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Abstract.  
Enhancing crop productivity through improved photosynthetic efficiency is crucial for global food 
security. This study investigates the relationships between six key photosynthetic parameters 
(i.e., intercellular CO₂ concentration (Ci), transpiration rate (E), quantum yield of photosystem II 
(PhiPS2), CO2 assimilation (A), stomatal conductance (gs), and chlorophyll fluorescence 
(ChlF)), above ground biomass (AGB), chlorophyll content, canopy height, and grain yield (GY) 
at three critical growth stages of winter wheat. Advanced models, including Partial Least 
Squares Regression (PLSR) and Random Forest (RF), are used to predict GY and agronomic 
nitrogen use efficiency (aNUE) at three different growth stages. Early stage showed strong 
positive correlation between transpiration rate and stomatal conductance (r = 0.89***) and a 
negative correlation between photosynthesis rate and transpiration rate (r = -0.63***). In the 
medium stage, high correlations were observed among gs,E, and Ci (r = 0.97*** and r = 
0.93***). Significant correlations between SPAD values and photosynthetic parameters are 
primarily observed in the late stage, indicating that higher chlorophyll content is associated with 
better photosynthetic efficiency and higher photosynthesis rates. A significant correlation 
between chlorophyll content and yield was observed in both the medium and late growth stages. 
A total of 35 different vegetation indices (VIs) related to chlorophyll, biomass, and 
photosynthesis were selected for analysis. Among these, NDVI, TVI, CTVI, RDVI, and 
RDVI_REG demonstrated strong positive correlations with both yield and chlorophyll content. 
Compared with PLSR, RF performed better in the aNUE estimation, highest accuracy was in the 
medium stage. Integrating photosynthetic parameters and vegetation indices enhances the 
prediction of grain yield and nitrogen use efficiency in winter wheat. The robust performance of 
PLSR and RF models supports their use in phenotypes monitoring, with key indicators such as 
AGB, PhiPS2, Ci, and Fv'/Fm' being vital for accurate aNUE and yield optimization. In summary, 
this research underscores the potential of different Nitrogen-related phenotypes in refining 
wheat cultivar yields and emphasizes the efficacy of UAV-enabled measurements for precise 
predictions associated with GY and NUE. 
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1.Introductions 
Photosynthesis is the foundational process of energy capture and storage in organisms, driving 
vital cellular activities [1]. As the cornerstone of crop productivity, improvements in photosynthetic 
efficiency are directly linked to potential yield increases [2-5]. Enhancements in photosynthetic 
efficiency, particularly the rate of CO2 assimilation (A) per leaf area can lead to yield increases 
[6]. It’s encapsulating the efficiency of carbon assimilation by a plant through the photosynthesis, 
quantifying the balance of CO2 uptake and O2 release. The rate of CO2 assimilation not only 
serves as a metric for photosynthetic activity but also acts as a comprehensive indicator of 
resource use efficiency [7,8], encompassing factors such as light [9], water [10], and nutrient 
availability [11]. Consequently, this measure serves as an essential indicator, crucial for assessing 
both crop productivity and the potential yield. Besides, stomatal conductance, denoted as ‘gs’, is 
also a vital physiological mechanism in plants that ensures gas exchange and significantly affects 
photosynthetic performance [12]. It facilitates the transfer of atmospheric CO2 to mesophyll cells, 
where Rubisco catalyses CO2 fixation in the Calvin-Benson-Bessam (CBB) cycle. Increasing the 
CO2 concentration in the leaf can accelerate the CBB cycle and thus increase the rate of CO2 
assimilation [13]. Beyond CO2 assimilation and stomatal conductance, chlorophyll fluorescence 
(ChlF) parameters, particularly PSII's maximum quantum efficiency in dark- and light-adapted 
states (Fv/Fm and Fv'/Fm'), serve as reliable indicators of photosynthetic efficiency [14], plant 
health [15], and stress detection [16]. Fv'/Fm' reflects the maximum energy conversion efficiency 
of PSII reaction centres when they are in the oxidized state [17]. A substantial number of 
publications cover the theoretical foundations of chlorophyll fluorescence analysis, emphasizing 
its value as a tool for studying the photosynthetic mechanisms [18,19]. In addition to these 
parameters, Intercellular CO₂ Concentration (Ci), which represents the concentration of CO₂ 
within the leaf's intercellular spaces, Transpiration Rate (E), which indicates the rate at which 
water vapor is lost from the plant to the atmosphere, and Quantum Yield of Photosystem II 
(PhiPS2), which measures the efficiency with which absorbed light is used for photochemistry in 
Photosystem II (PSII), are also important. These parameters collectively provide a comprehensive 
understanding of photosynthetic efficiency, plant health, and stress detection. 
While these photosynthetic parameters provide insight into the immediate physiological 
responses of plants, it is AGB and canopy height offer cumulative measures of these processes 
over time. AGB represents the tangible outcome of photosynthetic activity—a synthesis of organic 
matter that is directly related to plant development and an essential determinant of yield [20,21]. 
Canopy height, on the other hand, serves as an indicator of plant vigor and growth dynamics, 
reflecting the overall health and productivity of the crop. Both AGB and canopy height serve as a 
comprehensive indicators for monitoring crop growth [22], predicting yield [23] and Agronomic 
Nitrogen Use Efficiency (aNUE) which is calculated by taking the difference between the crop 
yield with nitrogen fertilizer and the crop yield without nitrogen fertilizer, and then dividing this 
difference by the total amount of nitrogen applied[24]. The variations in AGB and canopy height 
among different wheat cultivars further illuminate the genetic and environmental interactions 
affecting crop productivity [25]. Therefore, a comparative analysis between AGB, canopy height 
and photosynthetic parameters is paramount to understand their respective roles and combined 
predictive power for winter wheat yield and aNUE, which is the focus of this study.  
So far, precise, efficient, and objective plant phenotyping, including photosynthetic efficiency 
measurement, canopy height measurement, biomass estimation and yield prediction, has 
become a major focus of plant science [26,27]. However, traditional methods for assessing plant 
phenotyping are laborious and time consuming, which limits the sample analysis throughput [28]. 
Advances in the integration of Unmanned Aerial Vehicle Systems (UAVs) - derived datasets with 
advanced machine learning (ML) and deep learning (DL) algorithms [29] offers a promising frontier 
for enhancing the precision for GY [30], nitrogen uptake [31], senescence [32], plant density [33], 
and plant height [34].  
Notwithstanding the application of UASs and associated vegetation indices (VIs) in the analysis 
of GY, little is known about what kind of the Nitrogen-related phenotyping traits is more important 
to predict grain yield. Moreover, the correlation between chlorophyll content, photosynthetic 
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activity and aNUE is not well-explored in the existing literature, adding another layer of complexity 
to understanding plant health and productivity.  
This study postulated that higher chlorophyll content has a higher correlation with photosynthesis 
and can indicate a great capacity for yield production and nitrogen use efficiency. The objectives 
of this investigation are i) to examine the correlations between photosynthetic parameters, AGB, 
canopy height, chlorophyll content, and VIs with winter wheat grain yield and aNUE; ii) to evaluate 
the performance of selected VIs and ML models in predicting wheat yield and aNUE.  

