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Abstract.  
There is an opportunity to use process-based cropping systems models (CSMs) to support 
tactical farm management decisions, by monitoring the status of the farm, by predicting what 
will happen in the next few weeks, and by exploring scenarios. In practice, the responses of a 
CSM will deviate more and more from reality as time progresses because the model is an 
abstraction of the real system and only approximates the responses of the real system. This 
limitation may be overcome by using the CSM as a digital twin. A digital twin (DT) is a model 
of a specific physical object, that is kept synchronized by using real-time observations on that 
object. In this paper we present the Digital Future Farm (DFF), a digital twin for arable and 
dairy farming. The DFF comprises access to data sources (e.g. weather, soils, farm 
management, remote sensing), a suite of models, and utilities for data assimilation and 
visualization of simulation results. The working of the DFF is demonstrated with examples 
from a multi-year experiment and from a commercial potato farm. In addition to a CSM,  the 
DFF is also demonstrated to work with a summary model for potato growth. Initial experiences 
indicate that the DFF produces information that is helpful to farmers but it is difficult to evaluate 
the performance of the DFF in quantitative terms because of variability between years, fields, 
and the lack of availability of on-farm data. The most immediate contribution of the DFF is to 
provide farmers with a ranking of their fields according to how urgently they need an 
intervention. Experiences with the DFF have helped to formulate further research questions. 
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Introduction 
There is a huge opportunity for the application of process-based cropping systems models 
(CSMs) to support farm management decisions. A properly calibrated and initialized CSM can 
support farm management in at least three ways. 

• Monitor - Which of my fields has insufficient soil water and/or nitrogen? 
• Predict - Is there enough water and/or nitrogen for the coming week? 
• Explore scenarios - Alternative schedules for irrigation and/or nitrogen (given limited 

resources) 
In practice, no matter how well calibrated and initialized, the responses of a CSM will deviate 
more and more from the reality on the farm as time progresses. This is to be expected because 
a CSM is a model, i.e. an abstraction of the real system, and as such only approximates the 
responses of the real system. However much this deviation may be expected, it is not what 
farmers,  the intended users of CSM-based predictions, expect. When a model deviates from 
reality, trust in the model is diminished. 
A simulation will deviate from reality because some processes may not be modeled in all 
detail, and some processes may not be included at all. For example, in crop models, the 
response to extreme temperatures may not be modelled in great detail, and the response to 
diseases is typically not modelled at all. However, even if all relevant processes are included 
in the model, imperfect calibration of some parameters may still lead to deviations. 
The above limitations may be overcome by using a CSM as a digital twin. A digital twin (DT) 
is a model of a specific physical object, that is kept synchronized by using real-time 
observations on that object (Grieves, 2014). DTs are widely used in engineering and the 
concept has recently started to receive attention in agriculture (Pylianidis et al., 2021, Van 
Evert et al., 2021).  
In this paper we describe the Digital Future Farm (DFF), a digital twin for arable crops and 
grass. We show some applications and discuss research questions that arise from these 
applications. 

Digital Future Farm (DFF) – technical overview 

MODCOM 
The DFF is a digital twin for arable farming and dairy farming (Knibbe et al., 2022, Van Evert 
et al., 2021). DFF can work with different models to represent arable and dairy farms. DFF 
can also work with different models to represent e.g. potato or grass. This is achieved by using 
a generic simulation framework, to link models, data sources, and utilities.  
The MODCOM simulation framework (Hillyer et al., 2003) allows linking of sub-models and 
handles numerical integration, events, and communication between sub-models. MODCOM 
can be considered to be an implementation of the Discrete Event System Specification (DEVS) 
(Zeigler et al., 2000). Specifically the DFF uses NModcom (Van Evert and Lamaker, 2007), 
which is the C# version of the original C++ implementation. NModcom has inspired both 
SIMPLACE (Enders et al., 2010) and BioMa (Donatelli et al., 2012). NModcom is available as 
open-source at https://github.com/nmdcom/NModcom . 

Models 
Selected models currently available in DFF are listed in Table 1. Most models are written in 
C#, the language in which the MODCOM framework is written. Some models are written in 
other languages and are linked to the DFF using one of the available cross-language 
interoperability mechanisms. 
 

