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Abstract.  
Nitrogen (N) is one of the most important nutrients for crop growth and development. For crops, 
nitrogen fertilizer is the guarantee of high yield, but in practical applications, nitrogen fertilizer is 
often excessive. Therefore precise and rapid assessment of nitrogen use efficiency (NUE) plays 
a pivotal role in optimizing fertilizer utilization and ensuring responsible use of nitrogen in 
agriculture. While most of research evaluate NUE from management scales, e.g., from the field, 
district to regional perspectives, and there is no pixel-level spatially-explicit evaluations of NUE 
using drone images. The objective of this study was to explore the use of UAV multispectral 
data to directly obtain pixel-level NUE maps in the early stages of wheat growth. We acquired 
drone multispectral images of the 2022 and 2023 wheat growing seasons at the Freising 
Experimental Station and extracted spectral features, including texture features, canopy height, 
and spectral index. Most effective indicators were selected using the combination of random 
forests and co- correlation analysis. Based on these selected features, different machine 
learning and deep learning models were used to predict NUE, and the accuracy of these models 
was evaluated. We identified CH (Canopy height), NGRDI (Normalized green-red difference 
index), NDREg (Normalized difference red-edge green), and IPCA (Principal component 
analysis index) as the most predictive indicators for NUE (r > 0.7). Additionally, our study 
revealed the superiority of the Partial Least Squares Regression (PLSR) model, achieving a 
high coefficient of determination (R2 > 0.6) and low running time. Deep learning models (CNN, 
LSTM, bidirectional LSTM, CNN-RNN) were time-consuming, although they had high and stable 
determination indices.We compared the features we selected with those used in other studies 
and found commonalities in estimating NUE features. Results highlighted that the red edge 
spectral indices and color-band indices were effective in predicting NUE in flowering period and 
preceding stages. These findings underscore the potential of employing UAV remote sensing 
techniques for early-stage assessment of nitrogen use efficiency. This study not only enhances 
our understanding of crop management but also offers practical applications in improving 
fertilizer utilization and minimizing environmental impact. 
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1. Introduction 
Nitrogen (N) is one of the most important nutrients for plant growth and development (Jiang et al., 
2021). It is essential for the synthesis of amino acids, proteins, and chlorophyll, and therefore, it 
is crucial for the production of food, feed, and crop (Jensen et al., 2011). In agricultural production, 
nitrogen fertilizer is the main source of crop growth. To achieve higher yields, excessive nitrogen 
fertilizer is often applied with detrimental environmental side effects (Chen et al., 2021). Therefore, 
it is crucial for optimizing nitrogen management in agriculture to achieve high crop yield and quality 
while minimizing nitrogen losses and environmental pollution. 
Nitrogen use efficiency (NUE) is commonly used to monitor and assess the sustainability of 
nitrogen management. Currently, the calculation of crop NUE mostly relies on field measurements 
and regional statistical calculations (Duan et al., 2014; Hegedus et al., 2023). These requires a 
significant amount of people, time, and economic resources, and it may potentially cause 
destructive impacts on the crops. On the other hand, the results obtained from the latter are too 
coarse and cannot provide NUE at the within field resolution needed for precise fertilizer 
application (Gracia-Romero et al., 2020). Meanwhile manual acquisition can only sample specific 
locations at specific times. A possible solution for acquiring the needed data could be the use of 
remote sensing at local scales via unmanned aerial vehicles (UAVs). However, there is relatively 
limited research on directly estimating crop NUE using remote sensing data, especially utilizing 
UAVs to acquire NUE at millimetre-level or centimetre-level spatial resolutions. 
Kefauver et al. (2017) used vegetation indices to evaluate NUE in barley and were able to explain 
up to 83% of total NUE variability by combining UAV and field-based measurements. This directly 
demonstrates the feasibility of using drones for remote sensing-based NUE calculations. Yang et 
al. (2020) found that NDRE, which was extracted using a multispectral camera mounted on the 
drone, could predict NUE with a consistently high accuracy, especially in the later stages of grain 
filling. Jiang et al. (2021) utilized UAV and scanner to quickly obtain high spatial resolution NUE 
data for rice fields using NDVI and They believe that NDVI measurement is an effective method 
to evaluate NUE during nutrient-sensitive growth stages, especially the tillering and panicle 
stages. Liu et al. (2022) predicted NUE and yield using vegetation indices independent of the 
growth period and three regression methods, with high predictive ability for yield but only 
moderate predictive ability for NUE.  In general, despite the advanced state of remote sensing 
and drone technologies, research directly assessing crop NUE using drones remains very limited. 
Most of the aforementioned studies are based on yield or biomass estimation, with NUE serving 
merely as an explanatory indicator. Meanwhile, the relationship between multispectral bands 
information and NUE estimation has not been thoroughly investigated. The majority of studies 
directly employ commonly used vegetation indices (NDVI, NDRE, etc.) without exploring the 
effectiveness of other indices or identifying commonalities among indices that are effective for 
NUE estimation. 
We investigated the potential of using drone-based remote sensing to predict nitrogen use 
efficiency during the growing season using experimental plots grown with wheat on different plots 
in Freising. Our goals are: (1) to use UAV multispectral data to directly obtain pixel-level NUE 
maps in the early stages of wheat growth; (2) to find commonalities in spectral features for 
estimating NUE. 