2.Materials and Methods 

2.1 Study Area and Experimental Design 
Seven diverse European winter wheat elite varieties were involved in this experiment, i.e., 
Aurelius (Saatbau Linz), Bernstein (Syngenta), Dagmar (Limagrain), Mv Nador (Marton genetics), 
Nogal (F. Desprez et Fils), Skyfall (R.A.G.T Saaten Deutschland), and Julius (KWS Lochow). 
These varieties were sown in plots that measured 10 m x 1.85 m, with a row spacing of 15 cm. 
The trial utilized a randomized complete block design, comprising four replicates and three 
nitrogen (N) treatments, resulting in a total of 84 plots. The experimental site was located at the 
research station of the Technical University of Munich in Dürnast, Freising (48.40630° N, 
11.69535° E). The soil at this location is described as a homogeneous Cambisol with a 
composition of 20.8% clay, 61.5% silt, and 16.6% sand. Three N fertilizer levels (i.e., 0, 120, and 
180 kg N ha-1), which were chosen based on typical agronomic recommendations for winter wheat 
were implemented. These were applied in three equal portions around BBCH 25, 32, and 60 using 
Ammonium Sulphate Nitrate and Calcium Ammonium Nitrate. The soil was rich in P and K, so no 
additional application rate was added. Standard field management practices were uniformly 
applied across all plots. Sowing took place on 02.11.2022, and the crops were harvested upon 
reaching full maturity on 27.07.2023. 