Table 1. Selection of models available in DFF 
Model Purpose Language and  

linking method 
Reference 

Dairy cow  Dairy cow C# Zom (2014) 
Silage Fodder conservation C# Schils et al. (2007) 

https://github.com/nmdcom/NModcom
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SNOMIN Soil organic matter C# Berghuijs et al. (2024) 
Tipstar Potato C# van Oort et al. (2024) 

TipstaRNN Potato C#, C++ Boersma et al. (2024) 
Grass2007 Grass Delphi, via COM Vellinga et al. (2004) 

SWAP Soil water Fortran, via DLL Kroes et al. (2017) 
WOFOST Arable crops Python, via IronPython De Wit et al. (2019) 

 

Farmmaps 
A  model is only useful if it can be supplied with input data. Unfortunately, accessing input data 
for commercial farms, at scale, is much more challenging than collecting model input in the 
setting of a scientific experiment. The DFF addresses this challenge by leveraging Farmmaps 
(Been et al., 2023). 
Farmmaps is a cloud-based data and service platform for precision agriculture. It provides 
basic apps and services (e.g. weather data, soils data, satellite data) as well as specific 
applications. The DFF accesses several data sources that are available through Farmmaps. 
A central concept in Farmmaps is “crop field” which represents the growing of a crop on a 
given field during a defined period of time. Associated with the crop field is a geo-located 
polygon that indicates the spatial extent of the field. This polygon can be drawn by hand but 
users typically take advantage of the link that Farmmaps provides to an existing data source 
such as the EU-mandated Land Parcel Identification System (European Court of Auditors, 
2016). 
For each crop field, Farmmaps provides soil physical data either from BOFEK database 
(Heinen et al., 2021; only The Netherlands) or from SoilGrids1 (global coverage). Weather 
data (current, historic, and 14-day forecasts) are obtained from a commercial provider. 
Satellite imagery is obtained from SentinelHub2 and other providers. Drone  imagery, if 
available, can be uploaded by users and will then be linked to the relevant crop fields. 
Field operations such as tillage, sowing, irrigating, fertilizing, harvesting, and grazing can be 
recorded for a crop field. This data can either be entered by the user or it can be retrieved 
from the user’s (commercial) Farm Management Information System (FMIS). 

Data assimilation 
Data assimilation is a term that denotes the use of observations to make simulations match 
better with the modelled system. Three main methods of data assimilation are distinguished, 
namely forcing (where observations replace one or more state variables that would otherwise 
be simulated, calibration (where model parameters are adjusted), and filtering (where 
observations and simulations are combined into a new, optimal estimation of the state of the 
system) (e.g. Jin et al., 2018, Jindo et al., 2023). Filtering takes into account the uncertainty 
in observations as well as the uncertainty in simulation results. The most well-known filtering 
method is the Kalman filter. This cannot be used directly with a CSM, however, an alternative 
formulation, the Ensemble Kalman Filter (EnKF), can be used. The DFF uses an EnKF 
implementation originally proposed by (De Wit et al., 2012, De Wit and van Diepen, 2007). 

Utilities 
The DFF includes a Postgresql3 database to collect input and store simulation output. This 
facilitates the generation of graphics that visualize simulation results and compare these with 
observations. 

DFF applications 
The DFF is currently being used in several contexts.  

 
 
1 https://www.isric.org/explore/soilgrids  
2 https://www.sentinel-hub.com/  
3 https://www.postgresql.org/  

https://www.isric.org/explore/soilgrids
https://www.sentinel-hub.com/
https://www.postgresql.org/
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Farm of the Future 
Farm of the Future (FOTF4) is an initiative in which farmers and Wageningen University & 
Research work together to develop solutions to the challenges faced by agriculture in the 
Netherlands, drawing on the expertise and practice of both organic and mainstream 
agriculture.  
Specifically, the FOTF aims to bring more diversity to the farm, through more crops in the 
rotation, a wider range of crops and cultivars, and different spatial arrangements: crops are 
grown in strips (3 or 15 m wide). This is expected to lead to greater biodiversity in the field and 
thus better suppression of pests and diseases. The experiment is at farm scale, and field 
operations are entered into a commercial farm management information system. The DFF is 
used to monitor the status of crops and soil and to support e.g. decisions on side dressing N 
in potatoes.  Simulations for a number of crops are run daily (Figure 1, Figure 2), observations 
of LAI from Sentinel-2 are assimilated into the model, and the results are available in a 
dedicated section on the project’s website and are updated every day5. 
 