2. Methods 

2.1 Field work 
Experimental design 

The experimental site is located at the Dürnast experimental station in Freisng (48.4037°N, 
11.7056°E). The region has a temperate climate with an average annual precipitation of 
approximately 946 mm and an annual average temperature of 10.2 °C (Dietzel et al. 2023). The 
experiment was established in 2021 as part of the multisite experiment LegacyNet 
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(https://legacynet.scss.tcd.ie/) and involved 60 plots, with each plot measuring 7m × 3m in size 
(Fig 1(a)). Wheat was planted in 2022 and 2023, and soil Nmin was measured before wheat 
sowing. The experiment kept nitrogen fertilizer application low during the growth period of spring 
wheat applying ammonium hydrate solution 25 kg/ha late during the growth at the booting stage 
(June). 

 
Fig 1. Distribution of the Experimental design  

Yield measurement 

We used a combine harvester to harvest the plots and obtained grain samples from each plot at 
the same time. After harvesting, we obtained the final grain yield (threshing, drying, etc.) of 60 
plots. We used an elemental analyser to get the nitrogen concentration of wheat grains after 
drying. We calculated grain nitrogen content by multiplying grain yield by nitrogen concentration. 

2.2 NUE calcuation 
Nitrogen use efficiency (NUE) represents the ability of a crop to absorb nitrogen from applied 
nitrogen and convert the absorbed nitrogen into grain (Mălinaş et al. 2022). In this study, we 
utilized two methods to calculate NUE. 
The first method of NUE is defined as the grain yield produced per unit of applied nitrogen fertilizer 
and is also known as partial factor productivity (PFP) (Ghafoor et al. 2021). The second method 
of NUE is defined as the ratio of grain nitrogen content to the total input nitrogen content and is 
also known as partial nitrogen balance (PNB) (Yingxia Liu et al. 2020).  

                                 PNB = N!"#$% (N&'"(⁄ + Nmin)    (1) 

                                 PFP = Yield (N&'"(⁄ + Nmin)  (2) 

Where NGrain is the nitrogen content of the crop grain. Nfert is the amount of nitrogen fertilizer 
applied. Yield is crop grain yield. Nmin is the soil mineral nitrogen. 

2.3 UAV multispectral data 
From wheat booting stage to senescence stage, we collected UAV multispectral images in 2022 
and 2023 (Table 1). We used Matrice M300 drones carried on micasense camera. The flying 
height of the M300 was 25m.The basic processing of UAV images, including splicing, correction, 
calibration and other processes, was carried out in Aigsoft. 

Table 1. UAV Image Acquisition Information 
Date Measurenment BBCH Stage 

https://legacynet.scss.tcd.ie/
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6/10/2022 Micasense 300 49 Booting 

6/17/2022 Micasense 300 56 Heading 

6/22/2022 Micasense 300 61 Flowering 

7/18/2022 Micasense 300 87 Ripening 

5/18/2023 Micasense 300 47 Booting 

6/15/2023 Micasense 300 58 Heading 

6/21/2023 Micasense 300 65 Flowering 

7/11/2023 Micasense 300 83 Ripening 

Note: BBCH-scales have been developed for a range of crop species where similar growing stage 
of each plant are given the same code. For wheat, 40-49 is booting stage, 50-59 is heading stage, 
60-69 is flowering stage, 70-79 is milk stage, 80-89 is ripening stage, 90-99 is senescence stage. 
We calculated spectral features including textural features, spectral index and canopy height at 
different growing stages. 
Texture features 