 
Fig 1 Location of the study area and overview of the experiment site. Different treatments are noted by N1 – 0 kg N ha-1; N2 

– 120 kg N ha-1; N3 – 180 kg N ha-1. 

2.2 Data collection and acquisition 
2.2.1. Photosynthetic Parameter Quantification 

This investigation delineated the photosynthetic dynamics of selected European winter wheat 
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cultivars at critical phenological stages. Early (end of stem elongation), Medium (flowering), and 
Late (grain filling and maturation). The LI-6800 Portable Photosynthesis System (LI-COR 
Biosciences, Lincoln, NE, USA) facilitated the quantification of key photosynthetic metrics: net 
assimilation rate (A), stomatal conductance to water vapor (gsw), and the efficiency of 
photosystem II photochemistry as indicated by chlorophyll fluorescence (Fv'/Fm'). The LI-6800 
provided data on four stomatal conductance parameters; however, this study focused on gsw due 
to its documented responsiveness to water related indices. Environmental conditions within the 
measurement chamber were rigorously regulated to ensure uniformity: airflow (700 μmol s-1), 
relative humidity (55%), ambient CO2 (400 ppm), chamber temperature (25°C), PAR (20 μmol m-

2s-1), and light intensity for fluorescence measurements (1500 μmol m-2s-1). Measurements were 
taken post-equilibration, averaging 40 to 60 seconds per sample. Three foliar samples per plot 
were analyzed, with mean values used for subsequent analysis. 
2.2.2. Chlorophyll Content Measurement 

A SPAD-502 meter (Minolta Ltd, Osaka, Japan) was employed to obtain chlorophyll content. After 
calibrating the device, readings were taken from the first fully expanded leaf. Each leaf was 
measured three times, focusing on its upper, middle, and lower parts. In each plot, five random 
measurements were recorded, and their average determined the final value for that plot.  

2.2.3.Acquisition and Processing of Multispectral Images 

Reflectance data was captured using a DJI Matrice M300 RTK UAV, equipped with a MicaSense 
Dual Camera Kit. This setup captured data across ten spectral bands, namely: blue (444 nm, 475 
nm), green (531 nm, 560 nm), red (650 nm, 668 nm), red edge (705 nm, 717 nm, 740 nm), and 
near-infrared (840 nm). Radiometric correction was ensured by an onboard ambient light sensor 
and reflectance panels used for calibration. UAV flights were conducted at 12 meters AGL for 
optimal GSD (1.08 cm) with 80% overlap in all directions. Flight timing was synchronized with 
peak solar irradiance for consistency. Orthomosaics were generated in Agisoft Metashape 
Professional 1.8.4, with geospatial accuracy verified by the UAV's RTK-GPS and SAPOS. 
Spectral band calculations on orthomosaics were performed in QGIS 3.32.3, employing raster 
calculator tools and Excess Green Index-based segmentation to minimize soil background 
interference. The refined spectral indices were saved as TIFF files for correlation analyses within 
the R environment. In this study, a comprehensive suite of 35 VIs was meticulously chosen to 
forecast the yield of winter wheat cultivars. These Vis are related to photosynthesis, AGB, and 
chlorophyll content. The aggregation of these indices was aimed at harnessing their collective 
predictive power to enhance the accuracy of yield estimations, thereby addressing the critical 
intersection of photosynthetic activity and biomass accumulation. Computations were conducted 
in Python, using the 'rasterio' package to manage zonal statistics and calculate mean VI values 
for defined AOIs corresponding to experimental plots. 
2.2.4. Modelling Approaches and Evaluation 

Partial Least Squares Regression (PLSR) and Random Forest (RF) were employed to discern 
predictive relationships between VIs and empirical phenotyping data. Correlation analyses and 
model constructions were performed using various Python packages, including ‘pandas’, ‘numpy’, 
‘scikit-learn’, ‘matplotlib’, and ‘seaborn’. Data was partitioneed into training and test sets with 
extensive cross-validation to ensure model validity. Model accuracy was evaluated using 
coefficient of determination (R2) (1), and Root Mean Square Error (RMSE) (2), with higher R2 and 
lower RMSE indicating improved model precision.  