 
Figure 1. Simulation output from the DFF. Left panel: LAI; right panel: tuber weight. This simulation was made on 3 

July 2024. In both panels, the purplish background indicates the period from the beginning of the year to 3 July; 
during this period observed weather was used. The pinkish background indicates the future: from 3 to 20 July a 

weather forecast is used, while from 21 July to the end of the year historic weather from a previous year is used. Grey 
dots represent 30 different simulation curves (the “ensemble”), each made with slightly different values for a selected 

set of parameters, to represent the uncertainty in the prediction. In addition, each of the 30 curves uses a different 
historic year for the period from 21 July to the end of the year. The solid black line is the median of the ensemble, it 
represents the best estimate of the state of the system. Green dots indicate drone-based observations of LAI. Each 

time a LAI observation is available, the simulations are adjusted using the Ensemble Kalman filter. 

 

 
    

 
 
4 https://farmofthefuture.nl/en/  
5 https://farmofthefuture.nl/data-precisietechnologie/gewasgroeimodellen/  

https://farmofthefuture.nl/en/
https://farmofthefuture.nl/data-precisietechnologie/gewasgroeimodellen/
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    Figure 2. Warnings generated for potato strips at Farm of the Future. Left panel: 
simulation results on 25 June, before application of N sidedress: supply of soil water is 
sufficient on this day and is projected to be sufficient one week into the future; nitrogen 
supply is insufficient on this day and is projected to be still insufficient one week into the 

future. Also shown is projected final fresh tuber yield. Right panel: simulation results on 26 
June, after application of N sidedress.  

 

Assimilation of soil water data 
In addition to measurements of aboveground biomass and/or LAI, remote sensing can provide 
an estimate of (top) soil water content. This may reduce the uncertainty related to the 
availability of water. Correcting soil moisture is important because this is a large source of 
uncertainty:  precipitation is the most spatially heterogenous of weather data and the amount 
of irrigation is often not recorded by farmers.  
We used top soil water content retrieved from passive satellite microwave measurements as 
provided by Planet6. Microwave measurements are transformed to soil water content 
(resolution 100x100 meter) (De Jeu et al., 2014, Owe et al., 2008, Owe et al., 2001). 
The assimilation of data within the season corrected both LAI and topsoil moisture model 
estimates downward (Figure 3). This resulted in lower light interception and higher water 
stress. As a result the final yield estimate of the model + data assimilation was corrected to a 
lower value, which is closer to the final observed yield.   
 

 
Figure 3. Assimilation of remotely sensed top soil water content. Data are for one of the potato strips in FOTF in 2022.  
Left panel: The black solid line represents simulated soil water content 0-5 cm without data assimilation. Red triangle 

symbols represent remotely sensed soil water content. Grey dots represents individual simulations of the Kalman 
filter ensemble. Blue solid line is the median of the ensemble simulation; this represents the best estimate 

(observation + model). Right panel: The black solid line represents simulated LAI without data assimilation. Red 
triangles represent LAI measurements from drone imagery. Blue solid line is the median of the ensemble simulation 

(individual ensemble simulation are shown in various colours). 