We first calculated the four relative directions (θ = 0°, 45°, 90° and 135°) texture feature; the 
relative distance used to pair with each direction is a uniform distance (d = 1). Secondly, we 
calculated the average value of the 4 directions as the final texture feature of the sample. In this 
study, we selected contrast, dissimilarity, homogeneity, correlation, angular second moment as 
texture features (Table 2). Multispectral bands (R, G, B, RE, NIR) are evaluated using these five 
texture features. The entire texture calculation process is completed in python. 

Table 2. The grey-level co-occurrence matrix (GLCM) textural features used in this study 
Texture Description Equation 

Contrast 
Measures the local variations in the gray-level co-

occurrence matrix. Higher contrast values indicate a 
greater difference between the values of adjacent pixels. 

!!(𝑥 − 𝑦)!𝑃(𝑥, 𝑦)
"

#$%

"

&$%

 

Dissimilarity Measures the differences between adjacent pixel values in 
the gray-level co-occurrence matrix. !!𝑃(𝑥, 𝑦)|𝑥 − 𝑦|

"

#$%

"

&$%

 

Homogeneity 

Measures the closeness of the distribution of elements in 
the gray-level co-occurrence matrix to the diagonal. Higher 

homogeneity values indicate that the values of adjacent 
pixels are more similar. 

!!
𝑃(𝑥, 𝑦)

1 + (𝑥 − 𝑦)!

"

#$%

"

&$%

 

Correlation Measures the linear dependency between gray-level co-
occurrence matrix elements. !!

(𝑥 − 𝑦)(𝑦 − 𝑥)𝑃(𝑥, 𝑦)
,𝐴𝑆𝑀&,𝐴𝑆𝑀#

"

#$%

"

&$%

 

Angular second 
moment (ASM) 

Also called uniformity, measures the homogeneity or 
uniformity of the gray-level co-occurrence matrix !!(𝑥 − 𝜇)!𝑃(𝑥, 𝑦)

"

#$%

"

&$%

 

Note: In the equations, x and y represent the row number and column number of the image, 
respectively; P(x, y) represents the relative frequency of two neighboring pixels. 

Canopy Height 

We derived canopy height by subtracting the Digital Elevation Model (DEM) from the Digital 
Surface Model (DSM) generated from RGB images. The canopy height model (CHM) established 
from this is a commonly used and effective method for obtaining crop canopy height (Maimaitijiang 
et al. 2020).  

Spectral index 

In this study we calculated 16 color-band indices (using only RGB bands) and 16 vegetation 
indices (Table 3). Considering the UAV's multi-spectral bands (blue band, green band, red band, 
red edge, near-infrared), there are a total of 37 spectral indices for each growing stage.  

https://en.wikipedia.org/wiki/Crop
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Table 3. The spectral indices used in this study 
Type Index Description Equation References 

 
 
 
 
 
 
 
 
 
 
 

Color-band 
indices 

 
 
 
 
 

BCC Blue chromatic coordinate B/(R + G + B) (Zeng et al. 2021) 
GCC Green chromatic coordinate G/(R + G + B) (Zeng et al. 2021) 
RCC Red chromatic coordinate R/(R + G + B) (Ying Liu et al. 2020) 

GRRI Green–red ratio index G/R (Maimaitijiang et al. 
2019) 

GBRI Green–blue ratio index G/B (Maimaitijiang et al. 
2019) 

RBRI Red–blue ratio index R/B (Maimaitijiang et al. 
2019) 

NGRDI Normalized green-red 
difference index (G − R)/(G + R) (Tucker 1979) 

WI Woebbecke index (G − B)/(R − G) (Woebbecke et al. 
1995) 

IKAW Kawashima index (R − B)/(R + B) (KAWASHIMA and 
NAKATANI 1998) 

GLI Green leaf index (2 × G − R − B)/(2 × G + R + B) (Louhaichi et al. 2001) 

VARI Visible atmospherically 
resistance index (G − R)/(G + R − B) (Gitelson et al. 2002) 