                                                       𝑅! = 1 −	∑ (𝑦" − 𝑦#))!$
"%& 	/	∑ (𝑦" −	𝑦,)!$

"'& 	                                            (1) 

                  𝑅𝑀𝑆𝐸	 = 		01 𝑘2 	∑ (𝑥" −	𝑦")!$
"%& 			                                                    (2) 
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3.Results and Discussions 

3.1 Correlation analysis among photosynthesis parameters, Above Ground Biomass 
(AGB), SPAD, height, Agronomic Nitrogen Use Efficiency (aNUE) and Grain Yield (GY) 
Table 1. Correlation analysis among photosynthesis parameters, Above Ground Biomass (AGB), SPAD, height, Agronomic 

Nitrogen Use Efficiency (aNUE) and Grain Yield (GY) in different stages. 
Stages Parameter

s 
A Ci gsw E PhiPS

2 

Fv'/Fm

' 

SPAD AGB GY aNUE Heigh

t 

Early A 1.00**
* 

          

 Ci 0.03 1.00**
* 

         

 gsw -0.27* -0.07 1.00**
* 

        

 E -
0.63**

* 

-0.13 0.89**
* 

1.00**
* 

       

 PhiPS2 -
0.53**

* 

-0.10 0.42** 0.63**
* 

1.00**
* 

      

 Fv'/Fm' -
0.50**

* 

-0.14 0.38** 0.58**
* 

0.93**
* 

1.00***      

 SPAD 0.16 0.06 -0.21 -0.23 -0.09 -0.13 1.00**
* 

    

 Biomass 0.28* -0.02 -0.08 -0.20 -0.30* -0.29* 0.26* 1.00**
* 

   

 Yield 0.17 -0.15 -0.20 -0.21 -0.13 -0.02 0.28* 0.24 1.00**
* 

  

 aNUE 0.04 0.16 0.12 0.07 -0.03 -0.05 0.02 0.04 0.33* 1.00**
* 

 

 Height 0.12 -0.12 -0.18 -0.20 -0.16 -0.06 -0.18 0.31* 0.14 -0.06 1.00**
* 

             

Mediu
m 

A 1.00**
* 

          

 Ci 0.41** 1.00**
* 

         

 gsw 0.51**
* 

0.93**
* 

1.00**
* 

        

 E 0.51**
* 

0.94**
* 

0.97**
* 

1.00**
* 

       

 PhiPS2 0.30* 0.33* 0.40** 0.28* 1.00**
* 

      

 Fv'/Fm' 0.36** 0.29* 0.39** 0.27* 0.97**
* 

1.00***      

 SPAD -0.02 0.17 0.16 0.20 -0.14 -0.13 1.00**
* 

    

 Biomass 0.16 0.09 0.12 0.18 -0.08 -0.03 0.16 1.00**
* 

   

 Yield 0.04 -0.15 -0.09 -0.06 -0.21 -0.13 0.51**
* 

0.24 1.00**
* 

  

 aNUE 0.08 -0.09 -0.00 0.01 0.05 0.09 -0.17 0.11 0.33* 1.00**
* 

 

 Height 0.10 -0.12 -0.06 -0.08 -0.11 -0.07 0.07 0.27* 0.16 -0.16 1.00**
* 

             

Late A 1.00**
* 

          

 Ci 0.24 1.00**
* 

         

 gsw 0.32* 0.19 1.00**
* 

        

 E -0.07 -0.13 0.89**
* 

1.00**
* 

       

 PhiPS2 0.17 -0.28* 0.05 0.09 1.00**
* 

      

 Fv'/Fm' 0.03 -
0.47**

* 

0.07 0.20 0.91**
* 

1.00***      

 SPAD 0.46** - 0.04 0.00 0.28* 0.40** 1.00**     
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* 0.49**
* 

* 

 Biomass -0.11 -
0.37** 

-0.11 -0.01 0.17 0.30* 0.35** 1.00**
* 

   

 Yield 0.40** -0.23 -0.01 -0.09 0.36** 0.43*** 0.74**
* 

0.44**
* 

1.00**
* 

  

 aNUE 0.09 0.13 0.18 0.11 0.07 0.05 0.01 0.14 0.33* 1.00**
* 

 