 

 
 
6 https://www.planet.com/  

https://www.planet.com/
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Commercial potato farm 
Van den Borne Aardappelen is a commercial farm which grows approx. 500 ha of potatoes 
each year7. The farm is located in the south of The Netherlands on shallow, coarse sandy soil. 
The variation in texture, soil organic matter, and profile depth between fields is relatively large 
which poses management challenges. 
Van den Borne have been pro-active in documenting their operations since approx. 2010, 
including farm management, yields, soil analyses, and in-season crop growth measurements. 
This has led to several research reports (Mulders et al., 2024, Mulders et al., 2021, Van Evert 
et al., 2019, Yan et al., 2015). Nevertheless it has been a challenge to connect the proprietary 
databases in real-time to CSMs. Recently Van den Borne have switched to a commercial 
FMIS and this has made it possible to simulate crop growth in real-time (Figure 4). The next 
step will be to evaluate the setup for the remaining approx. 150 fields and rank them in the 
same way as the FOTF fields in Figure 2. 
 

 
Figure 4. Visualization of the digital twin on a commercial field of potatoes. Simulation with Tipstar; results for 3 July 

2024. Symbols and colors as in Figure 1, but LAI observations are estimated from Sentinel-2 imagery. 

 

Maize and soybeans in Serbia 
In an on-farm experiment in Čenej, Vojvodina (Serbia), soil conditions and the growth of 
soybean and maize were monitored in 2023 (Kopanja et al., 2024). LAI was measured both 
destructively, with an LI-3100C leaf area meter (Licor, Lincoln NE, USA), and remotely, with 
imagery from Sentinel-2. For the latter, the formulate given by Gaso et al. (2021) was used to 
convert images to LAI. This resulted in a discrepancy between LAI measured destructively 
and LAI estimated from remote sensing. 
Simulation results for maize are shown in Figure 5. Early simulated LAI deviates much from 
observed LAI because the emergence date was modeled inaccurately. The Ensemble Kalman 
filter partially corrected the wrong emergence date estimation from the model. Simulation of 
soybean corresponded closely to reality (Figure 6) and filtering resulted only in small 
adjustments to the simulation. 
 

 
 
7 https://www.vandenborneaardappelen.com/  

https://www.vandenborneaardappelen.com/
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Figure 5. Data assimilation of in-situ LAI (upper) and 

satellite LAI (lower) for maize.  

 
Figure 6. Data assimilation of in-situ LAI (upper) and 

satellite LAI (lower) for soybean.  

 

Working with a digital twin 
In this section some observations are made about working with a digital twin in agriculture, 
based on experiences to date. 

Emergence 
The date of emergence of an annual crop such as potato, maize, or soybean, is an important 
determinant of growth and final yield. Unfortunately the date of emergence is rarely observed 
in practice. That means that date of emergence has to be modelled, for example as taking 
place a certain number of days or degree-days after sowing or planting (which most farmers 
do record). Emergence is a complex process that cannot be modeled accurately; relying on 
an emergence model may well result in a simulation that deviates significantly from reality. 
It is tempting to use filtering to correct for an inaccurately simulated date of emergence as was 
done in Curnel et al. (2011) as well as in Figure 5 above. However, this is fundamentally 
incorrect and may have unintended consequences. First, if uncertainty about one parameter 
(date of emergence) is addressed by varying one or more completely unrelated parameters, 
then the simulation may deviate in areas where it was performing well before the variation was 
imposed. Second, if an incorrect date of emergence is used, development events such as 
flowering and maturity, which are linked to the moment of emergence, will likely be mis-
estimated. 
It is preferable to estimate the date of emergence from observations, for example by iteration  
or by direct estimation. In the iterative method, the date of emergence is by trial and error until 
a certain criterion is minimized, for example RMSE between simulated and measured LAI 
during the first few weeks after emergence (Maas, 1993). In the direct method, measurements 
of LAI during the first few weeks after emergence are used to estimate the date of emergence 
by regression and extrapolation (Figure 7). 
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Figure 7. Estimation of emergence date of potatoes. Top row: LAI estimated from satellite for two different fields with 
potato. The general shape of the LAI curve over time is similar in both cases but the top-left panel has more frequent 

measurements than the top-right panel. Bottom row: logarithmic transformation of the data in the top row, which 
highlights the exponential phase of canopy expansion. In the bottom-left panel there are sufficient measurements to 
estimate the date of emergence via linear regression. In the bottom-right panel, there are insufficient measurements 

for a linear regression; however, the slope  of the regression line is conservative and by using the slope from the 
bottom-left panel the date of emergence can still be determined.  