EXR Excess red vegetation index 1.4 × RCC − GCC (Wenhua Mao et al. 
2003) 

EXG Excess green vegetation index 2 × GCC − RCC − BCC (Wenhua Mao et al. 
2003) 

EXB Excess blue vegetation index 1.4 × BCC − GCC (Wenhua Mao et al. 
2003) 

IPCA Principal component 
analysis index 

0.994 × |R − B| + 0.961 × |G − B|
+ 0.914
× |G − R| 

(Saberioon et al. 2014) 

CIVE Color index of vegetation 0.441 × R − 0.881 + 0.385 × B
+ 18.79 (Kataoka et al. 2003) 

 
 
 
 

Vegetation 
indices 

 
 
 
 
 
 
 
 
 
 
 

RVI Ratio vegetation index NIR/R (Tucker 1979) 
GCI Green chlorophyll index (NIR G⁄ ) − 1 (Gitelson et al. 2005) 

RECI Red-edge chlorophyll index (NIR RE⁄ ) − 1 (Gitelson et al. 2005) 

NDVI Normalized difference 
vegetation index (NIR − R) (NIR + R)⁄  (Freden et al. 1974) 

GNDVI Green normalized difference 
vegetation index (NIR − G) (NIR + G)⁄  (Gitelson et al. 2003) 

NDRE Normalized difference red-
edge (NIR − RE) (NIR + RE)⁄  (Gitelson et al. 2005) 

NDREg Normalized difference red-
edge  green (RE − G) (RE + G)⁄  (Hassan et al. 2018) 

SCCCI Simplified canopy chlorophyll 
content index NDRE/NDVI (Raper and Varco 

2015) 

EVI The enhanced vegetation 
index 

2.5 × (NIR − R)/(1 + NIR
− 2.4 × R) (Huete et al. 2002) 

EVI2 Two-band enhanced 
vegetation index 

2.5 × (NIR − R)/(1 + NIR
+ 2.4 × R) (Jiang et al. 2008) 

OSAVI Optimized soil adjusted 
vegetation index 

(NIR − R)/(NIR − R + L)(L
= 0.16) (Rondeaux et al. 1996) 

MCARI Modified chlorophyll 
absorption in reflectance index 

[(RE − R) − 0.2 × (RE − G)] × (RE
/R) (Daughtry et al. 2000) 

TCARI Transformed chlorophyll 
absorption in reflectance index 

3 × [(𝑅𝐸 − 𝑅) − 0.2 × (𝑅𝐸
− 𝐺) × (RE
/R)] 

(Haboudane et al. 
2002) 

MCARI/OSAVI  MCARI/OSAVI (Daughtry et al. 2000) 

TCARI/OSAVI  TCARI/OSAVI (Haboudane et al. 
2002) 

WDRVI Wide dynamic range 
vegetation index 

(a × NIR − R)/(a × NIR + R)(a
= 0.12) (Gitelson 2004) 

2.4 Data analysis 
In this study, feature selection was performed to identify optimal features (spectral indices, texture 
features, and canopy height model) for evaluating wheat NUE. Next, machine learning and deep 
learning models were trained to predict NUE. Ultimately, a high-resolution NUE spatial distribution 
map was generated using the best machine learning model (Fig 2). 
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Fig 3. Workflow of this study 

Feature selection 

We used correlation and random forest feature importance at the same time to obtain optimal 
features that are more effective in NUE prediction (Fig 3). We first used random forest to calculate 
the feature importance on different dates for the features calculated from UAV images, then 
selected the top 3 features with the highest importance in each stage, named stage specific top 
features. Next, we calculated the correlation between NUE and the stage specific top features to 
reduce the collinearity and reduce overfitting (Zhao et al. 2022), and finally obtain a small number 
of the general optimal features. 

 
Fig 3. Workflow of feature selection 

Model selection 

We used machine learning and deep learning to evaluate the performance of selected features 
in estimating wheat nitrogen use efficiency. In this study, we used random forest regression (RF), 
partial least squares regression (PLSR), multilayer perceptron regression (MLPR), single-layer 
Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), bidirectional LSTM (Bi-
LSTM), and CNN-RNN models (Table 4). Models were implemented in Python using the sklearn 
and TensorFlow library. 