 Height 0.14 -
0.46**

* 

-
0.35** 

-0.31* 0.20 0.18 0.42** 0.13 0.15 -0.19 1.00**
* 

Note: "***" indicates a significance level of p < 0.001 (highly significant); "**" indicates a 
significance level of p < 0.01 (very significant); "*" indicates a significance level of p < 0.05 
(significant); "." indicates a significance level of p < 0.1 (marginally significant); no symbol 
indicates that the correlation is not statistically significant (n.s.). 
The correlations were examined between photosynthetic parameters (A, gsw, Fv’/Fm’, Ci, E, 
PhiPS2), AGB, chlorophyll content, canopy height, and GY at three critical growth stages (Table 
1). During the early stage, a strong positive correlation exists between transpiration rate and 
stomatal conductance, indicating that higher transpiration rates are associated with higher 
stomatal conductance (r = 0.89***). Conversely, a significant negative correlation is observed 
between photosynthesis rate and transpiration rate (r = -0.63***), suggesting that increased 
photosynthesis may be linked to reduced transpiration. Additionally, PhiPS2 and Fv'/Fm' exhibit 
strong positive correlations with each other and with transpiration rate, emphasizing the 
interdependence of photosynthetic efficiency parameters. Yield shows a notable positive 
correlation with chlorophyll content (r = 0.28*), implying that higher chlorophyll content could 
contribute to increased grain yield. 
In the medium stage, there are very high positive correlations among stomatal conductance, 
transpiration rate, and intercellular CO2 concentration (Ci), indicating that these parameters are 
closely linked (gsw and E, r = 0.97***; gsw and Ci, r = 0.93***). The strong relationship between 
PhiPS2 and Fv'/Fm' persists (r = 0.97***). Notably, yield continues to demonstrate a significant 
positive correlation with chlorophyll content (r = 0.51***), reinforcing the importance of chlorophyll 
content in enhancing grain yield during this growth stage. 
In the late stage, the photosynthesis rate shows a significant positive correlation with chlorophyll 
content (r = 0.46***), suggesting that increased photosynthetic activity is associated with higher 
chlorophyll levels. GY exhibits significant positive correlations with several parameters, including 
AGB, PhiPS2, Fv'/Fm', and chlorophyll content. These relationships indicate that higher biomass 
and efficient photosynthesis contribute to better grain yield outcomes. Interestingly, plant height 
shows strong negative correlations with intercellular CO2 concentration and stomatal conductance 
highlighting potential trade-offs between plant height and these physiological parameters. 
The relationship between Vegetation Indices and photosynthesis parameters, AGB, SPAD, height, 
aNUE and GY in different stages was examined through linear regression analysis in different 
growth stage. Across all growth stages, vegetation indices such as NDVI, TVI, CTVI, RDVI, and 
RDVI_REG consistently show strong positive correlations with yield and chlorophyll content, 
suggesting they are reliable indicators for predicting crop performance. These indices are also 
inversely related to water loss parameters (E and gsw), indicating their potential role in identifying 
crops with better water use efficiency. Conversely, indices like NDWI show strong negative 
correlations with yield and chlorophyll content, suggesting that while they might be useful for other 
applications, they are not favorable indicators for high yield or chlorophyll content in this context. 

3.2 Yield and aNUE Prediction models 
3.2.1. Partial Least Square Regression 

The PLSR models for aNUE, depicted in Fig.2 (a) to (c), exhibit relatively low predictive power 
with one component, suggesting that a more complex model might be necessary to capture the 
variability in aNUE. The low R² and high RMSE values indicate that the single-component models 
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do not effectively predict aNUE. 
In contrast, the PLSR models for Grain Yield, shown in Fig.2 (d) to (f), demonstrate substantial 
predictive accuracy. The models with 4 and 6 components show high R² values (ranging from 
0.91 to 0.95) and relatively low RMSE (ranging from 697.67 to 823.63), indicating a strong 
alignment between predicted and actual yield values. The reference to the medium and late 
stages highlights the effectiveness of PLSR at different growth stages, particularly emphasizing 
the improved predictive accuracy as the crop approaches maturation. 
The choice of the number of components in the PLSR models is guided by the "elbow point" 
method, which strategically reduces RMSE values by selecting the optimal number of 
components that capture the maximum variance with the least error. This method helps in 
balancing model complexity and predictive accuracy, ensuring the model is neither overfitted nor 
underfitted. 
Overall, the analysis supports the use of PLSR for yield prediction, particularly in later growth 
stages, where the model's ability to integrate complex spectral data proves advantageous. The 
strong correlation coefficients with AGB further reinforce the model's utility in yield prediction, 
making it a valuable tool for precision agriculture. This nuanced approach highlights the superior 
predictive accuracy of PLSR, especially as the crop approaches maturation, and advocates for 
its deployment in the later growth stages of wheat to achieve optimal yield predictions. 