Summary models 
The models described above are process-based models, i.e. models in which the equations 
reflect the (bio-)physics of the modeled system. But in many engineering disciplines it is 
common to use summary (or: meta) models based on the output of process-based models. 
This has also been done in agriculture (e.g. Hack-ten Broeke et al., 2016, Maestrini et al., 
2022).  
The DFF is being used to explore the use of a summary model. A new model, TipstaRNN, 
was created by (Boersma et al., 2024). Potential growth of potato was simulated with Tipstar, 
a process-based model, for many hundreds of combinations of location, year, and planting 
date. A recurrent neural network (RNN) was trained on the simulation output to predict the 
daily rate of increase of LAI and fresh tuber weight (TW). The RNN has a history of 10 days 
and is able to reproduce the output of the original process-based model. 
The new model, TipstaRNN, was constructed and trained using the CasADi open-source tool 
for nonlinear optimization and algorithmic differentiation (Andersson et al., 2019). The trained 
RNN was exported as C++ code, compiled into a DLL, and wrapped with C# into a MODCOM 
component model for inclusion in the DFF. 
TipstaRNN predicts the rate of increase of LAI and TW on a given day based on the weather 
of that day and on LAI and TW of the 10 previous days. This poses a challenge for the 
initialization of the model. We have chosen to address this as follows. For the first 10 days 
following emergence, TW stays constant  - this is reasonable because tubers are not growing 
yet. On the day of emergence, LAI is initialized with a value which reflects the number of stems 
and the initial LAI per stem. During the 10 days following emergence, LAI increases 
exponentially with a relative growth rate that is a function of average daily temperature – this 
is how many CSMs simulate early leaf growth. 
With a process-based model, we can create an ensemble by varying some of the parameters 
of the model, taking into account the uncertainty that exists about their true value. TipstaRNN 
does not have parameters that lend themselves to this treatment, instead we create an 
ensemble by adding, at each time step, some white noise to the predictions of the model. A 
result is shown in Figure 8. 
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Figure 8. Visualization of the digital twin on a commercial field of potatoes. Simulation with TipstaRNN; results for 3 

July 2024. Symbols, colours and data as in Figure 4. 

 

Discussion 

Data assimilation 
CSMs can in principle be used to support decision making in precision agriculture. They can 
be used to monitor the state of crops, soils, and livestock on the farm, to predict future states, 
and to evaluate alternative management scenarios. However, models are imperfect due to 
limitations in the model structure and processes, uncertainty about model parameters and 
initial conditions, as well as uncertainty about the driving variables that the models require. 
Therefore, the simulated states often diverge from reality and this uncertainty tends to increase 
with every time-step of the model. When a model is used to forecast the impact of 
management decisions, this uncertainty has a negative impact on the value of the digital twin. 
Data assimilation is a tool to adjust the state of a model whenever observations are available 
that provide information on the state of the modeled system. Three main methods of data 
assimilation can be distinguished, namely forcing (where observations replace one or more 
state variables that would otherwise be simulated), calibration (where model parameters are 
adjusted), and filtering (where observations and simulations are combined into a new, optimal 
estimation of the state of the system) (e.g. Jin et al., 2018, Jindo et al., 2023). 
Forcing is not a method that we have considered for the DFF. Clearly this could be useful in a 
situation where a model is missing and where frequent, accurate and precise measurements 
are available. 
Calibration is the appropriate method to use if there is reason to believe that local information 
can be used to derive better parameter values. It is perhaps useful to differentiate between 
parameters that are intrinsic to the model (e.g. radiation use efficiency, minimum nitrogen 
concentration of plant organs, specific leaf area) and parameters that initialize the state of the 
model (soil water content at start of simulation, but also date of emergence).  
Intrinsic parameters describe processes in a way that is not dependent on any individual 
experiment or farm field. It is highly unlikely that using information from an individual 
experiment or farm field will lead to better estimates for these parameters than the combined 
information from the large number of experiments that were used to estimate these 
parameters in the first place. Trying to estimate these parameters with local information would 
indeed be a cumbersome way of curve fitting (De Wit, 1970). 
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Parameters that initialize the state of the system are best estimated from local information. A 
relevant parameter of this kind is date of emergence. Estimate either by direct measurement 
as advocated above, or by trial-and-error (Maas, 1993). 
Soil hydrological parameters describe the soil in a particular location and should therefore also 
be calibrated. Especially useful if data from several years is available, so that effects of the 
weather and different crops can be separated from the influence of soil (Riepma, 2019, Van 
Evert et al., 2018, Van Evert et al., 2019) 
Filtering is the method to use when the model has been calibrated as well as possible but it 
still deviates from reality. The Kalman filter is the original method but it can only be applied to 
linear systems with Normal uncertainty estimation (REF). The Ensemble Kalman filter 
approximates this situation by representing uncertainty with an ensemble consisting of dozens 
or hundreds of model instances.  
If a CSM is used, each of the ensemble members is parameterized slightly differently. A typical 
CSM has hundreds of parameters. Some of these have a large influence on model results and 
are probably best left alone. Others may either have well-known values or do not have a large 
influence on the model. We have opted to select a small number of parameters to which the 
model is sensitive, and where it is hard to determine an exact value. Examples are leaf area 
at emergence, relative growth rate of leaf area, maximum leaf age, maximum rate of 
photosynthesis, specific leaf area, and maximum root depth.  
In selecting parameters to create variability in ensemble, one must take into account that some 
parameters add variation in the ensemble only in the first half of the growing season and others 
only in the second half. For example, relative growth rate of leaf area affects the simulation 
during the exponential growth phase, while the maximum leaf age parameter has an effect 
only when leaves start dying (Figure 5 in Knibbe et al., 2022). 
If a summary model is used, variation is introduced by adding white noise to the ensemble 
members. We have not yet explored the effect of using white noise to introduce variation in a 
CSM ensemble (possibly in addition to varying some parameters). 