Table 4. Description of different models 
Model Input data 

Random forest (RF) 2022-2023 one stage features 

Partial least squares regression (PLSR) 2022-2023 one stage features 

Multilayer perceptron regression (MLPR) 2022-2023 one stage features 

Single-layer Convolutional Neural Network (CNN) 2022-2023 one stage features 
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Long Short-Term Memory (LSTM) 2022-2023 heading and flowering features 

bidirectional LSTM 2022-2023 heading and flowering features 

CNN-RNN 2022-2023 heading and flowering features 

In this study, we randomly split the data into training and validation sets with 7:3. We select 
Explained Variance, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R-squared 
(R²), and runtime as evaluation metrics. 

3. Results 

3.1 Optimal features selection results 
From Fig 4, we can get the stage specific top features including NDI, RBRI, NDREg, RCC, EXR, 
CH, CIVE, IPCA. 

Considering the extremely high linear correlations (|r| > 0.9) among EVI, EVI2, NIR, GNDVI, 
OSAVI, NDREg at heading and flowering stage (Fig 5), and also the redundancy among RCC, 
BCC, RBRI, NGRDI, and EXR (|r| > 0.9), the following 4 optimal features were finally determined 
for NUE calculation: CH, NGRDI, NDREg, IPCA. 

 
Fig 4. The stage specific top featues of of different growing stage 
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Fig 5. Correlation between important indicators at different growing stage 

3.2 Comparing Models for NUE prediction 
According to Table 5, the R2 values of most models exceeded 0.5, indicating that these models 
can explain more than 50% of the variation in PFP. The R2 value of PLSR was 0.62, the highest 
among all models, indicating that it had the best prediction effect on PFP. Other models with good 
performance included CNN-RNN (R2 = 0.61) and LSTM (R2 = 0.58). PLS regression and random 
forest had the shortest training time, which were 0.15 and 0.14 seconds, respectively. Deep 
learning models such as CNN-RNN and BiLSTM took longer to train, especially CNN-RNN, which 
required 78.95 seconds. 

Similarly, the R2 values of most models in PNB prediction exceeded 0.7, indicating that these 
models had good fitting effects in the early stage of wheat growth. The training time of PLSR was 
the shortest, almost zero, indicating that it had the highest computational efficiency. The R2 value 
of random forest was 0.80, the highest among all models. 

In general, PLSR and random forest are good choices for high accuracy and short training time. 
For scenarios that require higher prediction accuracy, CNN-RNN can be considered, but the 
longer training time must be weighed. 

Table 5. NUE (PFP) Models Validation Accuracy  

Model MAE RMSE R2 Training Time 
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Random Forest 10.61 14.66 0.54 0.14 

PLSR 10.62 13.35 0.62 0.15 

MLPR 11.33 15.37 0.50 0.30 

Single-layer CNN 10.84 14.52 0.55 17.55 

LSTM 11.29 14.11 0.58 34.12 

BiLSTM 10.86 14.19 0.57 61.20 

CNN-RNN 10.46 13.54 0.61 78.95 

Table 6. NUE (PNB) Models Validation Accuracy 

Model MAE RMSE R2 Training Time 

Random Forest 0.19 0.26 0.80 0.14 

PLS Regression 0.23 0.32 0.71 0.00 

MLP Regressor 0.42 0.50 0.29 0.08 

Single-layer CNN 0.23 0.30 0.74 21.36 

LSTM 0.24 0.32 0.71 36.63 

BiLSTM 0.24 0.31 0.71 52.98 

CNN-RNN 0.23 0.30 0.74 72.27 

3.3 Mapping NUE at pixel-level 
We computed the spatial distribution of wheat NUE at flowering stage on 2022 using PLSR model 
(Fig 6). We found that the spatial distribution characteristics of NUE (PNB) and NUE (PFP) did 
not differ significantly. The marginal differences were primarily due to the distinct calculation 
methods of the two NUE indicators. 

 
Fig 6. Wheat NUE-by-pixel distribution prediction at flowering stage on 2022 

4. Discussion 
4.1 Importance of red-edge spectral indices 

It is worth noting that those spectral indices showed close correlations with NUE are mainly related 
to chlorophyll and canopy structure - for example, NDVI, GNDVI, NDRE, NDREg, MTCI and RECI, 
which have been commonly used in previous studies (Jiang et al. 2008; J. Liu et al. 2022; Pavuluri 
et al. 2015; Yang et al. 2020).  

