration 
values were fitted using a bootstrapping technique to reveal complex patterns in the data set (Fig 
4).  
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Overall, all ML models exhibited RMSE values ranging between 0.31 and 0.36 (NO3
--N) and 

RRMSE values between 12.7% and 15.4%, while the MAE for all ML models ranged between 
0.23 and 0.28 (NO3

--N), with a RMAE below 12%. In particular, the BT model had the best 
performance, with an RMSE of 0.30 (NO3

--N) (12.7% RRMSE) and a MAE of 0.23 (NO3
--N) (9.6% 

RMAE) (Table 2). The most relevant feature in the BT model was CCCI, followed by rededge, 
NIR and TCARI (Fig 5). The study results are in agreement with those obtained by Zhou et al. 
(2022), who predicted petiole NO3

--N concentrations using three different remote-sensing 
platforms (DJI phantom 4, Parrot Sequoia+ and MicaSense RedEdge MX), and reported RMSEs 
ranging between 0.13 and 4.6 (NO3

--N). Moreover, Zhang et al. (2022) reported that rededge 
spectra and rededge derived VIs such as the canopy chlorophyll content index (CCCI) are more 
sensitive to chlorophyll content and eventually to leaf nitrogen levels than broad wavebands 
consisting of the blue or red bands or a mixture of visible and NIR light. 
 

Table 2. Model performance insights and statistical analysis indices of RMSE, MAE, 
RRMSE and RMAE for petiole nitrate concentration (NO3

--N). 

Model RMSE MAE RRMSE RMAE 

RF 0.31 0.23 13.0 9.40 
GBM 0.36 0.28 15.2 11.8 
BT 0.30 0.23 12.7 9.60 

SVM 0.35 0.25 14.7 10.3 
BANN 0.33 0.24 15.4 10.9 

Note: RMSE and MAE in (NO3
--N) percentage, whereas RRMSE and RMAE are presented as error percentage. 

 

 
 

Fig 4. Validation of the machine learning models by comparing 
observed and predicted petiole nitrate concentrations (NO3-N). The five 
different colors of the points represent the different machine learning 

models. 

 
 

Fig 5. Importance of different bands and vegetation 
indices according to machine learning algorithm in 
explaining petiole nitrate concentration. 
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Conclusion 
The goal of this project was to utilize multispectral remote sensing data obtained with a UAV to 
train different ML models to predict in-season N via petiole nitrate concentrations. The fitted ML 
models proved to be robust and useful in predicting in-season N values  and in identifying the 
most relevant features for determining in-season petiole nitrate concentrations. Moreover, this 
work also provided a complete methodology — from image processing, and feature extraction 
and selection to model development in R — which can be combined with more advanced ML 
techniques such as ensemble model to improve the accuracy of predictions in the future. The 
study results have improved and better informed the existing art of in-season N monitoring in 
potato cultivation. However, future attempts should incorporate increased sample sizes in 
combination with additional sources of information (agronomic, weather or soil properties) in order 
to develop highly robust and generalized ML models.  
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