Models for digital twin 
So far we have mainly used process-based models in the DFF. However, in engineering it is 
common to derive summary models from mechanistic models and use the  summary model 
in operational digital twins. Benefits of summary model in this context include that the summary 
model may run faster than a process-based model due to its simpler structure, and that it may 
have fewer tunable parameters which makes it easier to calibrate it to a specific environment.  
In addition to process-based and summary models one may think of a third type of model, 
namely simple process-based models. A simple, process based model aims to capture the 
most important responses but does not aim to be exhaustive. For crop growth, the major 
responses would be to light, temperature, and water; SIMPLE (Zhao et al., 2019) and LINTUL 
POTATO DSS (Haverkort et al., 2015) are examples of simple models that describe these 
processes at a basic level. LinFert is a simple model that focuses on the availability of N (Van 
Evert et al., 2006). An overview of the three kinds of models is given in Table 2. 
CSMs such as WOFOST and Tipstar are very fast and then the speed of a summary model 
such as TipstaRNN does not seem to be a large advantage; however, Linfert is much faster 
than the CSM from which it was derived. 
TipstaRNN works quite well in the (limited) experience we have gained with it in 2024. 
However it should be noted that TipstaRNN currently only simulates potential growth, which 
goes a long way to explaining its behaviour in the current year which is characterized by high 
precipitation. Another point is that TipstaRNN is specific to one maturity class. This is not a 
problem because the model can easily be trained for other maturity classes. However, this 
limitation of the summary model must be kept in mind when its performance is compared with 
the performance of a CSM. 
A CSM may be expected to have realistic responses over a longer period of time into the 
future than a summary model. It is tempting to think that this may be not so  important in the 
context of a digital twin. A digital twin is driven by frequent observations on the modeled 
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system. Thus in principle the model of the digital twin can be very simple without impacting 
the performance of the digital twin. And indeed, measurements of soil water content with an 
electronic, buried instrument, or based on remote sensing, may be available on a daily basis. 
But most other measurements on crops, such as remotely sensed leaf area, are available far 
less frequently and are also less accurate. This means that the model must be able to simulate 
realistically over longer intervals and must therefore represent the real system with greater 
degree than would be the case if observations are available every day.  
During filtering, the state of the model is adjusted repeatedly by the filter. For a CSM, this may 
lead to incoherent state of the model, i.e. a state that the model would not have reached via 
time steps (De Wit, 2007). When the model corrects a root/shoot ratio or reimposes a minimum 
nitrogen concentration, this may lead to unrealistic, transient behaviour. It can be expected 
that a summary model is less susceptible to this kind of problem. 
 