 
 Fig 2. Comparison of the prediction of aNUE and GY using different PLSR models for the training and test datasets. (a) 

The prediction of aNUE using early PLSR model for the training dataset and test dataset; (b) The prediction of aNUE using 
medium PLSR model for the training dataset and test dataset; (c) The prediction of aNUE using early PLSR model for the 

training dataset and test dataset;; (d) The prediction of GY using early PLSR model for the training dataset and test 
dataset; (e) The prediction of GY using medium PLSR model for the training dataset and test dataset; (f) The prediction of 

GY using late PLSR model for the training dataset and test dataset. 

 
3.2.2. Random Forest  

The Random Forest models exhibit high predictive accuracy for both aNUE (Fig.3) and yield 
(Fig.4), with strong correlations between predicted and actual values across all growth stages. 
The R² values indicate that the models explain a significant proportion of the variance in the data. 
The relatively low RMSE values further suggest that the predictions are close to the actual values. 
For aNUE (Fig.3), the models show the highest predictive accuracy in the medium stage, with R² 
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= 0.73and RMSE = 3.57 for the test set. This is followed by the early stage, with R² = 0.61 and 
RMSE = 4.27 for the training set and R² = 0.56 and RMSE = 5.59 for the test set. The late stage 
shows R² = 0.57 and RMSE = 4.89 for the training set and R² = 0.63 and RMSE = 3.39 for the 
test set, indicating slightly lower but still substantial predictive power. 
For yield (Fig.4), the models demonstrate exceptional predictive accuracy. The medium stage 
models achieve R² = 0.99 for both the training set and the test set, indicating perfect or near-
perfect predictions. The late stage models achieve R² = 0.88for the training set and R² = 0.95 for 
the test set, showing very high accuracy. The early stage models also perform excellently, with 
R² = 0.75 for the training set and R² = 0.61 for the test set. 
These results underscore the utility of Random Forest models in predicting key phenotyping traits. 
The models' ability to integrate complex spectral data and manage multicollinearity makes them 
robust frameworks for yield and efficiency predictions across different growth stages. The high 
correlation coefficients with actual values highlight the models' effectiveness, particularly in 
capturing the essential variations in the data that are critical for accurate predictions. 

 
Fig 3. Comparison of the prediction of aNUE using different Random Forestry models for the training and test datasets. 
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Fig 4. Comparison of the prediction of GY using different RF models for the training and test datasets. 
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Fig 5. Comparison of the prediction of GY and aNUE using different RF models for the training and test datasets. 

The provided images (Fig.5) depict the Variable Importance in Projection (VIP) scores, also 
known as feature importances, from the Random Forest models used to predict GY and aNUE at 
different growth stages. The feature importance scores help identify which variables contribute 
most to the model’s predictions. The consistent importance of AGB, PhiPS2, Ci, and Fv'/Fm' 
across stages highlights these variables as key indicators of winter wheat phenotyping. The 
results underscore the utility of Random Forest models in identifying critical features for yield and 
aNUE predictions. 

4.Conclusions 
The study highlights the effectiveness of advanced statistical models in predicting key agronomic 
traits in winter wheat. The strong correlations identified between photosynthetic parameters, 
vegetation indices, and chlorophyll content emphasize the importance of these variables in 
phenotypes monitoring. The PLSR and RF models demonstrated substantial predictive power, 
particularly for grain yield, underscoring their utility in yield and aNUE estimation. The findings 
advocate for the deployment of these models in later growth stages to optimize yield predictions 
and enhance crop management practices. The consistent importance of AGB, PhiPS2, Ci, and 
Fv'/Fm' across different stages further validates these parameters as crucial indicators for winter 
wheat phenotyping. 
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