Among those indices, NDRE, NDREg, RECI, and MTCI all involve the red-edge wavelength 
region and are used to assess crop health and canopy chlorophyll content. The RE (red-edge) 
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band captures the transition zone between red and infrared light, providing valuable information 
about canopy structure. The red-edge spectrum is typically between 680 and 750 nanometers. 
The interaction between vegetation and sunlight in this spectral interval provides subtle 
information about the health, density and arrangement of plant leaves. It has been found to be 
important for crop canopy information (chlorophyll and nitrogen) (Li et al. 2014). Changes in 
canopy structure, such as Leaf Area Index and crop height, can indicate plant responses to 
nitrogen availability (Yang Liu et al. 2021). 

The correlations between MTCI, NDRE, NDREg and RECI were high, resulting in potential data 
redundancy if all are used simultaneously in a model. Therefore we'd better choose one of these 
indices in the final model. The differences in calculation bands and usage scenarios of these 
indices are mainly reflected in the following aspects. Both NDRE and RECI include NIR (Near-
Infrared), which is sensitive to water content in plant tissues. Variations in water content can 
impact NIR signals, potentially confounding nitrogen content estimates. This interference might 
lead to inaccuracies in assessing wheat NUE, especially in environments with fluctuating water 
resources. Meanwhile, the sensitivity of NIR at low nitrogen levels is limited, and it easily saturates 
at high nitrogen levels (Sharma and Bali 2018). MTCI (MERIS Terrestrial Chlorophyll Index) takes 
advantage of the fact that the chlorophyll absorption characteristics in the red edge region (around 
709nm) are sensitive to the chlorophyll content in plants. Taking into account soil background 
reflectance, adding reflectance at 754 nm and 681 nm allows for a more accurate estimate (Dash 
and Curran 2007). MTCI is considered more applicable to a wider range of crops as it attempts 
to minimize the effects of changes in soil reflectivity, making it more robust across different soil 
types and vegetation conditions (Dash and Curran 2007). NDREg emphasizes vegetation cover, 
as well as vegetation structure and quantity, potentially performing well in specific crop types. 
Therefore, the selection of MTCI and NDREg can be determined based on crop type and nitrogen 
performance. 

4.2 Importance of Color-band only spectral indices  

NDVI, GNDVI, and NGRDI are the common type of “normalized difference indices” for estimating 
crop coverage and can reflect canopy differences in response to nitrogen supply and crop yield. 
The three indices differ in their bands (Table 4), NDVI emphasizes NIR and R, GNDVI emphasizes 
NIR and G, and NGRDI emphasizes R and G. NGRDI outperforms NDVI in identifying vegetation 
in low nitrogen treatment, while NDVI excels vegetation in high nitrogen treatment, albeit 
encountering saturation issues in the later growth stages (Maresma et al. 2016). Both NGRDI and 
GNDVI emphasize the green band, but NGRDI is more suitable for green crops, while GNDVI 
highlights near-infrared, making it applicable to a broader range of crops, but near-infrared is not 
sensitive to vegetation of low nitrogen treatment and always influenced by water content (Hunt et 
al. 2018). In our study, we observed that before and during the flowering stage, GNDVI and NDVI 
exhibited a strong correlation of 0.99, which weakened in subsequent stages. The correlation 
between GNDVI and NGRDI was also strong. To avoid data redundancy, either of these two can 
be selected. 

These color indices can be obtained using standard digital cameras or portable spectrometers, 
reducing costs, especially for small-scale farmers. Moreover, the intuitive nature of color indices 
allows farmers and non-professionals to comprehend and utilize the results effectively. 

5. Conclusions 
We explored the potential of using UAV multispectral data to predict variations in wheat NUE 
using two year data. To this end, we identified four spectral indices based on machine learning 
and deep learining models (including CH, NGRDI, NDREg, IPCA) that demonstrated strong 
performance in predicting NUE (validation R2 > 0.5). PLSR and random forest have high fitting 
accuracy and short running time. Deep learning model has stable fitting accuracy but is time-
consuming. Additionally, we discovered the advantages and potential of the red-edge index and 
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color band index in predicting NUE.  
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