Table 2. Three broad categories of models that can be used in an agricultural digital twin.  

 Process-based models Simple models Statistical models 
Definition Describe processes as realistic 

as we know how 
Describe processes such that 

the main responses are 
captured 

Black-box model, resulting from training 
(fitting) a model on combinations of 

input and output 
Examples Tipstar, WOFOST, DSSAT, 

APSIM, SWAP 
SWB, SIMPLE, LINFERT TipstaRNN 

Pro’s Many processes, realistic 
description of processes 

Main responses are described 
in realistic manner 

When internal consistency is 
disturbed, model still provides 

reasonable responses. 

Always approximately right (when used 
in the environment in which the model 

was trained) 

Con’s Potential to derail if not properly 
calibrated 

Not all processed included 
When internal consistency is 

disturbed, unrealistic transient 
responses may occur. 

Not able to reproduce subtle 
interactions such as limited N 

uptake from dry soil 

Strictly limited to the environment in 
which the model was trained 

No parameters that can be modified to 
create an ensemble, so must add white 

noise to model predictions 

 

How to evaluate the benefit of a digital twin? 
CSMs have been used to simulate all kinds of scenarios related to farm management, such 
as selection of crops and cultivars, planting dates, soil organic matter management, 
fertilization strategy, and irrigation strategy. For these kinds of studies it is not strictly 
necessary that simulation results are exactly the same as observed results because the 
interest is primarily in differences between strategies. However, the purpose of the DFF is to 
support operational and tactical farm management decisions and then it ís important that 
simulation results match closely with reality. A digital twin closes the gap between simulation 
and reality by updating the state of the model in real-time.  
This leads to the question: how much better is a simulation with DT compared to a simulation 
with a model that is not adjusted in real-time.  In turn this leads to the question: how should 
we make this comparison. It is fully expected that including real-time observations gives 
“better“ predictions. How much better will depend on many factors: how well does the 
simulation model represent the relevant processes, and how well is it calibrated (including 
initialization) to the local situation. Some  of the factors will differ between years and between 
fields. In some years, crop growth will be determined strongly by those processes that are 
well-represented in the CSM. In other years, processes that are less well represented by 
important determinants of crop growth. Examples are extreme temperatures, shortage or 
surplus of water, or poorly controlled pests and/or diseases. A similar reasoning can be 
followed for individual fields. For example, in fields with a simple hydrology, a CSM will work 
well, whereas in fields with many stones or complex layering, most CSMs will fail. Another 
consideration is that an agricultural DT needs forecast weather to simulate beyond today, and 
that the performance of a DT will thus depend to some extent on the quality of the weather 
forecast. 
A meaningful quantification of the value of a DT has to involve at least several years, a large 
number of fields, and access to past weather forecasts. Given that the purpose of a DT is to 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

12 

support operational and tactical farm management decisions, the evaluation of its benefit 
should be done with data from practical farms. Unfortunately, this kind of data is rarely 
available. Finally, given the practical context, the most relevant metric to evaluate may be the 
availability of water and nitrogen one week into the future. 
Our work currently focuses on making the digital twin operational on commercial farms. We 
expect that farmers will gain confidence in the model when they see, in real-time, simulations 
that closely follow satellite-based observations for their own fields. We have found that ranking 
fields as shown in Figure 2 is helpful to them. Admittedly, producing this graph is low-hanging 
fruit but we consider it real progress because it provides farmers with useful information. 

Summary 
The DFF is a digital twin that can be used to monitor arable crops and grass and evaluate 
irrigation and fertilization scenarios. Links to on-farm data sources have been effectuated and 
the DFF can make use of several types of models. Initial experiences with the DFF have 
helped to formulate further research questions but already the DFF is able to support farm 
management decisions. 
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